二次根式单元测试卷
(完整版)二次根式经典单元测试题(含答案)

d for some o 24.计算题:
go (1)
;
g are (2)
.
in
ir be 25.计算:( ﹣ )2 the
in 26.计算:
.
ll things
A 27.计算:12
.
d
time an 28.(2010•鄂尔多斯)(1)计算﹣22+
﹣( )﹣1×(π﹣ )0;
y one thing at a (2)先化简,再求值:
go A.
B.(﹣3)﹣2=﹣
C.a0=1
D.3 D.
are 4.(2011•泸州)设实数 a,b 在数轴上对应的位置如图所示,化简 g 是( )
的结果
10.(2002•鄂州)若 x<0,且常数 m 满足条件
,则化简
所得的结果是( )
A.x
B.﹣x
二.填空题(共 12 小题)
11.(2013•盘锦)若式子
d 14.计算: 12 27 18
; (3 48 4 27 2 3)
。
ir being are goo 选择题(共 10 小题) e 1.B 2.D 3.A 4.D 5.A
th 11. x≥﹣1 且 x≠0 .
in 12. x≤2 且 x≠1 . s 13. 1 . ing 14. n= 3 .
b
A.a,b 均为非负数 C.a≥0,b>0
B.a,b 同号
D. a 0 b
g and S 5.已知 a<b,化简二次根式 a3b 的正确结果是( )
thin A. a ab
B. a ab
me C.a ab
D. a ab
r so 6.把 m 1 根号外的因式移到根号内,得( ) fo m
《二次根式》单元测试题含答案

《二次根式》单元测试题含答案work Information Technology Company.2020YEAR《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xyy x -|∵ x =41,y =21,∴y x <xy . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式 单元测试题(含答案)

二次根式单元测试题(含答案) 九年级上学期数学测试题(二次根式)一、选择题1.已知 x^3+3x^2=-x(x-3),则 x 的取值范围是()A。
x≤0.B。
x≤-3.C。
x≥-3.D。
-3≤x≤02.化简(√a-√b)/(√a+√b) 得()A。
-√a。
B。
-a。
C。
√a。
D。
a3.当 a<0,b<0 时,-a+2ab-b 可变形为()A。
(a+b)。
B。
-(a-b)。
C。
(-a-b)。
D。
(-a+b)4.在根式√a^2+b^2、√x、√x^2-xy、3√abc 中,最简二次根式是()A。
√a^2+b^2、√x。
B。
√x、√x^2-xy。
C。
√a^2+b^2、√x^2-xy。
D。
√a^2+b^2、3√abc5.下列二次根式中,可以合并的是()A。
√a/a 和√13a^2.B。
2√a 和 3a^2.C。
3√a^2 和 a。
D。
3a^4 和 2a^26.如果 a+a^2-2a+1=1,那么 a 的取值范围是()A。
a=0.B。
a=1.C。
a≤1.D。
a=0 或 a=17.能使 x/(x-2)=1 成立的 x 的取值范围是()A。
x≠2.B。
x≥2.C。
x≥0.D。
x>28.若化简 |1-x|-x^2-8x+16 的结果是 2x-5,则 x 的取值范围是()A。
x 为任意实数。
B。
1≤x≤4.C。
x≥1.D。
x<49.已知三角形三边为 a、b、c,其中 a、b 两边满足 a^2-12a+36+b-8=0,那么这个三角形的最大边c 的取值范围是()A。
c>8.B。
8<c<14.C。
6<c<8.D。
2<c<1410.XXX的作业本上有以下四题:①16a^4=4a^2;②5a×10a=5a^2;③a^(1/2)×a^(1/2)=a;④3a-2a=a。
其中做错误的是()A。
①。
B。
②。
C。
③。
D。
④二、填空题:11.(√1/2)^2 的值是 1/2,36 的算术平方根是 6.12.(7-5√2)^2008×(-7-5√2)^2009=-2.13.x,y 分别为 8-11 的整数部分和小数部分,则 2xy-y^2=-0.19.14.若 x=2/3,则 x^2-2x+3 的值为 5/9.15.已知 xy<0,化简 x^2y^4=|xy^3|。
《二次根式》单元测试卷3套(含答案解析)

(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,
二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
二次根式单元测试题及答案

二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
二次根式单元试卷

【分析】先逆用同底数幂的相乘法则与积的乘方法则将式子变形为 ,再运用平方差公式计算底数,然后计算乘方,即可计算出结果.
【详解】解:
,
故选:B.
【点睛】本题考查实数的运算,熟练掌握同底数幂的相乘法则与积的乘方法则的逆用,二次根式运算法则是解题的关键.
8.B
【分析】直接利用二次根式的性质得出 的符号进而化简求出答案;
10.A
【分析】先把 化为 再结合 从而可得答案.
【详解】解:∵ ,
,
,
而
∴
故选A.
【点睛】本题考查的是二次根式的大小比较,二次根式的混合运算,掌握“二次根式的大小比较的方法”是解本题的关键.
11. 且
【分析】根据二次根式有意义的条件可得 ,根据分式有意义的条件可得 ,再解不等式即可.
【详解】解:由题意得: 且 ,
3.下列二次根式的运算正确的是()
A. B.
C. D.
4.若 成立,则x的取值范围是( )
A. B. C. D.任意实数
5.等式 成立的条件是()
A. B. C. 或 D.
6.已知a、b、c在数轴上的位置如图所示,则 的化简结果是()
A. B. C. D.
7.计算式子 的结果是()
A. B. C. D.
6.C
【分析】根据a、b、c在数轴上的位置得出 , ,从而得出 , ,再根据绝对值的意义和二次根式性质,进行化简即可.
【详解】解:根据a、b、c在数轴上的位置可知, , ,
∴ , ,
∴
.
故选:C.
【点睛】本题主要考查了绝对值的意义,二次根式的性质,数轴上点的特点,解题的关键是根据点a、b、c在数轴上的位置确定 , .
二次根式单元测试题经典4套

《二次根式》单元测试题(一)一、填空题(每题2分,共20分) 1、当a 时, 有意义 2、计算:3、计算:4、计算: (a >0,b >0,c >0)5、计算: = =6、7、 则 2006个3 2006个48、 9、观察以下各式:利用以上规律计算:10、已知二、选择题(每题3分,共30分) 11、若32+x 有意义,则 ( )A 、B 、C 、D 、12、化简 的结果是 ( )A 、0B 、2a -4C 、4D 、4-2a13、能使等式 成立的条件是 ( ) A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( ) A 、x 8 B 、b a 25 C 、2294b a + D 、15、已知 ,那么 的值是 ( ) A 、1 B 、-1 C 、±1 D 、416、如果 ,则a 和b 的关系是 ( )A 、a ≤bB 、a <bC 、a ≥bD 、a >b17、已知xy >0,化简二次根式 的正确结果为 ( )A 、B 、C 、D 、19、下列说法正确的个数是 ( )①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④A 、1B 、2C 、3D 、420、下列四个算式,其中一定成立的是 ( )① ; ② ; ③ ④ ()=-231)(a-1()=2232)(=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--2511)(()=-262)(=-⨯)()(27311=73)1(a38)2(=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫ ⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x 23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x xx x 2y 51=+x x x x 1-12122-=+-⋅-b ab a ba 2x y x -y y -y -y --a a 2.05与21212+-与3223--的绝对值是11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x xA 、①②③④B 、①②③C 、①③D 、① 三、解答题(共50分)21、求 有意义的条件(5分)22、已知 求3x +4y 的值(5分)23、在实数范围内将下列各式因式分解(3+3+3+4=13分) ① ② ③ ④24、已知实数a 满足 ,求a -20052的值 (5分)25、(共6分)设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a26、(共6分)①已知 ; ②已知x = 求x 2-4x -6的值28、计算: (5分)《二次根式》单元测试题(二)一、单项选择题(每小题3分,共30分)1.下列式子一定是二次根式的是 ( ) A.2--x B.x C.22+x D.22-x 3若b b -=-3)3(2,则 ( ) A.b>3 B.b<3 C.b ≥3 D.b ≤3 3.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=3 4.化简)22(28+-得 ( )A.—2B.22-C.2D.224- 5.下列根式中,最简二次根式是( ) A.a 25 B.22b a + C.2aD.5.0 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x a a a =-+-200620057250S cm b cm a ,求,1022==11322+--=x x x ,求102-()()()()121123131302-+-+---+6.如果)6(6-=-⋅x x x x 那么 ( )A.x ≥0B.x ≥6C.0≤x ≤6D.x 为一切实数7.若x <2,化简x x -+-3)2(2的正确结果是( ) A.-1 B.1 C.2x-5 D.5-2x 8.设ab a 1,322=-=,则a 、b 大小关系是( ) A.a=b B.a >b C.a <b D.a >-b 9.若最简二次根式a a 241-+与是同类二次根式,则a 的值为 ( ) A.43-=a B.34=a C.1=a D.1-=a 10.已知1018222=++x xx x,则x 等于 ( ) A.4 B.±2 C.2 D.±4二、填空题(每小题3分,共30分)1.52-的绝对值是__________,它的倒数__________.2.当x___________时,52+x 有意义,若xx-2有意义,则x________. 3.化简=⨯04.0225_________,=-22108117_____________. 4.=⋅y xy 82 ,=⋅2712 .5.比较大小:(填“>”、“=”、“<”)6.在实数范围内分解因式=-94x ___________ .7.已知矩形长为32cm ,宽6为cm ,那么这个矩形对角线长为_____ cm. 8.23231+-与的关系是 .9.当x= 时,二次根式1+x 取最小值,其最小值为 . 10.若3的整数部分是a ,小数部分是b ,则=-b a 3 . 三、计算题(每小题5分,共20分) 1.21418122-+- 2.3)154276485(÷+-;3. 21)2()12(18---+++; 4. x xx x 3)1246(÷- .;四、化简并求值(每小题5分,共20分) 1.已知:121-=x ,求12+-x x 的值.2.已知:.22,211881的值求代数式-+-+++-+-=xyy x x yy x x x y3.计算:20062007)56()56(-⨯+.4.已知a ,b ,c 为三角形的三边,化简222)()()(a c b a c b c b a -++--+-+.《二次根式》单元测试题(三)一、填空题(每小题3分,共30分)①3是 的平方根,49的算术平方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式测试卷
一、填空。
111m +
+有意义,则m 的取值范围是 。
2、当15x ≤5_____________x -=。
3、 把的根号外的因式移到根号内等于 。
4、若最简二次根式____,____a b ==。
5、)()20002001232______________+=,10001001)52()52(+⋅-= 。
6、当x___________时,
x 311--
是二次根式,化简:=<)0(82a b a 。
7、已知: ,5
14513,413412,312311=+=+=+当1≥n 时,第n 个等式可表示为 。
8、化简-)0(22143
<b b
a c abc 的结果是 ,当.11)1_________2=-m m m -(时, 9、化简:(7-52)2000·(-7-52)2001=______________.10、化简-
81527102÷31225a = . 二、选择题。
1、若23a ,( )A. 52a - B. 12a - C. 25a - D. 21a -
2、=x 的取值范围是( )A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥
3、计算:ab ab b a 1⋅÷等于 ( )A .ab ab 21 B .ab ab 1 C .ab b
1 D .ab b 4、下列计算正确的是()①694)9)(4(=-⋅-=--;②694)9)(4(=⋅=--;③145454522=-⋅+=-;④145452222=-=-;A .1个 B .2个 C .3个 D .4个
5、下列计算中,正确的是( )
A .562432=+
B .3327=÷
C .632333=⨯
D .
3)3(2-=- 6、.已知a <0,那么
=-2|)|2(a a ( )A.a B.-a C.3a D.-3a 7、下列二次根式中,与32是同类二次根式的是:( )A . 12 B. 24 C. 27 D. 50
8、把根号外的因式移到根号内,得( ) A. B. C. D.
9、设a b a 1,322=
-=,则a 、b 大小关系是( )A 、 a=b B 、 a>b C.、a<b D 、 a>-b 10、已知a x x =+1,则x x 1+的值为( )A 、22-a B 、2a C 、42-a D 、不确定 11、已知0a <,那么22a a -可化简为( ). (A )a - (B )a (C )3a - (D )3a 12、 计算29328+-的结果是( )(A )22- (B )22 C.2 (D )2
23 13、化简a
a 3
-(a <0)得( )(A )a - (B )-a (C )-a - (D )a 14、下列各组二次根式中,不是同类二次根式的一组是
A 10.58与
B b a a b
与 C 22x y xy 与2 D 322x x 与 15、已知a <b ,3a b -的正确结果是 A .ab -- B .ab - C .ab D .ab -三解答题。
1、计算(1)20012002)56()56(-⨯- (2)521312321⨯÷ (3))1(932x x
x x +- (4)22)2332()2332(--+ ()2125.121335()5323632b ab a b b a ⎛÷ ⎝(7)x x x x x 231868212-+(8)1121231548333;(9)(485423313⎛++ ⎝ (10)b a b a 232·a b b a 2213÷ ()313.a a a
--(11) 1121231548333 (12)(485423313⎛+ ⎝ (13) (()
27373351+-- (14) ((((222212131213++- (15)231(2)(2)2724
-- 2101(3)(13)(23)()5--+, 103(4)248(2)- 1(5)2123(6)2
⨯(), 22(6)23+32332-()() 31(7)1520653
-(), 1(8)3124833÷(+)
已知:11a a +=+221a a
+的值。
2、当a = 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1 a 2-a 的值。
化简并求值:221(1)11x x x +÷--,其中1x =
3.阅读下面一道题的解答过程,判断是否正确,如若不正确,请写出正确的解答过程.
-a 2
解:原式-a 2·
1a +a=a . 4、计算(25+1)(211++321++431++…+100
991+). 5、先阅读下列的解答过程,然后作答:形如m±2n 的化简,只要我们找到两个数a ,b 使a +b =m ,ab =n ,这样( a )2+( b )2=m , a ·b =n ,那么便有m±2n =( a ±b )2 = a ±b (a >b )。
例如:化简7+4 3 解:首先把7+4 3 化为7+212 ,
这里m =7,n =12;由于4+3=7,4×3=12,即( 4 )2+( 3 )2=7,
4 ·3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2 =2+ 3
由上述例题的方法化简:
(1)42213- (2)407- (3)32-
6、先化简,再求值:1
1212222--÷+++-+x x x x x x x ,其中23-=x . 7、阅读下面问题:
12)12)(12()12(12
11
-=-+-⨯=+;23)23)(23(23231-=-+-=+; 25)25)(25(252
51
-=-+-=+,……。
试求: (1)6
71+的值; (2)n n ++11
(n 为正整数)的值。
(3)根据你发现的规律,请计算:
)20111)(2010
20111200920101251231211(+++++++++++。