一元一次不等式易错题1-(含答案)

合集下载

苏科版数学七年级下册 解一元一次不等式易错题专讲、方法点拨(含解析)

苏科版数学七年级下册 解一元一次不等式易错题专讲、方法点拨(含解析)

解一元一次不等式易错题专讲知识点概述:解一元一次不等式属于初中基础知识点,中考所占分值3分(计算题),解法与一元一次方程类似,只有最后一步系数化为1时,注意当系数为负时,不等号注意变号一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点: 1.解一元一次不等式;2.数形结合(不等式与数轴相结合)3.整体思想的应用易错点: 1.系数为负时,要变号2.去分母时,常数项、整式项不要漏乘【典例演练】1.【答案】a<1【解析】因为不等号的符号改变,所以x前系数为负,则a-1<0,a<1.思路点拨:本题考查不等式的变号问题,所有不等式求解的最后一步都会遇到,请时刻注意判断是否变号。

2.【答案】x>2方法二:因为分母为正数,结果为正数,所以分子只能为正,所以直接列x-2>0,解得x>2.思路点拨:法二可以提升解题速度,对于计算薄弱的学生可以避免计算出错,同类型问题非正数,非负数等,都可用此方法进行解答3.【答案】 x≥-2【解析】(x+2)-3×3x≤18x+2-9x≤18-8x≤16x≥-2思路点拨:本类型一元一次不等式易错点在于不等号右侧的6,在去分母的时候需要同乘3 4.若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a 的取值范围【答案】1<a≤7【解析】∵2x<4∴x<2……①∵2x<4的解都能使(a-1)x<a+5成立∴a+5≥2a-2-a≥-7a≤7∵a>1,∴1<a≤7思路点拨:1.一个不等式的解满足另一个不等式,注意哪个不等式的解的范围大2.不等式的系数有代数式时,注意通过题目先进行判断,不要盲目分类讨论3.已经得出的范围,在结果上不要忘了加上,如本题中a>1,结果不要漏了5.【答案】6<m≤7【解析】∵x-m<0∴x <m ∵7-2x ≤1 ∴x ≥3 ∵整数解共有4个,为3,4,5,6∴结合数轴考虑如图,右侧空心点应该大于6,小于等于7则6<m ≤7思路点拨:1.数形结合2.端点判断6. 当m 为何值时,关于x 的方程4152435-=-m m x 的解是非负数。

最新初中数学方程与不等式之一元一次方程易错题汇编含答案(3)

最新初中数学方程与不等式之一元一次方程易错题汇编含答案(3)

最新初中数学方程与不等式之一元一次方程易错题汇编含答案(3)一、选择题1.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【解析】【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得:()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.4.若x =-2是方程ax -b =1的解,则代数式4a +2b -3的值为( )A .1B .3-C .1-D .5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a 和b 的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D .【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.5.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质6.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【答案】D【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.7.某同学在解方程3x-1=□x+2时,把□处的数字看错了,解得x=-1,则该同学把□看成了()A.3 B.13C.6 D.-16【答案】C【解析】把x=﹣1代入方程3x﹣1=□x+2,得 3×(﹣1)﹣1=﹣1□+2,即﹣4=﹣1□+2,解得□=6.故选C.点睛:此题主要考查了一元一次方程的解,解题时先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.8.如果x=2是方程12x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6【答案】C【解析】【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选:C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.9.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人【答案】A【解析】【分析】 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x 人,则小和尚有(100﹣x )人,根据题意得:3x+1003x -=100, 解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A .【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.11.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++= B .202014530x -+= C .202013045x -+= D .202014530x ++= 【答案】B【解析】【分析】根据题意列出符合题意的方程即可.【详解】根据题意可得 202014530x -+=故答案为:B.【点睛】本题考查了一元一次方程的工程问题,掌握解一元一次方程的方法是解题的关键.12.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.13.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.14.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.16.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.17.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x 个人,则可列方程是( )A .()3229x x +=-B .()3229x x -=+C .9232x x -+= D .9232x x +-= 【答案】C【解析】【分析】 由3个人乘一辆车,则空2辆车;2个人乘一辆车,则有9个人要步行,根据总车辆数相等即可得出方程.【详解】解:设有x 个人,则可列方程:9232x x -+=. 故选:C .【点睛】 此题主要考查了由实际问题抽象出一元一次方程,正确找出等量关系是解题关键.18.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.19.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.20.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.。

【中考数学】一元一次不等式易错压轴解答题练习题(含答案)

【中考数学】一元一次不等式易错压轴解答题练习题(含答案)

【中考数学】一元一次不等式易错压轴解答题练习题(含答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?3.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.4.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?5.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?6.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。

数学一元一次不等式习题及答案(最新)

数学一元一次不等式习题及答案(最新)

数学一元一次不等式习题及答案《一元一次不等式》同步练习题(1)知识点:1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.不等式14x-7(3x-8)<4x-4 3.已知关于x的不等式2x-a>- 3 的解集如图所示,则a的值是 ( )A. 0 B.1 C.-1 D.2 4.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5 %,则至多可打 ( )A.6折 B.7折 C.8折 D.9折5.某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人 ( )A.27 B. 28 C.29 D.30 填空题(每题4分,共16分)6.武汉市某一天的最低气温为-6℃,最高气温是5℃,如果设这天气温为t ℃,那么t应满足条件7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中。

小明获得优秀(90分或90分以上),则小明至少答对了道题。

新课标第一网8.一组学生在校门口拍一张合影,已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有人。

9.小王家鱼塘有可出售的大鱼和小鱼共800kg,大鱼每千克售价10元,小鱼每千克售价6元,若将这800kg鱼全部出售,收入可以超过6800元,则其中售出的大鱼至少有多少kg?若设售出的大鱼为x kg,则可列式为三、解答题10.已知某种彩电的出厂价为每台1800元,各种管理费约为出厂价的12%,则商家的零售价为每台多少元,才能保证毛利润不低于15% ?11.为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,期中每台的价格。

【最新试题库含答案】一元一次不等式组练习题(有答案)

【最新试题库含答案】一元一次不等式组练习题(有答案)

一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。

中考一元一次方程易错题50题(含答案)

中考一元一次方程易错题50题(含答案)

中考一元一次方程易错题50题含答案解析一、单选题1.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x xC .233072x xD .323072x x2.若x =1是关于x 的方程ax +2x +1=0的解,则a 的值是 A .-3B .3C .-1D .-23.根据等式的性质,下列变形中正确的是( ) A .若33m n +=-,则m n = B .若x ya a=,则x y = C .若22a x a y =,则x y =D .若382k -=,则12k =-4.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .()0.7160%36x x +=-B .()0.7160%36x x +=+C .()07160%36x x +=-.D .()0.7160%36x x +=+5.若关于x 的方程3x+2m =2的解是正数,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤16.某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( ) A .赚10元B .赔10元C .不赚不赔D .无法确定7.已知等式a =b ,则下列变形错误的是( ) A .|a |=|b |B .a +b =0C .a 2=b 2D .2a ﹣2b =08.小淇在某月的日历中圈出相邻的三个数,算出它们的和是15,那么这三个数的位置可能是( ) A .B .C .D .9.下列说法正确的是( ) A .如果ax ay =,那么x y = B .如果a b =,那么55a b -=- c c10.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( ) A .6名B .7名C .8名D .9名11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ). A .320425x x +=- B .320425x x +=+ C .320425x x -=+D .320425x x -=-12.下列判断:①若0a b c ++=,则()22a c b +=.①若0a b c ++=,且0abc ≠,则122a cb +=-.①若0a bc ++=,则1x =一定是方程0ax b c ++=的解.①若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( )A .①①①B .①①①C .①①①D .①①①①13.要使方程ax b =的解为1x =,必须满足( ) A .a b =B .0a ≠C .0b ≠D .0a b =≠.14.方程x ﹣3=2x ﹣4的解为( ) A .1B .﹣1C .7D .﹣715.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .5223-D .23-16.解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以17.将方程x ﹣3(4﹣3x )=5去括号正确的是( ) A .x ﹣12﹣6x =5B .x ﹣12﹣2x =5C .x ﹣12+9x =5D .x ﹣3+6x =518.课本习题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )A .甲、丁B .乙、丙C .甲、乙D .甲、乙、丙19.用如图(1)所示的长方形和正方形纸板做成如图(2)所示的A 、B 两种无盖长方体纸盒(拼接部分忽略不计).现有长方形纸板180张,正方形纸板60张,刚好全部用完.求做成的A 、B 两种纸盒的数量.下列结论正确的个数是( )①设A 种纸盒共有x 个,则可列方程:60431802xx -+⨯=;①设B 种纸盒共有y 个,则可列方程:18032604yy -+=;①B 种纸盒共有24个;①做A 种纸盒共用去长方形纸板144个. A .1B .2C .3D .420.α∠与∠β的度数分别是219m -和77m -,且α∠与∠β都是γ∠的补角,那么α∠与∠β的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等二、填空题21.若1x =是关于x 的方程31ax bx +=的解,则39a b +=___________. 22.如果x ﹣1=3,则x 的值是 _____.23.我国古代数学名著《孙子算经》中记载;“今有木,不知长短,引绳度之,余绳五尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,那么可列方程为 _____. 24.当x =___时,13x -的值是2 25.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图,即车尾到倒车镜的距离与车长之比为0.618),若车头与倒车镜的水平距离为1.9m ,则该车车身总长约为________m (保留整数).26.已知2230m x -+=是关于x 的一元一次方程,则m =________________. 27.若关于x 的方程()||235m m x--=是一元一次方程,则m =______.28.已知:数轴上一个点到-2的距离为5,则这个点表示的数是 ___________________29.如果一个正多边形每一个内角都等于144︒,那么这个正多边形的边数是______. 30.双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少设这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,可列方程组为__________.31.若关于x 的多项式()2x m -与()35+x 的乘积中,一次项系数为1,则m =____________.32.一个角的比它的余角多24°30′,则这个角的补角是_________.33.如图是一个正方体的展开图,如果正方体相对的两个面上标注的数值均互为相反数,则x 的值是_________.34.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有___________名工人.35.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了x 小时,则可列一元一次方程为_______.36.已知方程ax+12=0的解是x=3,则不等式(a+2)x<-6的解集为________. 37.已知关于x 的方程23kx a +=1+6x bk-中,a 、b 、k 为常数,若无论k 为何值,方程的解总是x =1,则a +18b 的值为 ___.38.已知点M 、N 在线段AB 上,AM MB =13,AN NB=23,且MN =2,则AB =______.39.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.三、解答题40.在ABC 中, ①A 的度数是①B 的度数的3倍,①C 比①B 大15°,求①A ,①B ,①C 的度数. 41.(1)计算:(2)计算(3)解方程:3(25)29x x --+= (4)解方程:42.据调查表明,山的高度每增加1km ,则气温大约升高-6①.(1)我省著名风景区庐山的五老峰的高度约为1500m ,当山下气温20①时,求山顶的气温;(2)若某地的地面气温为18①,高空某处的气温为-24①,求此处的高度.43.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?44.汽车从甲地到乙地,用去油箱中汽油的14,由乙地到丙地用去剩下汽油的15,油箱中还剩下6升.(1)油箱中原有汽油多少升?(2)已知甲、乙两地相距22km,求乙、丙两地的距离.45.为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)写出表1中的a,m的值;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?46.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23) (2)解方程:3157146x x ---= 47.计算题(1)计算:2232113()(2)()32-⨯---÷-(2)解方程:12111263x x x --+-=- 48.已知线段12AB =个单位长度.(1)如图1,点P 沿线段AB 自点A 出发向点B 以1个单位长度每秒的速度运动,同时点Q 沿线段BA 自点B 出发向点A 以2个单位长度每秒的速度运动,几秒钟后,P 、Q 两点相遇?(2)如图1,几秒后,P 、Q 两点相距3个单位长度?(3)如图2,3AO =个单位长度,1PO =个单位长度,当点P 在AB 的上方,且60∠=︒POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿线段BA 自B 点向A 点运动,假若P 、Q 两点能相遇,求点Q 的运动速度. 49.新规定:点C 为线段AB 上一点,当3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”.如图,在数轴上,点A 所表示的数为3-,点B 所表示的数为5. (1)确定点C 所表示的数为___________;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①求AP 的长度(用含t 的代数式表示);①当点A 为线段BP 的“三倍距点”时,求出t 的值.参考答案:1.D【分析】先设男生x 人,根据题意可得323072x x.【详解】设男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.【点睛】本题考查列一元一次方程,解题的关键是读懂题意,得出一元一次方程. 2.A【分析】把1x =代入方程得出关于a 的方程,解之可得答案. 【详解】将1x =代入ax +2x +1=0,得:210a ++=, 解得:3a =-, 故选:A .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键. 3.B【分析】根据等式的性质变形得到结果,作出判断即可得.【详解】解:A 、若33m n +=-,则m n ≠,选项说法错误,不符合题意; B 、若x ya a=,则x y =,选项说法正确,符合题意; C 、若22a x a y =,20a ≠,则x y =,选项说法错误,不符合题意; D 、若382k -=,则163k =-,选项说法错误,不符合题意;故选:B .【点睛】本题考查了等式的性质,解题的关键是掌握等式的性质. 4.B【分析】设这件夹克衫的成本价是x 元,根据题意列出一元一次方程即可求解. 【详解】解:设这件夹克衫的成本价是x 元,根据题意得,()0.7160%36x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键. 5.B【分析】先把x 的值用m 表示出来,再根据关于x 的方程3x+2m =2的解是正数列出不等式,求出m 的取值范围即可.【详解】解:方程3x+2m=2可化为x=223m-,①x>0,①223m->0,①m<1.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.6.B【分析】设进价为x元,根据售价=(1+利润率)×进价列出一元一次方程,进而求解.【详解】设赚了20%的衣服的进价是x元,则(1+20%)x=120,解得,x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1-20%)y=120,解得y=150,则实际赔了30元;①30>20,①在这次交易中,该商人是赔了30-20=10(元).故选B.【点睛】本题考查一元一次方程的应用,求出两件衣服的进价是解题的关键.7.B【分析】根据绝对值和等式的性质分别进行判定求解.【详解】解:A.根据绝对值的性质可知,若a=b,则|a|=|b|,原变形正确,故此选项不符合题意;B.根据等式性质,若a=b,则a﹣b=0,原变形错误,故此选项符合题意;C.根据等式性质,若a=b,则a2=b2,原变形正确,故此选项不符合题意;D.根据等式性质,若a=b,则2a﹣2b=0,原变形正确,故此选项不符合题意.故选:B.【点睛】本题主要考查了绝对值的性质,等式的性质,理解等式的性质是解答关键.8.C【分析】可设第一个数为x,根据日历的数的排列规律,将各数表示出来,利用方程的思想验证x是否为正整数,从而作出判断.【详解】解:设第一个数为x ,根据已知: A 、得x+x+7+x+8=15,则x=0,故本选项不可能.B 、得x+x+7+x+6=15,则x=23,不是整数,故本选项不可能. C 、得x+x+1+x+8=15,则x=2,是整数,故本选项可能. D 、得x+x+1+x+7=15,则x=73不是整数,故本选项不可能.故选C. 【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证,难度一般,要掌握日历中数的排列规律. 9.C【分析】根据等式基本性质分析即可.【详解】A. 如果ax ay =,且a≠0,那么x y =,故不能选; B. 如果a b =,那么55a b -=-,故不能选; C. 根据性质1,如果11a b +=+,那么a b = D. 如果a b =,且0a b =≠,那么c ca b=,故不能选; 故选C【点睛】考核知识点:等式基本性质.理解性质是关键. 10.A【详解】设张老师和王老师带了x 名学生, 根据题意得(x+2)×0.8=0.9x+2×12,解得x=6,故选A . 11.A【分析】设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程即可.【详解】设这个班有学生x 人,由题意得,3x +20=4x−25. 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.A【分析】各项利用方程解的定义,以及绝对值的代数意义判断即可得到结果.【详解】解:①若0a b c ++=,则a c b +=-,①()22a c b +=,故①正确;①若0a b c ++=,则a c b +=-,且0abc ≠,则1222a cb b b +-==-,故①正确; ①若0a bc ++=,则1x =一定是方程0ax b c ++=的解,故①正确;①若0a b c ++=,且0abc ≠,当有2个负数时,0abc >;当有1个负数时<0abc ,故①不正确,故选:A .【点睛】本题考查了有理数的运算以及一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值,掌握以上知识是解题的关键.13.D【详解】试题分析:两边除以a 得:b x a=,要使方程ax b =的解为1x =,则必须满足0a b =≠.故选D .考点:一元一次方程的解.14.A【详解】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .15.A【分析】先解两个一元一次方程,再根据两个一元一次方程的解相同列出含m 的一元一次方程,解方程即可.【详解】解: 由243x m +=,342m x -=; 由1x m -=,解得+1x m =,因为两个方程的解相同, 所以34=12m m -+,解得: 6m =故选A.【点睛】本题主要考查一元一次方程的应用,解决本题的关键是要熟练掌握解含参数的一元一次方程的方法,并根据解相同列出方程.16.C【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项. 【详解】解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.17.C【分析】方程去括号得到结果,即可作出判断.【详解】方程x ﹣3(4﹣3x )=5,去括号得:x ﹣12+9x =5,故选:C .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.B【分析】根据题意可设这种饮料的原价每瓶是x 元,则根据等量关系“九折购买的饮料数量比36元购买的一箱饮料的数量多2瓶”,或“一箱加2瓶的饮料九折后的价格是36元”;若设每箱有x 瓶,则根据“购买一箱加2瓶时,每瓶的价格和每瓶九折后的价格相等”分别列出方程即可【详解】设这种饮料的原价每瓶是x 元,则363620.9x x-=; 设这种饮料的原价每瓶是x 元,则()0.936236x ⋅+=;设每箱有x 瓶,则36360.92x x ⨯=+ 故选B【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意找出等量关系是解题的关键.19.C【分析】若设A 种纸盒共有x 个,则有制作A 种纸盒所需长方形的个数为4x 个,正方形的个数为x 个,则B 中正方形的个数为(60-x )个,然后可判定①;若设B 种纸盒共有y 个,则有制作B 种纸盒所需正方形的个数为2y 个,长方形的个数为3y 个,则A 中长方形的个数为(180-3y )个,然后可判定①;进而求解即可判定①①.【详解】解:若设A 种纸盒共有x 个,则可列方程为60431802x x -+⨯=,解得:36x =,故①正确;若设B 种纸盒共有y 个,则可列方程:18032604y y -+=,解得:12y =,故①正确,①错误;①做A 种纸盒共用去长方形纸板为36×4=144(个),故①正确;综上所述:正确的个数有3个;故选C .【点睛】本题主要考查一元一次方程的应用,解题的关键是分析得到已知与未知之间的关系.20.D【分析】由α∠与∠β都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与∠β都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与∠β互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.21.3【分析】将方程的解代入方程后,对等式进行变形即可求解.【详解】解:将1x =代入方程可得:31a b +=,①393a b +=,故答案为:3.【点睛】本题考查了方程的解,解题关键是理解方程的解的含义,并能利用等式的性质对等式进行变形.22.4【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x =3+1,合并同类项,可得:x =4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.23.x +5=2(x ﹣1)【分析】根据绳子的长度不变,得出关于x 的一元一次方程,即为答案.【详解】解:依题意,得:x +5=2(x ﹣1).故答案为:x +5=2(x ﹣1).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.7【分析】首先根据题意,可得:13x -=2,然后去分母、移项、合并同类项,求出方程的解是多少即可.【详解】解:根据题意,可得:13x -=2, 去分母,可得:x ﹣1=6,移项,可得:x =6+1,合并同类项,可得:x =7.故答案为:7.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.25.5【分析】设该车车身总长为x m ,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x ,则根据题意列方程x -0.618x =1.9,然后解方程即可.【详解】解:设该车车身总长为x m ,①汽车倒车镜设计为整个车身黄金分割点的位置,①汽车倒车镜到车尾的水平距离为0.618x ,①x -0.618x =1.9,解得x ≈5,即该车车身总长约为5米.故答案为:5.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.26.3【分析】根据一元一次方程的定义,可列方程,即可求m 的值.【详解】解:①2230m x -+=是关于x 的一元一次方程,①21m -=解得:3m =故答案为:3.【点睛】本题考查了一元一次方程的定义,,利用一元一次方程的定义解决问题是本题的关键.27.3-【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).据此可得出关于m 的方程,继而可求出m 的值.【详解】①关于x 的方程()||235m m x--=是一元一次方程,①30m -≠,21m -=,解得:3m =-,故答案为3-.【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不为0,特别容易忽视的一点就是系数不为0的条件.这是这类题目考查的重点.28.-7或3【详解】试题分析:两数差的绝对值表示两点之间的距离.设这个点表示的数为=5,解得:x=3或x=-7.考点:绝对值29.10【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180144n n -⋅=,解得10n =.故答案为:10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.30.812700150y x x y -=⎧⎨+=⎩【分析】设这艘游轮上层的游客人数为x 人,下层的游客人数为y 人,根据“游轮上共有游客150人,而且下层票的总票款是上层票的总票款多700元”列方程组求解可得.【详解】这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,由题意得812700150y x x y -=⎧⎨+=⎩. 故答案为812700150y x x y -=⎧⎨+=⎩. 【点睛】本题主要考查二元一次方程组的应用,理解题意找出题目中所蕴含的等量关系是列出方程组求解的关键.31.3【分析】先求出两个多项式的积,再根据一次项系数为1,得到关于m 的一次方程,求解即可.【详解】解:()()235x m x -+263105x mx x m =-+-()261035x m x m =--+①积的一次项系数为1,①1031m -=,解得:3m =.故答案为:3.【点睛】本题主要考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则,是解决本题的关键.32.122°45′【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大24°30′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】解:设这个角为x ,则x -(90°-x )=24°30′,解得x =57°15′,这个角的补角的度数为180°-57°15′=122°45′.故答案为:122°45′.【点睛】此题考查余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单.33.1-【分析】利用正方体及其表面展开图的特点,列出方程()()2360x x -++=解答即可.【详解】解:由题意得:()()2360x x -++=解得:=1x -故答案为:1-.【点睛】本题考查了正方体相对两个面上的文字和一元一次方程的应用.注意正方体的空间图形,从相对面入手,分析及解答问题.34.12【分析】由题可知每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据大的一片是小的一片的3倍,列出方程解答即可.【详解】解:设农场有x 名工人,每名工人每天除草量为y ,依题意有2xy +0.5xy =3(0.5xy +2×2y ),2.5xy =1.5xy +12y ,xy =12y ,x =12.故农场有12名工人.故答案为:12.【点睛】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据题意找到关系即可解答.35.80.2570.25x x -=+.【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人樱桃一样多得出等式求出答案.【详解】解:设她们采摘用了x 小时,根据题意可得:8x-0.25=7x+0.25,故答案为:8x-0.25=7x+0.25【点睛】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键. 36.3x >【分析】先将3x =代入方程120ax +=,求得a 的值;再将a 的值代入不等式,然后系数化1即可.【详解】先将3x =代入120ax +=,得3120a +=,解得4a =-;把4a =-代入不等式26a x +<-,得426x -+<-,解得:3x >;故答案为:3x >.【点睛】本题考查了解一元一次方程及解一元一次不等式,注意不等式两边除以负数,不等式要变号.37.3【分析】将1x =代入方程,然后令k 的系数为0,得到关于a b 、的二元一次方程组,求解即可.【详解】解:将1x =代入方程23kx a +=1+6x bk -得(4)270b k a ++-=由题意可得:40270b a +=⎧⎨-=⎩,解得724a b ⎧=⎪⎨⎪=-⎩ 则17171(4)382822a b +=+⨯-=-= 故答案为:3【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.38.403【分析】设AM =x ,则MB =3x ,则AB =4x ,利用23AN MB =可得到85AN x =,则利用MN =35x 列方程35x =2,然后解方程求出x 即可得到AB 的长. 【详解】解:设AM =x ,则MB =3x ,①AB =AM +MB =4x , ①23AN NB =,AB =AN +NB ①AN =2855AB x =, ①MN =AN ﹣AM =8355x x -=x , ①35x =2,解得x =103, ①AB =4×103=403. 故答案为403. 【点睛】本题主要考查了比例线段,根据比例的性质用代数式表示线段的长是解答本题的关键.39.3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 40.①A=99°,①B=33°,①C=48°【分析】设①B=x ,则①A=3x ,①C=x+15,再由三角形内角和定理求出x 的值即可.【详解】解:设①B=x ,则①A=3x ,①C=x+15,①①A+①B+①C=180°,①x+3x+x+15=180,解得:x=33,①①A=99°,①B=33°,①C=48°.【点睛】本题考查三角形的内角和定义,难度不大,关键是运用方程思想进行解题. 41.(1)19;(2)10;(3);(4)14.5x =.【详解】试题分析:(1)先算乘除,再算加减即可;(2)利用分配律计算简单方便;(3)先去括号,再移项合并同类项,最后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,最后系数化为1即可试题解析:(1)=18-6×(14-)×23 2分 =19 4分(2)= 2分=–1+8+3=10 4分(3)3(25)29x x --+=2分4分(4)3(23)4(2)12,x x --+=694812,x x ---= 2分 229,x =14.5x = 4分考点:1.有理数的混合运算;2.解一元一次方程.42.(1)11①;(2)7km【分析】(1)根据题意可直接进行列式求解;(2)设此处的高度为xkm ,然后根据题意列出方程求解即可.【详解】解:()1根据题意列得:150020(6)111000C ,答:山顶的温度为11C . ()2设此处的高度为xkm ,根据题意列得:18624x -=-解得:7x =.答:此处的高度为7km .【点睛】本题主要考查列算式计算与一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.43.(1)甲方案为:15a+60;乙方案为:16a ;(2)乙方案优惠;(3)甲方案优惠;【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a 名学生,甲方案为:(15a+60)元;乙方案为:16a 元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键. 44.(1)油箱中原有汽油10升;(2)乙、丙两地的距离为13.2千米.【分析】(1)若设油箱中原有汽油x 升,分别表示出每次的耗油量,根据题意即可列出方程解答即可;(2)利用耗油量的比与行驶路程的比相等列出方程解答即可.【详解】解:(1)设油箱中原有汽油x 升,由题意得111()6445x x x x ---⨯= 解得:x =10答:油箱中原有汽油10升.(2)设乙、丙两地的距离为a 千米,由题意得11122::(1)445a =-⨯ 解得:a =13.2答:乙、丙两地的距离为13.2千米.【点睛】本题主要考查一元一次方程的应用,根据题意列出方程是解题的关键. 45.(1)a =3.25,m =180;(2)她家2017年的年用水量是235立方米.【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m <200,从而求出a 及m 的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得a =325100=3.25, 根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,列出方程:3.25m +4.4(200﹣m )=673,解得m =180.(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元), ①673<827<849,①她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据题意,得3.25×180+4.4(x ﹣180)=827,解得x =235.答:她家2017年的年用水量是235立方米.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a 及m 的值.46.(1)-9;(2)x =﹣1.【分析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32) =﹣1×[﹣4﹣2]×(﹣32) =﹣1×(﹣6)×(﹣32) =﹣9;(2)3(3x ﹣1)﹣12=2(5x ﹣7)9x ﹣3﹣12=10x ﹣149x ﹣10x =﹣14+3+12﹣x =1x =﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.47.(1)31;(2)2x =【分析】(1)按照先算乘方、再算乘除、后算加减的顺序计算即可;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)()2232113232⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭ =-9×19-(-8)÷14=-1+32=31;(2)12111263x x x --+-=-, 3(x-1)-(2x-1)=6-2(1+x),3x-3-2x+1=6-2-2x ,3x-2x+2x=6-2+3-1,。

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是 .(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a= ,b= .(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 ( ) A .m >8 B.m ≥8 C.m <8 D.m ≤8(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是( ).A .m≤3 B . m≥3 C .m=3 D .m <3(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是 .【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来;(2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为4.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打多少折?解:◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )x <y B .x >yC .x ≤yD .x ≥y 解答题:(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

七年级数学下册第11章《一元一次不等式》考点总结和难题详解(含答案)

七年级数学下册第11章《一元一次不等式》考点总结和难题详解(含答案)

第11章《一元一次不等式》考点+易错知识梳理重难点分类解析考点1 不等式及其性质【考点解读】理解实数的运算法则,确定相关量的取值范围,然后用不等式来表示;要熟练掌握不等式的性质,特别注意当不等式两边同时乘(或除以)同一个负数时,不等号方向要改变.例1 下列说法不一定成立的是( ) A.若a b >,则a c b c +>+ B.若a c b c +>+,则a b > C.若a b >,则22ac bc > D.若22ac bc >,则a b >分析:在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,故选项A 一定成立;在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,故选项B 一定成立;当0c =时,若a b >,则不等式22ac bc >不成立,故选项C 不一定成立;因为22ac bc >,所以0c ≠,所以20c >.在不等式22ac bc >的两边同时除以2c ,该不等式仍成立,即a b >,故选项D 一定成立. 答案:C【规律·技法】应用不等式的性质解决问题时,特别要注意当不等式的两边同乘或同除以同一个负数时不等号要改变方向. 【反馈练习】1. (2018·南京期末)若x y >,则下列式子错误的是( ) A.33x y ->- B.33x y >C.33x y +>+D.33x y ->-点拨:在不等式两边同时乘(或除以)同一个负数时,不等号方向要改变. 2.下列不等式变形正确的是( )A.由a b >,得ac bc >B.由a b >,得22a b ->-C.由a b >,得a b -<-D.由a b >,得22a b -<- 点拨:注意各选项中,不等号的方向是否需要改变. 考点2 解一元一次不等式【考点解读】解一元一次不等式时,先认真分析不等式的特点,然后确定求解的步骤,在易错环节中要认真细致,紧扣变形依据. 例2 解小等式: 31212x x -->,并把它的解集在数轴上表示出来.分析:根据不等式的性质可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 解答:去分母,得4231x x ->-.移项,得4321x x ->-. 合并同类项,得1x >.将不等式解集表示在数轴上如图:【规律·技法】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键. 【反馈练习】 3.解下列不等式: (1)123(2)2x x -≤+; (2)13(1)42x x +≥--.点拨:先去分母,再去括号、移项、合并同类项,最后系数化为“1”. 考点3 解一元一次方程组【考点解读】根据解一元一次不等式组的步骤,先求两个不等式的解集,然后借助数轴求得两个解集的公共部分.例3 (2017·南京)解不等式组: 2623(1)1x x x x -≤⎧⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答:(1)解不等式①,得 ,依据是 ; (2)解不等式③,得 ;(3)把不等式①②和③的解集在数轴上表示出来:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为 .分析:分别解不等式①③,再将不等式①②③的解集表示在数轴上,它们的公共部分即为不等式组的解集.解答:(1) 3x ≥ 不等式两边都乘(或除以)同一个负数,不等号的方向改变(2) 2x < (3)如图所示:(4)22x -<<【规律·技法】本题考查一元一次不等式组的解法,确定一元一次不等式组的解集可以借助于数轴,也可以利用口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解). 【反馈练习】4. 解不等式组:253(1)121035x x x +≤+⎧⎪⎨-+>⎪⎩①②,并把解集表示在数轴上.点拨:先分别求解两个不等式,并在数轴上表示两个解集,寻找公共部分即可. 考点4 用一元一次不等式解决实际问题【考点解读】要明确列不等式解决实际问题的步骤与方法:理解题意,找出一个能表示实际问题意义的不等关系,然后设未知数,根据不等关系列出不等式,解这个不等式,检验并写出答案.例4 每年5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息如图.若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,则这份快餐最多含有多少克的蛋白质? 分析:设这份快餐含有x g 的蛋白质,根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式求解即可. 解答:设这份快餐含有x g 的蛋白质.由题意,得440070%x x +≤⨯,解得56x ≤.故这份快餐最多含有56 g 的蛋白质.【规律·技法】读懂题意,找出题目中的数量关系,列出不等式.本题的数量关系是快餐所含的蛋白质与破水化合物的质量之和不高于快餐总质量的70%.例5某校需购买一批课桌椅供学生使用,已知A 型课桌椅230元/套,B 型课桌椅200元/套.(1)该校购买了A ,B 型课桌椅共250套,付款53 000元,则A ,B 型课桌椅各买了多少套? (2)因学生人数增加,该校需再购买100套A ,B 型课桌椅,现只有资金22 000元,则最多能购买A 型课桌椅多少套?分析:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套,根据“A ,B 型课桌椅共250套”“A 型课桌椅230元/套,B 型课桌椅200元/套,付款53 000元”列出方程组并解答;(2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套.根据“只有资金22 000元”列出不等式并解答即可.解答:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套.由题意,得25023020053000x y x y +=⎧⎨+=⎩,解得100150x y =⎧⎨=⎩.故购买A 型课桌椅100套,B 型课桌椅150套. (2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套. 由题意,得230200(100)22000a a +-≤, 解得2003a ≤. 因为a 是正整数, 所以66a =最大.故最多能购买A 型课桌椅66套.【规律·技法】本题考查列二元一次方程组和一元一次不等式解决实际问题,找准题中的数量关系是解题的关健, 【反馈练习】5.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?点拨:设购买球拍x 个,列不等式求解,注意取整数值.6.某校在开展“校园献爱心”活动中,准备向西部山区学校捐赠男、女两种款式的书包.已知男款书包的单价为50元/个,女款书包的单价为70元/个.(1)原计划募捐3 400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4 800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?点拨:(1)可列方程求解;(2)设女款书包购买y 个,则男款书包购买(80)y -个,列不等式求解即可.易错题辨析易错点1 符号意义理解不清导致错误例1 给出下列不等式:①2a a >;②210a +>; ③86≥;④20x ≥.其中成立的是( ) A.②③ B.② C.①②④ D.②③④ 错误解答:A错因分析:导致本题错误的原因是对符号“≥”理解不透切,“≥”的意义是“>”或“=”,有选择功能,二者之一成立即可,事实上也只能两者取一,“>”与“=”不能同时成立,所以对“86≥”的理解应是“8大于6”,对20x ≥的理解应是当0x =时,20x =;当0x ≠时,20x >.正确答案:D易错辨析:“≥”的含义是“>”或“=”,且二者不能同时成立. 易错点2 对非负整数的概念理解不清导致错误例2 (2018·苏州期末)写出不等式3x ≤的所有非负整数解:x = . 错误解答:1,2,3错因分析:错解在于不理解非负整数的含义,非负整数包括零和正整数. 正一答案:0,1,2,3易错辨析:非负整数包括零和正整数. 易错点3 忽略不等号的方向是否变化例3 若1a <,则下列各式中,错误的是( )A. 1a ->-B. 10a -<C. 30a +>D. 22a < 错误解答:A错因分析:根据不等式的性质2,不等式两边同乘一个负数,不等号的方向改变,故选项A 正确;根据不等式的性质1可知选项B 正确;根据不等式的性质2,不等式的两边同乘一个正数,不等号的方向不变,故选项D 正确;取41a =-<,则34310a +=-+=-<,故选项C 不正确. 正确答案:C易错辨析:在运用“不等式的两边都乘(或除以)同一个负数,不等号的方向改变”这一性质时,关键是要注意乘的数是否是负数,如果是负数,不等号方向必须改变.这类题易出现的错误是运用此性质时,忽略了改变不等号的方向而导致选错答案,如本题容易误选A. 易错点4 去分母时,忽略分数线的括号作用而出错例4 解不等式:329251234x x x --+-≥. 错误解答:去分母,得182362151x x x --+≥+,即539x ≥5x,39,所以395x ≥. 错因分析:去分母时,分数线具有括号的作用,错解恰好忽视了这一点,正确的做法应在去括号时把分子视为一个整体用括号括起来.正确解答:去分母,得6(32)4(92)3(51)x x x ---≥+,即1151x ≥,所以5111x ≥. 易错辨析:分数线有两重功能:其一是表示分数线;其二有括号的作用.反馈练习1.若a b >,则下列不等式成立的是( )A. 22a b +<+B. 22a b -<-C. 22a b <D. 22a b -<- 点拨:注意不等式两边同时乘或除以一个负数时不等号方向改变.2.不等式组312114x x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示正确的是()点拨:分别解两个不等式,并将解集表示在数轴上,注意空心圆圈和实心圆点的使用.3. 对于不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解为3,2,1x =---D.此不等式组的解集为522x -<≤ 点拨:先解不等式组,根据解集判断即可.4.不等式组210312123x x x +>⎧⎪-+⎨≤⎪⎩的所有整数解是x = .点拨:先解不等式组,再根据解集分析出所有整数解.5.满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数解为x = .点拨:先解不等式组,再根据解集分析出所有整数解.探究与应用探究1 确定不等式(组)中的参数取值范围 例1 若不等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,求不等式0ax b +<的解集.点拨:求出每个不等式的解集,根据每个不等式的解集的规律找出不等式组的解集,即可求出,a b 的值,代入0ax b +<中求出不等式的解集即可.解答: 200x b x a -≥⎧⎨+≤⎩①②解不等式①,得2b x ≥; 解不等式②,得x a ≤-.因为部等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,所以324b a ⎧=⎪⎨⎪-=⎩,解得46a b =-⎧⎨=⎩.将46a b =-⎧⎨=⎩代入0ax b +<,得360x -+<, 解得32x >. 故不等式0ax b +<的解集为32x >. 规律·提示确定不等式(组)中参数的取值范围的常用方法:(1)根据不等式(组)的解集确定;(2)分类讨论确定;(3)借助数轴确定. 【举一反三】1.已知关于,x y 的方程组3133x y k x y +=+⎧⎨+=⎩的解满足01x y <+<,求k 的取值范围.2.若不等式组x a bx a b +<⎧⎨->⎩的解集是13x -<<,求不等式0ax b +<的解集.探究2 根据解集或整数解来确定系数的值或取值范围 例 2 如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3x =,那么适合这个不等式组的整数,a b 的有序数对(,)a b 共有( )A. 17对B. 6 4对C. 72对D. 81对点拨:分别求出满足题意的整数,a b 的个数即可.因为9080x a x b -≥⎧⎨-<⎩,所以98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩.因为不等式组的整数解仅为1,2,3x =,所以019a <≤,348b<≤,即09a <≤,2432b <≤,所以a 的整数值有9个,b 的整数值有8个,所以有序数对(,)a b 共有9×8=72(对).【举一反三】3.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .4.已知不等式30x a -≤的正整数解为1,2,3x =,求a 的取值范围.探究3 求含有多个未知数的式子的最值例 3 已知,,a b c 是三个非负数,并且满足325a b c ++=,231a b c +-=,设37m a b c =+-,若x 为m 的最大值,y 为m 的最小值,求xy 的值.点拨:本题考查了方程组、不等式组的综合应用,解题的关键是通过解方程组,用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求出,x y 的值.解答:由条件,得325213a b ca b c+=-⎧⎨+=+⎩,解得73711a c b c =-⎧⎨=-⎩.将73711a c b c=-⎧⎨=-⎩代入37m a b c =+-,得32m c =-.由000a b c ≥⎧⎪≥⎨⎪≥⎩,得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩, 解得37711c ≤≤. 所以71321111x =⨯-=-,353277y =⨯-=-,所以577xy =.规律·提示要求含有多个未知数的式子的最值,把多个未知数转化为含一个未知数的式子,再由题目的约束条件求出这个未知数的取值范围,最后求出最值.【举一反三】5.已知,,x y z 均为非负数,且满足30350x y z x y z ++=⎧⎨+-=⎩,求542u x y z =++的最大值和最小值.探究4 优惠方案的选择问题例4甲、乙两商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1 000元的电器,超出的金额按90%实收;乙商场规定:凡购买超过500元的电器,超出的金额按95%实收.顾客怎样选择商场购买电器才能获得最大的优惠?点拨:获得最大优惠是选择商场的前提,由于顾客购买电器金额不是具体的,因此应分类讨论解决问题.解答:设购买电器的金额为x 元,甲商场的实收金额为y 甲元,乙商场的实收金额为y 乙元.由题意,得,010001000(1000)0.9,1000x x y x x <≤⎧=⎨+-⨯>⎩甲,,0500500(500)0.95,500x x y x x <≤⎧=⎨+-⨯>⎩乙,①当0500x <≤时,两家均不优惠,所以任选一家;②当1000≤时,乙商场有优惠而甲商场没有,所以选择乙商场; ③当1000x >时,若y y =乙甲,即1000(1000)0.9500(500)0.95x x +-⨯=+-⨯,解得1500x =; 若y y >乙甲,即1000(1000)0.9500(500)0.95x x +-⨯>+-⨯,解得1500x <;当y y <乙甲,即1000(1000)0.9500(500)0.95x x +-⨯<+-⨯,解得1500x >. 综上所述,顾客对商场的选择可参考如下:①当0500x <≤或1500x =时,可任选一家;②当5001500x <<时,可选择乙商场;③当1500x >时,可选择甲商场.规律·提示寻找不等关系的方法:(1)利用事实不等关系,这里指的是不需要题设的表述就已经存在的不等关系.如生产用量≤供给量;(2)利用明确表达的不等关系,如常见的“不少于”“最多”“不超过”“最小”等;(3)利用题中隐藏的不等关系,如“哪一种方式更优惠”“如何安排运输的方案”等,其字里行间便隐藏着不等关系. 【举一反三】6.某商场响应“家电下乡”的惠农政策,决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的数量是乙种电冰箱的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的数量不超过丙种电冰箱的数量,则有哪些购买方案?探究5 不空不满类型问题例5 学校为离家远的同学安排住宿,现有房间若干间.若每间住5人,则还有14人安排不下;若每间住7人,则最后一间房间里还余一些床位.学校可能有几间房间可以安排同学住宿?住宿的同学可能有多少人?点拨:本题是典型的不空不满类型问题,关健是弄清题中有两个量,住宿人数和房间安排方式不同,就有不同的结果,依据题中给出的安排方式,列出不等式组,从而求解. 解答:解法一:设房间有x 间,则住宿的同学有(514x +)人.由题意,得07(514)7x x <-+<, 解得710.5x <<. 因为x 取正整数, 所以x 取8,9,10.当8x =时,住宿的同学有54人; 当9x =时,住宿的同学有59人; 当10x =时,住宿的同学有64人. 解法二:设住宿的同学有x 人,则房间有145x -间. 由题意,得7(14)75x x x -<<+, 解得4966.5x <<.因为x 是正整数,所以x 取50,51,52,53,…,64,65,66.因为145x -为整数,所以x 可以取54,59,64,则房间对应可能有8,9或10间.综上所述,房间数与住宿的同学人数有3种可能的情况:①房间8间,同学54人;②房间9间,同学59人;③房间10问,同学 64人.规律·提示放缩法,即将代数式的某些部分恰当地放大或缩小,从而得到相应的不等式,以达到解决问题的目的.放缩法的实质是构造不等式,通过缩小范围逼近求解,放缩法体现了化“相等”为“不等”,以“不等”求“相等”的策略和思想.【举一反三】7.将若干只鸡放入若干个笼子中,若每个笼子里放4只,则有一只鸡无笼可放;若每个笼子里放5只,则有一笼无鸡可放.问:至少有多少只鸡,多少个笼子?参考答案知识梳理不等号 不等关系 成立 解 一个 1 不等于0括号 系数化为1 元 不等式 同一个未知数 成立未知数的值 解集 公共部分重难点分类解析【反馈练习】1. D2. C3. (1)83x ≤(2)3x ≤ 4. 不等式组的解集为415x -≤<,表示在数轴上如图所示:5. 孔明应该买7个球拍.6. (1)原计划购买男款书包40个,女款书包20个.(2)女款书包最多能买40个.易错题辨析反馈练习1. D2.C3. B4. 0,15. 2-,1-,0,1探究与应用【举一反三】1. 40k -<<2. 12x >3. 32a -<≤-4. 912a ≤<5. 542u x y z =++的最大值为130,最小值为120.6. (1)至少购进乙种电冰箱14台.(2)有3种购买方案.方案一:甲种电冰箱购进28台,乙种电冰箱购进14台,丙种电冰箱购进38台; 方案二:甲种电冰箱购进30台,乙种电冰箱购进15台,丙种电冰箱购进35台; 方案三:甲种电冰箱购进32台,乙种电冰箱购进16台,丙种电冰箱购进32台.7. 至少有25只鸡,6个笼子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档