二次根式单元测试题经典3套
二次根式单元测试附答案

二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2的平方根是 ,a 2的算数平方根是 ;3.若二次根式有意义,则的取值范围是___________.4.已知,则.5.比较大小:. 6.在实数范围内因式分解:. 7.若,则__________.8.=成立的条件是 ;9.a = ,的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二.选择题(3×8=24)11. )A .0B .2CD .不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .b a D .44+a6. 已知y =2xy 的值为( )A .15-B .15C .152- D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =∙=112;④a a a =-23。
做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= —1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19.(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+(4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21.(24分)化最简二次根式:(1(2(3 (4(5)-(622.(10分)计算:(1)(2)222)(2-23.(61x x =-24.(5分)若8a ,小数部分是b ,求2ab -b 2的值.25.(5分)在矩形ABCD 中,,,AB a BC b M ==是BC 的中点,DE AM ⊥,垂足为E 。
二次根式单元测试题及答案doc

二次根式单元测试题及答案doc一、选择题1. 下列哪个选项不是二次根式?A. √3B. 2√2C. √xD. 3x2. 二次根式的乘法法则是什么?A. √a × √b = √abB. √a × √b = √a + bC. √a × √b = a + bD. √a × √b = √(a + b)3. 如果√a = √b,那么a和b的关系是什么?A. a = bB. a = b^2C. a^2 = bD. a^2 = b^24. 以下哪个表达式不能简化为一个更简单的二次根式?A. √(2x^2)B. √(3x)C. √(4y^2)D. √(5z)5. 计算√(1/4)的结果是什么?A. 1/2B. 1/4C. 2D. 4二、填空题6. √(9x^2) 可以简化为 __________。
7. 如果√(2y) = √8,那么y的值是 __________。
8. 根据二次根式的除法法则,√(a/b) = __________。
9. √(25) + √(4) 的结果是 __________。
10. 计算(√3 + √2)^2 的结果,不展开,直接写出答案 __________。
三、解答题11. 计算下列表达式的值:(a) √(81x^4)(b) (√2 + √3)(√2 - √3)12. 简化下列二次根式,并合并同类项:√(18a^2b) + √(2a^2b) - 3√(2a^2b)四、应用题13. 一个正方形的面积是50平方厘米,求这个正方形的边长。
如果边长是一个整数,求出所有可能的边长。
答案:一、选择题1. D2. A3. D4. D5. A二、填空题6. 3x7. 48. √(ab) / √b9. 710. 7三、解答题11. (a) 9|x|^2(b) 2 - 312. √(18a^2b) + √(2a^2b) - 3√(2a^2b) = 3√(2a^2b) -2√(2a^2b) = √(2a^2b)四、应用题13. 边长为√50,即边长为5√2厘米。
《二次根式》单元测试题含答案

《二次根式》单元测试题含答案work Information Technology Company.2020YEAR《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xyy x -|∵ x =41,y =21,∴y x <xy . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
《二次根式》单元测试卷3套(含答案解析)

(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,
二次根式单元测试题及答案

八年级下册数学目标单元检测题(一)《 二次根式》一、选择题:(每小题2分,共26分) 1、下列代数式中,属于二次根式的为( )A 、B 、C 、 (a ≥1)D 、—2、在二次根式, 中,x 的取值范围是( )A 、x ≥1B 、x >1C 、x ≤1D 、x <13、已知(x -1)2+ =0,则(x +y )2的算术平方根是( )A 、1B 、±1C 、-1D 、0 4、下列计算中正确的是( )A 、B 、C 、D 、5、化简 =( )A 、B 、C 、D 、 6、下列二次根式: , , , , , , 其中是最简二次根式的有( )A 、2个B 、3个C 、1个D 、4个7、若等式 成立,则m 的取值范围是( )A 、m ≥B 、m >3C 、 ≤m <3D 、m ≥38、已知直角三角形有两条边的长分别是3cm ,4cm ,那么第三条边的长是( ) A 、5cm B 、 cm C 、5cm 或 cm D 、 cm 9、把二次根式 化简,得( )A 、x 2+xyB 、C 、D 、 10、下列各组二次根式中,属于同类二次根式的为( )A 、 和B 、 和C 、 和D 、 和 4-3x -1-a 2-11--x 2+y 532=+y x y x -=-2)(aa 11=3243=3121+561306156306a 5.03a b a 221-a 411222y x +n m 2312312--=--m m m m 2121775224y x x +y x x +xy x +1222y x x +2b a 222ab 1+a 1-a 12213)1(a -11、如果a ≤1,那么化简 =( )A 、B 、C 、D 、 12、下列各组二次根式中,x 的取值范围相同的是( )A 、 与B 、( )2与 C、 与 D 、 与13、化简 -( )2,得( ) A 、2 B 、4- 4x C 、4x -4 D 、-2 二、填空题:(每小题3分,共36分)14、用“>”或“<”符号连接:(1) ;(2) ; (3) 15、 的相反数是 ,绝对值是 ,( )2= 16、如果最简二次根式 与 是同类二次根式,那么a 的值是 17、计算: = ;( )2= ; =18、当x 时,二次根式 有意义;当x 时,代数式 有意义19、若1<x <2,则化简 =20、化简下列二次根式:(1) = ;(2)= 21、如果等式 成立,那么x 的取值范围是 22、若 有意义,则x 的值是 23、化简: = ; = ; =24、计算: = ; = 25、如果x +y=5,xy=1,那么 = 三、解答题:(26~30题各4分,31~33题各6分,共38分) 26、计算:x 1+x x 2x12+x 22+x 1-x x11442+-x x 32-x 5333-62-37-53-53-53-33-a a 27-248•312)5(-13+x xx 1+22)1()2(x x ---2318y x mx 421112-+=-•x x x x x -+-33224211+yx yx --2385÷ab a 22183÷yx y x 22x y+)323125.0()48(81----27、计算:28、计算:29、计算:30、计算:31、是否存在实数m ,使最简二次根式 与 是同类二次根式?若存在,求出m 的值;若不存在,请说明理由。
二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
(完整word版)二次根式单元测试题经典3套

二次根式单元测试题一一、 填空题(每题2分,共20分)1、当a 时, 有意义2、计算:3、计算:4、计算: (a 〉0,b >0,c >0)5、计算: = =6、7、 则 2006个3 2006个4 8、 9、观察以下各式:利用以上规律计算:10、已知 二、 选择题(每题3分,共30分) 11、若32+x 有意义,则 ( )A 、B 、C 、D 、12、化简 的结果是 ( )A 、0B 、2a -4C 、4D 、4-2a13、能使等式 成立的条件是 ( ) A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( )A 、x 8B 、b a 25C 、2294b a +D 、 15、已知 ,那么 的值是 ( ) A 、1 B 、-1 C 、±1 D 、416、如果 ,则a 和b 的关系是 ( ) A 、a ≤b B 、a 〈b C 、a ≥b D 、a >b17、已知xy >0,化简二次根式 的正确结果为 ( ) A 、 B 、 C 、 D 、 18、如图,Rt △AMC 中,∠C=90°,∠AMC=30°,AM ∥BN,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、23cm B 、3cm C 、3.2cm D 、 19、下列说法正确的个数是 ( )①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④A 、1B 、2C 、3D 、4()=-231)(a-1()=2232)(=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--2511)(==-⨯)()(27311=73)1(8=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫ ⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x 23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x xx x 2y51=+x x xx 1-12122-=+-⋅-b ab a ba 2x y x -y y -y -y --3M ANBC cm 323a a 2.05与21212+-与3223--的绝对值是20、下列四个算式,其中一定成立的是 ( )① ; ② ; ③④ A 、①②③④ B 、①②③ C 、①③ D 、① 三、解答题(共70分)21、求 有意义的条件(5分) 22、已知 求3x +4y 的值(5分)23、化简625①- ②627- (共8分)24、在实数范围内将下列各式因式分解(3+3+3+4=13分)① ② ③ ④25、已知实数a 满足 ,求a -20052的值 (5分)26、(共6分)设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a27、(共8分)①已知 ; ②已知x =求x 2—4x -6的值28、已知Rt △ABC 中,∠ACB=90°,AC=22cm ,BC=10cm,求AB 上的高CD 长度(5分)29、计算: (5分) 11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x a a a =-+-200620057250S cm b cm a ,求,1022==11322+--=x x x ,求102-C AB D()()()()121123131302-+-+---+30、已知 ,求① ;② 的值(10分)数学二次根式测试题二第Ⅰ卷一、单项选择题(每小题3分,共30分)1。
二次根式单元测试题及答案word

二次根式单元测试题及答案word一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7答案:A2. 以下哪个表达式是正确的?A. √(-4) = 2iB. √(-9) = 3iC. √(-16) = 4iD. √(-25) = 5i答案:C3. 根据二次根式的乘法法则,下列哪个等式是正确的?A. √2 * √8 = √16B. √3 * √3 = √9C. √5 * √5 = √20D. √7 * √7 = √49答案:D二、填空题4. 计算√(2x^2) 的结果,其中 x = 3。
答案:3√25. 如果√(a^2) = a,那么 a 的取值范围是:答案:a ≥ 06. 将下列二次根式化为最简形式:√(48) = √(16 * 3) = 4√3答案:4√3三、计算题7. 计算下列表达式的值:(5√2 + 3√3)^2答案:79 + 30√68. 简化下列二次根式:√(2/9) * √(18/4)答案:√(2 * 2) = 2四、解答题9. 证明:√(a^2 + b^2) = √a^2 + √b^2 只有在 a = b = 0 时成立。
答案:略(根据二次根式的性质进行证明)10. 解下列方程:x^2 - 4√3x + 12 = 0答案:x = 2√3五、综合题11. 已知 a, b 是正整数,且√a + √b = 9,求 a 和 b 的值。
答案:a = 1, b = 64 或 a = 4, b = 4912. 一个直角三角形的两条直角边分别是3√2 和 6,求斜边的长度。
答案:斜边长度为 9六、附加题13. 如果√(2x + 1) + √(2 - 2x) = 2,求 x 的值。
答案:x = 0注意:本试题及答案仅供参考,具体题目和答案可能会根据教学大纲和教材内容有所变动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式单元测试题一一、 填空题(每题2分,共20分) 1、当a 时, 有意义 2、计算:3、计算:4、计算: (a >0,b >0,c >0)5、计算: = =6、7、 则 2006个3 2006个48、 9、观察以下各式:利用以上规律计算:10、已知 二、 选择题(每题3分,共30分) 11、若32+x 有意义,则 ( )A 、B 、C 、D 、12、化简 的结果是 ( ) A 、0 B 、2a -4 C 、4 D 、4-2a13、能使等式 成立的条件是 ( )A 、x ≥0B 、x ≥3C 、x >3D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( )A 、x 8B 、b a 25C 、2294b a +D 、15、已知,那么 的值是 ( )A 、1B 、-1C 、±1D 、416、如果 ,则a 和b 的关系是 ( )A 、a ≤bB 、a <bC 、a ≥bD 、a >b 17、已知xy >0,化简二次根式 的正确结果为 ( )A 、B 、C 、D 、 18、如图,Rt △AMC 中,∠C=90°,∠AMC=30°,AM ∥BN ,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、23cm B 、3cm C 、3.2cm D 、()=-231)(a-1()=2232)(=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--2511)(==-⨯)()(27311=73)1(a38)2(=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫ ⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x xx x 2y51=+x x xx 1-12122-=+-⋅-b ab a ba 2x y x -y y -y -y --3M ANBC cm 32319、下列说法正确的个数是 ( ) ①2的平方根是 ;② 是同类二次根式;③ 互为倒数;④A 、1B 、2C 、3D 、420、下列四个算式,其中一定成立的是 ( )① ; ② ; ③ ④ A 、①②③④ B 、①②③ C 、①③ D 、① 三、解答题(共70分)21、求 有意义的条件(5分) 22、已知 求3x +4y 的值(5分)23、化简625①- ②627- (共8分)24、在实数范围内将下列各式因式分解(3+3+3+4=13分)① ② ③ ④25、已知实数a 满足 ,求a -20052的值 (5分)26、(共6分)设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a27、(共8分)①已知 ; ②已知x =求x 2-4x -6的值a a 2.05与21212+-与3223--的绝对值是11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x a a a =-+-200620057250S cm b cm a ,求,1022==11322+--=x x x ,求102-BD28、已知Rt △ABC 中,∠ACB=90°,AC=22cm , BC=10cm ,求AB 上的高CD 长度(5分)29、计算: (5分)30、已知 ,求① ;② 的值(10分)数学二次根式测试题二第Ⅰ卷一、单项选择题(每小题3分,共30分)1.下列式子一定是二次根式的是 ( ) A.2--x B.x C.22+x D.22-x3若b b -=-3)3(2,则 ( ) A.b>3 B.b<3 C.b ≥3 D.b ≤33.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=34.化简)22(28+-得 ( )A.—2B.22-C.2D.224- 5.下列根式中,最简二次根式是( ) A.a 25 B.22b a + C.2aD.5.0 6.如果)6(6-=-⋅x x x x 那么 ( )A.x ≥0B.x ≥6C.0≤x ≤6D.x 为一切实数7.若x <2,化简x x -+-3)2(2的正确结果是( ) A.-1 B.1 C.2x-5 D.5-2x 8.设ab a 1,322=-=,则a 、b 大小关系是( ) A.a=b B.a >b C.a <b D.a >-b9.若最简二次根式a a 241-+与是同类二次根式,则a 的值为 ( )()()()()121123131302-+-+---+23232323+-=-+=y x ,y x 11+y x x y +A.43-=a B.34=a C.1=a D.1-=a 10.已知1018222=++x xx x,则x 等于 ( ) A.4 B.±2 C.2 D.±4二、填空题(每小题3分,共30分)1.52-的绝对值是__________,它的倒数__________.2.当x___________时,52+x 有意义,若xx-2有意义,则x________. 3.化简=⨯04.0225_________,=-22108117_____________. 4.=⋅y xy 82 ,=⋅2712 .5.比较大小:(填“>”、“=”、“<”)6.在实数范围内分解因式=-94x ___________ .7.已知矩形长为32cm ,宽6为cm ,那么这个矩形对角线长为_____ cm. 8.23231+-与的关系是 .9.当x= 时,二次根式1+x 取最小值,其最小值为 . 10.若3的整数部分是a ,小数部分是b ,则=-b a 3 . 三、计算题(每小题4分,共16分) 1.21418122-+- ;2.3)154276485(÷+-;3. 21)2()12(18---+++;4. x xx x 3)1246(÷- .;四、化简并求值(每小题5分,共10分) 1.已知:132-=x ,求12+-x x 的值.2.已知:.22,211881的值求代数式-+-+++-+-=xyy x x yy x x x y五、应用题(6分)站在水平高度为h 米的地方看到可见的水平距离为d 米,它们近似地符号公式为58hd =。
某一登山者从海 拔n 米处登上海拔2n 米高的山顶,那么他看到的水平线的距离是原来的多少倍?六、综合题(8分) 1.阅读下面问题:12)12)(12()12(1121-=-+-⨯=+;;23)23)(23(23231-=-+-=+34)34)(34(34341-=-+-=+.……试求: (1)671+的值; (2)17231+的值; (3)nn ++11(n为正整数)的值.2.计算:20062007)56()56(-⨯+.3.已知a ,b ,c 为三角形的三边,化简222)()()(a c b a c b c b a -++--+-+.4.已知x 为奇数,且18721,969622+-+⋅++--=--x x x x x xx x x 求的值.七、甲、乙两人对题目“化简并求值:21122-++a a a ,其中51=a ”有不同的解答,甲的解答是:549211)1(1211222=-=-+=-+=-++a a a a a a a a a aa ,乙的解答是:5111)1(1211222==-+=-+=-++a a a a a a a a a a ,谁的解答是错误的?为什么?二次根式单元测试题三姓名 班级 总分一、填空题(每小题3分,共30分)①3是 的平方根,49的算术平方根是 。
②如果252=x ,那么=x ;如果()932=-x ,那么=x 。
③已知:在公式中()为速度v rv g 2=,则=v 。
④当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义⑤已知:()022=+++y x x ,则=-xy x 2。
⑥化简:=24 ;=3a ;=322 。
⑦当x 时,()x x 21122-=-。
⑧在8,12,27,18中与3是同类二次根式有 。
⑨()=-231 ,()=-25334。
⑩要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝。
(二)、精心选一选(每小题3分,共30分) 1、下列说法中,正确的是( )(A)、-0.64没有立方根 (B )、 27的立方根是3± (C )、9的立方根是3 (D )、-5是()25-的平方根2、下列计算正确的是 ( )(A )、36= (B )、39-=- (C )、39= (D )、393= 3、下列各数中,没有平方根的是 ( )(A )、65 (B )、()22- (C )、22- (D )、214、要使式子32+x 有意义,字母x 的取值必须满足( ) (A )、0≥x (B )、23≥x (C )、32≥x (D )、23-≥x 5、下列运算正确的是 ( ) (A )、235=- (B )、312914= (C )、32321+=- (D )、()52522-=-6、三角形的一边长是cm 42,这边上的高是cm 30,则这个三角形的面积是 ( ) (A )、2356cm (B )、2353cm (C )、21260cm (D )、2126021cm 7、下列各式是二次根式的是( )(A )、7- (B )、m (C )、12+a (D )、33 8、-27的立方根与81的平方根的和是( ) (A )、0 (B )、6 (C )、0或-6 (D )、-6 9、计算:3133⨯÷的结果为( )(A )3 (B )、9 (C )、1 (D )、3310、x 26-是经过化简的二次根式,且与2是同类二次根式,则x 为( ) (A )、-2 (B )、2 (C )、4 (D )、-4三、耐心算一算(每小题4分,共24分) 1、221223+- 2、3222233--+3、32218+-4、273 5、()()13132+- 6、222333---四、解答下列各题(共16分)1、(8分)若()1222+-=x y ,且y 的算术平方根是5,求:y x 2+的值2、(8分)当121-=x 时,求12+-x x 的值九年级数学第二十一章二次根式测试题(B )时间:45分钟 分数:100分 一、选择题(每小题2分,共20分) 1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若ba是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥ba 5.已知a<b ,化简二次根式b a 3-的正确结果是( ) A .ab a -- B .ab a -C .ab aD .ab a - 6.把mm 1-根号外的因式移到根号内,得( ) 14.计算:=⨯÷182712 ;=÷-)32274483( 。