几种商业化的高效晶体硅太阳能电池技术

合集下载

新型太阳能光伏电池的制备与应用

新型太阳能光伏电池的制备与应用

新型太阳能光伏电池的制备与应用近年来,全球环保和可持续能源的需求不断提升,新型太阳能光伏电池作为一种新型绿色能源解决方案,受到了广泛关注。

它具有高效率、长寿命、环保清洁等特点,被广泛应用于工业生产、市政建设、居民家庭等各个领域。

本文将从制备技术和应用案例两个方面介绍新型太阳能光伏电池的相关知识。

一、新型太阳能光伏电池的制备技术新型太阳能光伏电池的制备技术主要包括晶体硅太阳能电池、非晶硅太阳能电池、染料敏化太阳能电池、有机太阳能电池等多种类型。

1、晶体硅太阳能电池晶体硅太阳能电池是当前应用最广泛的一种太阳能电池,主要制备技术包括单晶硅和多晶硅两种。

单晶硅太阳能电池因为材料纯度高、电子迁移速度快,所以效率较高,但制备工艺复杂、成本较高;多晶硅太阳能电池制备简单,成本低,适应范围广,但因为晶界和缺陷的存在导致效率较低。

2、非晶硅太阳能电池非晶硅太阳能电池是一种新型太阳能电池,制备非常简称,只需要将硅原料加热到高温后快速冷却得到一层非晶硅薄膜,再将薄膜制成太阳能电池即可。

然而,由于非晶硅材料的缺陷和密度较低,其效率相对比较低。

3、染料敏化太阳能电池染料敏化太阳能电池是一种新型太阳能电池,它主要基于良好的染料吸收可见光的性质,在光敏染料的作用下,太阳能在原材料半导体中产生电荷,从而将太阳能转化为电能。

该电池利用染料分子吸收光的特性,相互之间通过较短的范围的电荷传递提高光电转换效率。

但该电池的寿命、稳定性等还需要更进一步的研究和改进。

4、有机太阳能电池有机太阳能电池的材料成分主要是由高分子和小分子有机材料组成的活性层。

其制备技术简单,可直接喷涂、印刷在可塑性聚合物材料上制成柔性太阳能电池,具有良好的可撕裂、易加工等优势。

但该电池的效率相对较低,还需要更多的研究进行改进。

二、新型太阳能光伏电池的应用案例1、工业生产新型太阳能光伏电池作为一种绿色、清洁、可再生的能源来源,已经被广泛应用于包括工业生产在内的各个领域。

2024年晶硅太阳能电池市场分析现状

2024年晶硅太阳能电池市场分析现状

2024年晶硅太阳能电池市场分析现状1. 引言随着对可再生能源的日益重视,太阳能电池作为一种清洁能源转化技术,在能源领域中占据重要地位。

晶硅太阳能电池因其高效转换率、较长的使用寿命和成熟的生产工艺而成为市场主流。

本文将对晶硅太阳能电池市场的现状进行详细分析。

2. 晶硅太阳能电池的基本原理晶硅太阳能电池利用晶体硅材料的能带结构将太阳光能转化为电能。

当光子通过晶格结构的晶硅材料时,会激发电子从价带跃迁至导带,形成电子-空穴对。

通过引入P-N结构,可以形成电流,进而输出电能。

3. 晶硅太阳能电池市场规模根据市场研究机构的统计数据,在过去几年中,晶硅太阳能电池市场规模持续增长。

据预测,到2025年,全球晶硅太阳能电池市场规模将达到XX亿美元。

4. 晶硅太阳能电池的主要应用领域晶硅太阳能电池已经广泛应用于多个领域,包括但不限于:4.1 家庭光伏电站随着可再生能源的普及,越来越多的家庭开始安装光伏电站,其中晶硅太阳能电池作为主要的光伏组件。

4.2 商业和工业应用晶硅太阳能电池在商业和工业领域也得到了广泛应用。

例如,一些大型商业建筑通过安装太阳能电池板来减少能源消耗并节省能源费用。

4.3 农业领域晶硅太阳能电池在农业领域的应用越来越受到关注。

在农村地区,农民可以利用太阳能电池为农业灌溉系统和温室提供电力支持。

5. 晶硅太阳能电池市场竞争格局晶硅太阳能电池市场竞争激烈,主要竞争者包括国内外多家厂商。

虽然面临着来自其他太阳能技术的竞争,但晶硅太阳能电池的高效转换率和成熟的工艺使其在市场上保持了较大的份额。

6. 晶硅太阳能电池市场的发展趋势晶硅太阳能电池市场将继续保持稳定增长,并出现以下发展趋势:6.1 技术进步随着科技的不断进步,晶硅太阳能电池的效率将继续提高,同时成本将进一步降低,推动市场发展。

6.2 政府政策支持许多国家和地区已经制定了支持太阳能电池产业的政策和补贴措施,这将为市场带来更大的发展动力。

6.3 新兴市场需求增加随着对可再生能源需求的增加,一些新兴市场开始重视太阳能电池技术,并逐渐引入晶硅太阳能电池。

高效晶体硅电池技术综述

高效晶体硅电池技术综述

高效晶体硅电池技术综述以及商业化现状摘要:太阳能、风能、水能等清洁能源随着能源危机的初现端倪已经越来越为人们所重视和提倡,能源问题已经成为制约国家经济发展的重要战略问题。

其中太阳能不论从资源的数量、分布的普遍性、技术的成熟度和对环境的影响都体现出巨大的优势。

光伏发电也逐渐从传统发电的补充能源形式过渡到替代能源形式。

这当中发电成本始终是制约推广的首要因素。

寻求新技术、新材料、新工艺,以提高太阳电池转换效率,大幅度降低生产成本是整个光伏行业面临的紧迫课题。

晶体硅电池是目前商业化程度最高,制备技术最成熟的太阳能电池。

以晶体硅技术为基础,着力于降低生产成本,提高发电效率的高效晶体硅电池研发始终是国际光伏领域研究的热点之一。

本文旨在从影响常规晶体硅电池转换效率的几个可能方面出发,简介目前欧美,日本等光伏技术发达国家以及业界几种较为流行的高效晶体硅制备技术及其商业化现状。

关键词:高效、晶硅、太阳能电池、光伏发电前言太阳能光伏发电是太阳能利用的一种重要形式,随着技术不断进步,光伏发电成为最具发展前景的发电技术之一。

光伏发电的基本原理为半导体的光伏效应,即在太阳光照射下产生光电压现象。

20世纪50年代,美国贝尔实验室三位科学家首次研制成功具有实用价值的单晶硅太阳电池,诞生了将太阳的光能转换为电能的实用光伏发电技术,在太阳电池发展史上起到了里程碑的作用。

太阳能电池主要有两大类,一类是以单晶硅和多晶硅硅片为基础的晶体硅太阳能电池;另一类是非晶硅、铜铟硒和碲化鎘薄膜太阳能电池等。

晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池,至2009年止超过90%,薄膜太阳电池市场占有率不足10%[1]。

晶体硅太阳能电池在可预见的未来仍将占主导地位。

现行光伏发电技术推广的最大制约因素是发电成本,围绕降低生产成本的目标,以高效电池获取更多的能量来替代低效电池一直是科学研究的热门课题之一。

近年来高效单晶硅太阳能电池研究已取得巨大成就,在欧美,日本等商业化高效电池的转换效率已超过20%。

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

晶体硅太阳电池制造技术

晶体硅太阳电池制造技术

晶体硅太阳电池制造技术
晶体硅太阳能电池是目前应用最广泛的太阳能电池之一,其制造技术主要包括以下几个步骤:
1. 制备硅单晶材料:通过在高温环境下,将硅原料(通常为冶炼硅或多晶硅)融化并凝固形成硅单晶,然后切割成薄片。

2. 清洁处理:将硅单晶薄片进行严格的清洁处理,去除表面的杂质和有害物质。

3. 电池片制造:将清洁处理后的硅单晶薄片进行P型和N型掺杂,形成PN结构。

这一步骤一般采用扩散法、离子注入法或液相浸渍法。

4. 捕获和反射层涂覆:在电池片的前表面涂覆反射层,以提高光的利用率。

同时,在电池片的背面涂覆捕获层,以提高光的吸收。

5. 金属化和焊接:将电池片表面涂覆导电金属(通常为铝)和更薄的阳极面涂覆导电金属(通常为银),然后使用焊接技术将电池片连接成电池组。

6. 封装和测试:将电池组封装在透明的玻璃或塑料基板中,以保护电池组不受外界环境的影响,并进行电气性能测试和质量控制。

这些步骤是晶体硅太阳能电池制造的基本流程,具体制造技术还有其他细节和改进方法,以提高电池的效率和稳定性。

晶硅太阳能电池介绍

晶硅太阳能电池介绍

晶硅太阳能电池介绍晶体硅太阳能电池(也称为硅片太阳能电池)是一种常见且广泛应用于太阳能领域的太阳能转换技术。

它是利用硅片材料对光能的吸收和转化来产生电能的一个过程。

晶体硅太阳能电池主要由硅片、电极、导线和其他附件组成。

硅片是电池的核心部分,也是光能的主要转换区域。

硅片可分为单晶硅、多晶硅和非晶硅三种。

其中,单晶硅最为常见和普遍,它的晶格排列非常有序,电池效率相对较高。

晶体硅太阳能电池的工作原理主要涉及光电效应和PN结。

当光照射到硅片上时,光子会将电子从硅原子中激发出来,使其跃迁到空导带中,形成电流。

此时,硅片的一个表面被掺杂为N型导电层,另一个表面被掺杂为P型电导层,两者之间形成了一个PN结。

当光照射到PN结上时,电子会从N型区域流入P型区域,产生电流,同时产生电压差。

这样就完成了光能到电能的转换。

晶体硅太阳能电池的优点主要有以下几个方面:1.高效率:晶体硅太阳能电池的转换效率相对较高,可以达到20%以上,甚至高达25%。

2.长寿命:晶体硅太阳能电池的使用寿命可以达到25年以上,因此使用寿命较长,可以有效降低运维成本。

3.稳定性:晶体硅太阳能电池的稳定性较好,能够在不同环境条件下保持较高的转换效率。

4.良好的可靠性:晶体硅太阳能电池的可靠性较高,能够适应复杂多变的气候条件和环境。

5.可制造成各种形状和尺寸:晶体硅太阳能电池可以根据需求进行灵活制造,可以制作成不同形状和尺寸的太阳能板。

不过,晶体硅太阳能电池也存在一些局限性:1.成本较高:晶体硅太阳能电池的生产成本相对较高,需要较高的投资。

尽管随着技术不断进步,成本正在逐渐降低,但仍然有一定程度的限制。

2.对光强度和温度的敏感性:晶体硅太阳能电池对光强度和温度的变化较为敏感,在光强度较低或温度较高的环境下,效率会有所降低。

3.制造过程对环境的影响:晶体硅太阳能电池的生产过程中需要使用一定数量的能源和化学物质,可能会对环境造成一定的影响。

综上所述,晶体硅太阳能电池是一种广泛应用于太阳能领域的高效太阳能转换技术。

晶体硅太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池和薄膜太阳能电池。

【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。

晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。

制造成本高和生产过程能耗大是其主要缺点。

薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。

但是转换效率较低,使用寿命短。

比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。

未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。

【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。

1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。

它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。

太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。

太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。

目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。

晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。

太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。

随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。

1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。

它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。

晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。

薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。

晶硅太阳能电池的特点和种类

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点太阳能电池已经有30多年的发展历史。

目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。

其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。

我国光伏发电发展需解决的关键问题。

太阳能光伏发电发展的瓶颈是成本高。

为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。

降低太阳硅材料的制备成本:开发专门用于晶体硅太阳能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和提高性能,从产业链的源头,抓好降低成本工作。

提高电池/组件转换效率:高效钝化技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳折射率等高效封装技术等。

光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低成本是光伏电池发展的基本原则。

单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具活力的研究领域。

而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳能电池占80%以上,每年全世界需消费硅材料3000t左右。

生产太阳能电池用单晶硅,虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很可观。

目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长率快速增长。

硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。

现在单晶硅的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效晶体硅太阳能电池技术摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。

本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。

关键词:晶体硅电池;高效电池;商业化1 引言能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。

不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。

而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。

围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。

.2 硅太阳能电池能量损失机理目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。

而提高电池效率的关键之一就是提高开路电压V oc。

光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。

此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。

而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施.3 高效晶体硅太阳能电池技术3.1 背接触电池IBC/MWT/EWT(1)IBC电池(PCC电池)背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。

这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

由于光生载流子需要穿透整个电池被电池背表面的pn结所收集,故IBC电池对硅片本身的质量要求较高,需采用载流子寿命较高(纯度较高)的硅晶片材料,一般采用质量较高的n型FZ单晶硅作为衬底材料。

正面采用氧化硅或氧化硅/氮化硅复合膜与n+层结合作为前表面电场, 并形成绒面结构以抗反射。

背面利用扩散法做成p+与n+交错间隔的交叉式接面,并通过在氧化硅上开金属接触孔,实现电极与发射区或基区的接触。

交叉排布的发射区与基区电极几乎覆盖了背表面的大部分,十分有利于电流的引出。

结构见图1[3]。

图1(a) IBC电池基本结构图图1(b) IBC电池基本结构图这种背电极的设计实现了电池正面“零遮挡”,增加了光的吸收和利用。

但制作流程也十分复杂,工艺中的难点包括P+扩散、金属电极下重扩散(丝印光阻)以及激光烧结等。

IBC电池的工艺流程大致如下:清洗→制绒→扩散(n+)→丝印刻蚀光阻→刻蚀P扩散区→扩散(p+)→减反射镀膜→热氧化→丝印电极→烧结→激光烧结(2)MWT电池如前所述,IBC电池是在电池背面的PN结收集载流子,除此之外,还有一类背接触电池是两面均可收集载流子,并可将电流由正面传导至背面。

这类电池包括金属环绕穿通(MWT)电池和发射极环绕穿通(EWT)电池。

金属环绕穿通(MWT)电池和发射极环绕穿通(EWT)电池技术,是基于激光表面和背面加工技术的新型太阳能电池技术。

MWT技术是荷兰规模最大的太阳能电池生产商 Solland Solar 开发的用于其Sunweb 电池的方法。

即通过激光钻孔将电池正面收集的能量穿过电池再转移至电池背面。

这种将电池能量汇集到电池背面的方法使每块电池的输出效率提高了2%,再经过处理并与一个太阳能电池组件相连接,所得的输出效率甚至能提高9%。

在金属环绕穿通(MWT)器件(如图2所示)中,较薄的金属接触“手指”被移到背面。

通过激光钻微型通孔,将上表面与下表面接触连接起来,一般MMT每块硅片需要钻约200个通孔。

图2 MWT电池及其结构MWT电池的制作流程大致为:激光打孔→清洗制绒→发射极扩散(包括孔内) →去PSG →沉积SiN →印刷正面电极→印刷背面电极→印刷背电场→烧结→激光隔绝→测试分选工艺中的难点包括:激光打孔和划槽隔绝的对准以及重复性、孔的的大小及形状的控制、激光对硅衬底造成的损伤及孔内金属的填充等。

(3)EWT电池与MWT电池不同的是,在发射极环绕穿通(EWT)器件(如图3所示)中,传递功率的栅线也被转移至背面,使得上表面完全没有金属。

与MWT电池类似,EWT电池也是通过在电池上钻微型通孔来连接上、下表面。

相比较于MMT的每块硅片钻约200个通孔,EWT要求每块硅片上大约有2万个这种通孔,故激光钻孔成为唯一可满足商业规模速度的工艺。

图3(a) EWT电池基本结构与IBC电池相似,EWT电池由于正面没有栅线和电极,使模组装配更为简便,同时由于避免了遮光损失且实现了双面收集载流子,使光生电流有了大幅度的提高。

但相对光生电流而言,EWT电池填充因子和光生电压仍需进一步提高。

用于工业化大面积(大于10×10cm2)硅片的EWT电池工艺多采用丝网印刷和激光技术,并对硅片质量具有一定的要求,这为EWT电池工艺技术提出了诸多要求,比如无损伤激光切割的实现、丝网印刷对电极形状的限制、孔内金属的填充深度以及发射极串联电阻的优化(发射极串联电阻受硅片厚度、发射极体电阻和孔洞直径的影响)等。

EWT电池的主要工艺流程如图3(b)所示[4]:图3(b) EWT电池主要工艺步骤3.2 PERL电池PERL(Passivated Emitter , Rear Locally-Diffused)电池是钝化发射极、背面定域扩散太阳能电池的简称。

设计是在PERC电池的基础上,在电池背面增加定域掺杂,即在电极与衬底的接触孔处进行定域掺杂。

1990年,新南威尔士大学的J.Zhao在PERC电池结构和工艺基础上,在电池背面的接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图4所示。

这种电池背面接触孔处的薄层电阻可降到20 Ω/□以下。

孔间距离也由2 mm缩短为250 µm,大大减少了横向电阻。

如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL 电池,效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。

1993年该课题组又对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。

图4 PERL电池基本结构PERL电池具有高效率的原因在于[5]:(1)双面钝化:电池正面和背面都覆盖着热生长的SiO2层。

发射极的表面钝化,一方面降低了表面态,另一方面减少了前表面的少子复合。

而背面钝化的增加,使反向饱和电流密度Jo下降,同时光谱响应也得到较大的改善。

(2)淡磷、浓磷分区扩散:在金属栅指电极下进行浓磷扩散,可以满足栅指电极接触电阻小的要求;而在栅指之间大面积的受光区域内,进行淡磷扩散,只要调整好淡磷扩散的表面浓度及结深,就能同时满足横向电阻功耗小,且短波响应好两方面的要求。

(3)背面进行定域、小面积的硼扩散:如图4所示,背面电极采用了小面积的定域硼扩散p+区,显然,这将减少背电极的接触电阻,又给PERL电池增加了硼背面场,蒸铝的背电极本身又是一个很好的背反射器,从而进一步提高了电池的光电转换效率。

(4)电池正面采用“倒金字塔”结构:这种“倒金字塔”结构受光效果优于绒面结构及微槽结构,具有很低的反射率,从而提高了电池的Jsc。

目前这种电池技术是制造实验室高效太阳能电池的主要技术之一。

但是,这种电池的制造过程相当烦琐,其中涉及到好几道光刻工艺,所以不是一个低成本的生产工艺,很难将且应用于大规模工业生产。

PERL电池的工艺流程为:硅片→正面倒金字塔结构的光刻法制作→背面局域硼扩散→栅指电极接触区的浓磷扩散→正面淡磷扩散→SiO2减反射层的氧化→光刻背电极接触孔→光刻正面栅指电极引线孔→正面蒸发钛钯薄栅指电极→背面蒸发铝电极→正面镀银加厚栅指电极→退火→测试3.3 HIT电池1997年,日本三洋公司(Sanyo)推出了一种商业化的高效太阳能电池设计和制造方法,如图5所示[6]。

该电池以n-型晶体硅材料为基底材料,并在两侧沉淀本征层i-和p-及n-型非晶硅薄膜,形成n-型硅和非晶硅异质结结构(HIT)太阳电池。

非晶硅(a-Si:H)材料的带宽在1.7eV左右,远大于晶体硅1.1eV的带宽,因此此种HIT电池结构对于电池表面有很好的钝化作用。

由于非晶硅几乎没有横向导电性能,因此必须在硅表面淀积一层大面积的透明导电膜(TCO)以有效地收集电池的电流。

2003年时,这种电池的量产销率达到了19.5%。

2009年5月,据宣称其单元转换效率已经达到23%。

一般制造这种电池的工艺温度不超过300℃。

如果温度高于400℃,氢原子很容易从非晶硅材料内逸出,从而降低非晶硅材料的质量,影响电池的转换效率。

另外,由于TCO层和非晶硅发射层的本征吸收,还可能影响电池的蓝光响应。

此外,由于涉及到复杂的真空系统,制造工艺也相对复杂。

图5 HIT电池结构HIT电池制造的工艺流程是:清洗-制绒-正面沉积本征α-Si:H层和p型α-Si:H-背面沉积本征α-Si:H层和n型α-Si:H -TCO溅射沉积-丝网印刷Ag电极3.4 激光刻槽埋栅电池由UNSW开发的激光刻槽埋栅极技术即利用激光技术在硅表面上刻槽,然后填人金属,以起到前表面电接触栅极的作用。

图6显示了激光刻槽埋栅电池的结构[7]。

图6 激光刻槽埋栅电池结构发射结扩散后,用激光在前面刻出20µm宽、40µm深的沟槽,将槽清洗后进行浓磷扩散。

相关文档
最新文档