汽车动力性经济性优化设计
基于Isight的电动汽车动力性燃油经济性优化

动 比参数 进行 多 目标优 化设 计 .
传统 的研 究 方法 采用 数值 优化 算 法或 者全 局优 化算
基于 I 经 济性 优 化
郭晓光 , 宋雪丽 , 崔亚辉
( 1 .北京思 易特科技有 限责任公 司 , 北京 1 0 0 0 8 2 ; 2 .齐鲁工业 大学 机械与 汽车工程 学院 , 济南 2 5 0 3 5 3 )
摘要 : 针 对 电动 汽车 动 力性 与燃 油经 济性优 化 目标 矛盾 的 问题 , 基于 I s i g h t 软 件 集成 的第二 代非 劣
2 .S c h o o l o f Me c h a n i c a l a n d A u t o m o t i v e E n g i n e e r i n g , Q i l u U n i v e r s i t y o f T e c h n o l o g y , J i n a n 2 5 0 3 5 3 , C h i n a )
第2 2卷 增 刊 2
2 0 1 3年 1 0月
计 算 机 辅 助 工 程
Co mp u t e r Ai d e d En g i n e e r i n g
Vo 1 . 22 S u pp 1 . 2 0e t .2 01 3
文章 编 号 : 1 0 0 6—0 8 7 1 ( 2 0 1 3 ) s 2 — 0 2 1 1 . 0 4
经济性 .
车辆动力系统的多目标优化与设计

车辆动力系统的多目标优化与设计关键信息项:1、车辆动力系统优化与设计的目标和要求性能提升指标:____________________________节能减排目标:____________________________成本控制范围:____________________________2、优化与设计的范围和内容发动机类型与技术:____________________________传动系统配置:____________________________能源管理策略:____________________________3、时间节点和交付成果初步方案提交时间:____________________________测试与验证阶段完成时间:____________________________最终优化设计成果交付时间:____________________________ 4、费用及支付方式总费用预算:____________________________阶段性付款比例:____________________________支付条件和时间:____________________________5、质量保证与售后服务质量保证期限:____________________________售后服务内容和响应时间:____________________________1、引言本协议旨在明确双方在车辆动力系统的多目标优化与设计项目中的权利、义务和责任,确保项目的顺利进行和达成预期目标。
11 背景随着汽车行业的快速发展和市场需求的不断变化,车辆动力系统的优化与设计成为提高车辆性能、降低能耗和排放的关键。
为了满足市场竞争和法规要求,需要对车辆动力系统进行多目标的优化和创新设计。
2、项目目标和要求21 性能提升指标车辆的加速性能、最高车速、爬坡能力等方面应达到或超过特定的标准和要求。
211 具体的加速时间指标:从 0 到 100 公里/小时的加速时间应不超过 X 秒。
基于Cruise的整车动力性和经济性分析

Vol. 33 No. 1Juz 0071第38卷第1期2071年1月贵州大学学报(自然科学版)Journal of Guizhou University ( Natural Sciecces)文章编号 10004269(2021)019098 26DOI : 10. 15755/j. ctU ydxPzrb. 0071.01. 15基于Crrise 的整车动力性和经济性分析郁逸桢,郑长江*(河海大学土木与交通学院,江苏南京710098 )摘要:动力传动系统作为影响车辆动力性和燃油经济性的重要部件,开展传动系统的优化设计 对车辆研发具有重要意义。
文中基于Cruise 软件建立了整车模型,将仿真结果对比工信部实测 数据,验证了 Cruise 软件所建立的车辆仿真模型是可靠的。
动力性计算指标误差在3%以内,燃油经济性误差在5%以内,具有较高精度。
通过改变传动系统中主减速器传动比和变速器各挡 位传动比对车辆性能进行优化,在动力性减弱1.52%的情况下,提升了 4. 97%的经济性,符合当 前节能减排的发展趋势。
该研究结果表明:基于Cruise 软件对车辆进行性能优化是非常有必要的,具有重要的工程应用和理论参考价值。
关键词:动力性;燃油经济性;Cruise 仿真模拟;优化匹配中图分类号:U492.8 文献标志码:A车辆的动力性和燃油经济性是综合评估汽车 性能的重要指标。
王锐[]通过对比某车型的动力 性理论数据和Cruwo 软件仿真结果得出,仿真分析 精确度高于理论计算。
朱路生⑵针对轻型卡车建 模仿真,对比分析了 Mule 车和标杆车型,确认了 Mule 车性能指标优于标杆车型,具备细分市场的 差异化竞争力。
王琳4]基于Cruise 软件仿真分析 了某款手动挡汽车,并将仿真结果与试验结果对比 研究,验证了动态建模仿真分析应用于产品开发研 究的可行性。
采用软件仿真并配合试验研究,在整 车动力性和经济性评价方面取得了较好的应用效 果。
某乘用车基于CRUISE软件优化动力经济性

某乘用车基于CRUISE软件优化动力经济性作者:***来源:《时代汽车》2022年第19期摘要:在某车型匹配开发过程中,发现其动力经济性达不到设计目标要求。
本文通过对整车动力、经济性影响因素的分析,在保证不恶化经济性的前提下来提升动力性能解决此问题,主要采取措施为优化速比及降低行驶阻力,并使用AVL CRUISE软件进行仿真验证。
关键词:匹配优化动力性经济性行驶阻力1 引言油耗法规发布越来越严,整车厂面临着严峻的考验。
为达到法规要求,车企都尽最大努力使各车型燃油消耗量降低,在开发匹配过程中就不免偏重对经济性的考虑,而忽视或降低对动力性要求。
在整车开发过程中,动力性与经济性直接决定了整车的性能水平。
随着时代的进步,汽车不仅仅是作为拉人载货的载运工具,其良好的动力性赋予我们驾驶乐趣的含义。
经济性是汽车性能的延伸,是一项长期产生费用的性能指标,关系着客户利益和承担着节能减排的社会责任,所以经济性的重要也显得尤为突出。
动力传动系统匹配目的就是使两者达到最佳配合点,在保证汽车动力性的前提下,使整车经济性最优,平衡车辆动力性和经济性这两项相互矛盾的性能指标。
2 问题来源在某案例乘用车实际开发中,发现该车的动力性表现较弱,原因是基于成本及燃油经济性等方面考虑,选定了一台排量较小的发动机。
考虑到项目周期短,提出了在不恶化经济性的前提下,来提升动力性的优化方向。
由表1数据可知,该案例车的动力性及经济性表现不是很好,与竞品车型的表现相比,动力、经济性能属较差水平。
尤其最高车速和五档的超车加速性能明显较差,需要优化提升其高速行驶动力性。
3 优化措施及方向如圖1所示,汽油的化学能由发动机转化为机械能,再经过各种损失后只剩下13%~20%的能量,其中驱动整车行驶所需的能量仅为7%~18%。
发动机因受能量转换效率影响损失约62%~69%,所以发动机的节能潜力最大,但受技术水平制约实施难度大。
因此我们的优化措施主要在整车行驶传动系统上,以及降低车辆行驶所需的能量。
某重型汽车动力性与燃油经济性仿真与匹配优化

车加 速 时 间 来 表示 本 文 采 用 原地 起 步加 速 到 8 0
k/ m h的时 间来 对 加 速 性 能 进 行评 价 .仿 真 结 果 如
型汽 车各挡 爬坡 度仿 真结 果如 图 4所 示 .从 图中可
以看 出 I 的最 大爬坡 度 为 2 . % 挡 47 3
控制 线 , 驾驶 员模 型接 收来 自发动 机 的转速信 号 、 车
体 的车速 信号 以及 变速器 的挡 位信 号 .通过 接 收信
2 O
号来 控制 汽车 的加 速踏板 位 置 、离 合器 踏板 位置 以
sf aeo o e R N I R tea tosuemut ojci eei agrh oo t z h o e ri aa eeso ow r fI d F O TE ,h uh r s l —bet egnt l i m t pi etep w  ̄ a p rm t f t n i v c ot mi n r
其超速 挡 8 ~ 0 m h的等速 百公 里油耗 。 0 10 / k
~
重 型汽 车 1 最 大爬 坡 度应 不 小 于预 期 所 挡
5 5
要求 的最大爬 坡 度 : ≥2 。 4
b 重型 汽 车 的最高 车速 应 当不小 于 预期 最 高 .
昌 5 0
4 5
车 速 : 一 ≥ l 6k h “ 1 m/
t e h a y d t e i l . t rs v r li e lp a s a e c o e r m h p i z to ln rc mp rs n a d a ay i, h h e v - u y v h ce Af e e a d a l n r h s n f e o teo t miain p a sf o a o n n lss t e o i o t lmac r g a o e p we t i s i e t e c o d n O a t a e n . p i th p o r m ft o r an i d n i d a c r i gt cu l ma d ma h r i f d
混合动力汽车动力系统的优化设计与能效改进

360 引言随着全球能源需求的增长和环境保护力度的加大,混合动力汽车作为一种具有潜力的替代能源解决方案逐渐受到人们的关注。
混合动力汽车动力系统的优化设计和能效改进是实现可持续交通发展的关键。
本文旨在探讨混合动力汽车动力系统的优化设计和能效改进,以提高其性能、减少能源消耗。
混合动力汽车是指同时搭载内燃机和电动机,通过智能能量管理系统实现两者之间的协调工作。
这种结合传统燃油动力和电动动力的方式,使得混合动力汽车具备了高效、低排放及节能的潜力[1]。
1 关于混合动力汽车动力系统的认识混合动力汽车动力系统是一种融合了传统内燃机和电动机的先进动力解决方案。
它通过智能能量管理系统协调两种动力来源的使用,以实现高效能耗、低排放和节能的目标。
混合动力汽车的动力系统由发动机、电动机、电池和控制单元等关键组成部分构成。
首先,发动机在混合动力汽车动力系统中扮演着重要角色,它可以是传统的汽油发动机或柴油发动机,负责为车辆提供动力,并充当电池充电的能量来源。
发动机的主要任务是在需要时为电池充电或提供额外的动力输出,以满足驾驶需求。
其次,电动机作为另一种重要的动力来源,在混合动力汽车中发挥着关键作用。
电动机利用电能驱动车辆,并具有高效、响应迅速和零排放等优点。
根据应用需求,混合动混合动力汽车动力系统的优化设计与能效改进摘要:本文探讨了混合动力汽车动力系统的优化设计与能效改进的措施。
通过对传统发动机的优化,包括提高燃烧效率和减少摩擦能量损失,可以提高传统动力系统的效率。
另外,电动机的优化设计可以提高效率和功率密度,进一步增强混合动力系统的性能。
电池技术的改进,包括增加能量密度和功率密度,以及提升使用寿命和安全性能,为混合动力汽车提供更可靠的能源供应。
而引入智能辅助驾驶系统,能够实现能量回收与再利用,实现能量管理的智能化,提高整体能效。
这些措施的综合应用将有助于提升混合动力汽车的能源利用效率,实现可持续出行的目标。
关键词:混合动力;汽车;动力系统;优化设计;能效改进力汽车可以使用交流电动机或直流电动机,以获得最佳的驱动性能,提高能源利用效率。
新能源汽车动力系统优化设计与性能分析

新能源汽车动力系统优化设计与性能分析随着环境保护意识的增强和能源危机的威胁,新能源汽车成为了当前汽车行业的研发热点。
而新能源汽车的核心就是动力系统的设计与性能分析。
本文将围绕新能源汽车动力系统的优化设计和性能分析展开讨论,旨在为读者提供一些有关新能源汽车动力系统的信息。
一、新能源汽车动力系统的优化设计1.1 动力系统结构设计新能源汽车的动力系统一般由电池组、电机和控制器组成,并通过变速器将动力传递到车轮。
在设计动力系统结构时,需要考虑电池容量、电机功率和变速器的匹配关系,以及整个系统的重量分布、空间利用率等因素。
1.2 动力系统参数优化为了提高新能源汽车的性能和续航里程,动力系统的参数优化至关重要。
例如,电池的能量密度和功率密度、电机的效率和输出扭矩等都是需要优化的参数。
通过合理选择和调整这些参数,可以提高新能源汽车的动力性能和节能性能。
1.3 系统能量管理策略新能源汽车的能量管理策略是指如何合理地分配和利用电池的能量,以实现对电机的供能控制。
常见的能量管理策略包括最大能量采集控制策略、最大效率控制策略和最大续航里程控制策略等。
根据车辆使用场景和驾驶需求,可以选择合适的能量管理策略以优化动力系统的性能。
二、新能源汽车动力系统性能分析2.1 能量效率分析新能源汽车的能量效率是指在行驶过程中将电池储存的能量转化为车辆动力输出的效率。
通过对动力系统的能量转换过程进行分析,可以计算出能量转化的损失和效率,进而评估系统的能源利用效率。
2.2 动力性能分析新能源汽车的动力性能包括加速性能和最高速度等指标。
通过对动力系统的输出功率、扭矩和转速等参数进行分析,可以评估新能源汽车在不同工况下的动力性能表现。
2.3 续航里程分析续航里程是评估新能源汽车电池性能的重要指标。
通过对电池组的能量密度、电机的能量消耗率以及车辆质量等因素进行分析,可以预测新能源汽车在不同驾驶工况下的续航里程。
综上所述,新能源汽车动力系统的优化设计和性能分析是实现新能源汽车高效、可靠运行的重要环节。
汽车底盘动力学性能与优化设计

汽车底盘动力学性能与优化设计汽车底盘动力学性能是指汽车在不同的道路条件下,通过底盘系统传递动力和保持稳定性的能力。
优化设计则是通过改进底盘系统的各个组成部分,提升汽车的动力学性能。
一、底盘动力学性能的影响因素1. 悬挂系统悬挂系统是汽车底盘的重要组成部分,主要用于减震和支撑车身。
优秀的悬挂系统能够提供舒适的驾驶感受,并且在不同的路面状况下提供良好的操控性能。
2. 操控系统操控系统包括转向系统和制动系统。
转向系统决定了汽车的操控性和转向灵敏度,而制动系统则直接关系到汽车的制动性能和安全性。
3. 轮胎选择轮胎是汽车与地面之间的唯一联系点,对汽车的动力学性能有着重要影响。
正确选择合适的轮胎可以提高汽车的抓地力和操控性能。
4. 车身刚度车身刚度是指汽车车身的弯曲和扭曲能力,对汽车的稳定性有着重要影响。
通过增加车身的刚度,可以降低车辆在弯道行驶时的侧倾,提高悬挂系统的工作效率。
二、汽车底盘动力学性能的优化设计1. 悬挂系统优化悬挂系统的优化设计可以通过调整悬挂弹簧的刚度和减震器的阻尼来实现。
合理的悬挂系统设置可以提高汽车的抓地力,减轻悬挂系统的压力,从而提高汽车的操控性能。
2. 操控系统优化在操控系统的设计中,需要考虑转向系统的灵敏度和制动系统的响应速度。
通过优化转向系统的传动比和制动系统的液压传输效率,可以提高汽车的操控性能和制动效果。
3. 轮胎优化选择在选择合适的轮胎时,需要考虑轮胎的胎宽、比宽比和花纹设计等因素。
合适的轮胎选择可以提高汽车的抓地力和操控性能,同时减少滚动阻力,提高燃油经济性。
4. 车身刚度优化通过采用轻量化的车身材料和加强车身结构,可以提高汽车的刚度,并减轻整车重量。
车身刚度的优化设计可以有效降低车辆的侧倾和振动,提高悬挂系统和轮胎的工作效率。
三、底盘动力学性能的测试与评估为了确保汽车底盘动力学性能的优化效果,需要对汽车进行相关的测试与评估。
常见的测试项目包括底盘悬挂系统的回弹测试、转向系统的动力学测试和制动系统的制动距离测试等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:
选择市场上热销的大众高尔夫六代1.4T 手动舒适型轿车,依据用户需要设定其百公里等速(90km/h )油耗范围为(5.0-7.0)L/100km,加速时间(0-100km/h )范围为(9.0-12.0)s ,试对该车型进行动力装置参数的选定与优化,并确定最佳方案。
已知参数:整车质量1330kg ;最高车速200km/h ;发动机怠速800r/min;最高转速5000r/min;车轮半径R=0.4064m ;单个车轮转动惯量1.302kg m ;发动机飞轮转动惯量0.222kg m 。
方案:
1. 发动机功率的选择
(1)首先从保证汽车预期最高车速初步选择发动机应有功率。
根据公式
3max max 1()360076140
D e a a T C A mgf
P u u η=+
估算出发动机功率,其中m=1330kg ;max a u =200km/h ;空气阻力系数D C =0.30;迎风面积A=2.0;滚动阻力系数f=0.020(设定测试路面为一般沥青或混凝土路面);总传动效率T η=0.95(变速器)×0.96(单级主减速器)=0.912。
根据以上参数,可得发动机的功率为e P =85kw 。
(2)参考同级汽车比功率统计值,粗略估计新车比功率值,得出最大功率值,同级汽车比功率值列于表1:
表1 部分汽车的比功率统计值
车型发动机功率/kw 车总重/kg 比功率/1
kw t-⋅雪铁龙世嘉78 1270 61.42
日产骐达93 1206 77.11
标致307 78 1290 60.47
别克英朗108 1430 75.52
现代i30 90 1215 74.07
求得表1中的比功率平均值为
X=(61.42+77.11+60.47+75.52+74.07)/5=69.72,由此估计新车发动机功率为69.72×1.330=93kw。
2.变速箱传动比范围以及主减速器传动比由经验初定
由以往同系车型可以初步确定变速箱(5挡手动)各挡传动比大小如表2所示:
表2 各挡传动比大小
挡位一挡二挡三挡四挡五挡
传动比 3.625 2.071 1.474 1.038 0.844 而由经验值可初定主减速器传动比为3.40。
依据以上数据可以开始绘制燃油经济性—加速时间曲线,即C曲线。
3.绘制不同主传动比
i时燃油经济性—加速时间曲线
在以上数据的前提下改变主减速器传动比,变速箱传动比不变,绘制C曲线,进而得到满足动力性与燃油经济性要求的最佳主传动比。
分别求出当主传动比为3.00、3.20、3.40、3.60、3.80时的加速时间(s )与燃油消耗量(km/L ),在燃油经济性—动力性坐标系中描出各对应点,并用平滑曲线连结,进而得到C 曲线。
ⅰ.求加速时间(s )
由发动机转速—转矩数据拟合出转矩tq T 曲线方程:
表3 发动机转矩特性
转速
n/1000/(r/min )
1.0 1.125 1.25 1.375 1.5
2.0 2.5
3.0 3.5
4.0 4.25 4.5 4.75
5.0
转矩Ttq/
(N ﹒m )
128 160 180 195 200 205 205 210 220 205 195 190 182 175
可将发动机转矩用四次多项式表示如下:
4324.3993()57.2310()273.7050()561.9637()202.1615
1000100010001000
tq n n n n T =-⨯+⨯-⨯+⨯-由以上数据公式可得出a u -a 曲线如下
进而得出加速度倒数与速度的关系曲线,再由公式21
1
u u t du a
=⎰可求
出不同主传动比下加速时间如下表所示:
表4 主减速器传动比与加速时间
主传动比/i0 3.00 3.20 3.40 3.60 3.80
0-100km/h 加速时间/s
13.6875 12.5381 11.4497 10.5685 9.6104
ⅱ.求燃油消耗量(km/L )
等速(90km/h )百公里油耗(L/100km )公式为
1.02e
s a Pb Q u g
ρ=
其中g ρ=7N/L;行驶车速a u =90km/h;发动机功率e P =13.4kw 。
再由发动机万有特性曲线查得燃油消耗率b ,即可计算出燃油消耗量(km/L )如表5所示:
表5 主减速器传动比与燃油消耗量
主传动比/i0 3.00
3.20 3.40 3.60 3.80 燃油消耗量/(km/L )
18.44 18.30 18.10 17.63
17.13
由以上数据可作出燃油经济性—加速时间曲线如下所示:
4.确定满足要求的最佳主传动比
由C曲线可知,当主减速器传动比为3.20-3.60时,均能满足动力性与经济性的要求,若选定3.40作为主减速器传动比,则能兼顾动力性与经济性的要求,故选择i0=3.40作为最佳主传动比。