力与物体的平衡
高中物理复习:力与物体的平衡

14
C 考点二 力学中物体的平衡
[知能必备] 1.平衡中的“三看”与“三想” (1)看到“缓慢”,想到“物体处于动态平衡状态”. (2)看到“轻绳、轻环”,想到“绳、环的质量可忽略不计”. (3)看到“光滑”,想到“摩擦力为零”.
栏目导航
15
2.“四点”注意 (1)杆的弹力方向不一定沿着杆的方向. (2)摩擦力的方向总是与物体的相对运动方向或相对运动趋势方向相反,但与物 体的运动方向无必然的联系. (3)如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力大小 相等,方向相反. (4)物体受到三个或三个以上力的作用时,可采用正交分解法求解.
栏目导航
8
解析:D 对物体B受力分析可知,B一定受重力、支持力,将重力分解可知重 力有沿斜面向下的分力,B能匀速下滑,受力一定平衡,故A对B应有沿斜面向上的静 摩擦力;根据力的相互作用规律可知,A受到B的静摩擦力应沿斜面向下,故A、B错 误;对A、B整体受力分析,并将整体重力分解,可知沿斜面方向上,重力的分力与 摩擦力等大反向,故A受的滑动摩擦力沿斜面向上,大小为2mgsin θ,C错误;对A、 B整体受力分析,受重力、支持力和滑动摩擦力,由于匀速下滑,故重力沿斜面方向 的分力与滑动摩擦力平衡,故2mgsin θ=μ·2mgcos θ,解得μ=tan θ,选项D正确.
栏目导航
29
C 考点三 电磁学中的平衡问题
1.电磁场中的常见力
[知能必备]
栏目导航
30
2.处理电磁场中平衡问题的方法 与纯力学问题的分析方法大致相同,具体如下:
栏目导航
31
[典例剖析] 角度1 电场中的平衡问题
(2021·陕西咸阳三模)如下图所示,甲、乙两带电小球的质量均为m,所 带电荷量分别为+q和-q,两球间用绝缘细线2连接,甲球用绝缘细线1悬挂在天花 板上,在两球所在空间有沿水平方向向左的匀强电场,场强为E,且有qE=mg,平衡 时细线都被拉直.则平衡时的可能位置图是( A )
物理学如何解释力的平衡与不平衡

物理学如何解释力的平衡与不平衡力的平衡与不平衡是物理学中一个重要的概念,它涉及到物体在空间中的运动状态以及相互作用力的平衡与不平衡。
下面将从物理学的角度来解释力的平衡与不平衡。
一、力的平衡力的平衡指的是物体所受到的合力为零的状态。
力的平衡是物体保持静止或匀速直线运动的必要条件。
根据牛顿第一定律,当物体所受合力为零时,物体将继续保持其原有的静止状态或者匀速直线运动。
那么在物体受到多个力的作用时,如何判断力是否平衡呢?我们可以利用力的合成与分解原理。
假设一个物体受到三个力的作用,分别是力F1、力F2和力F3,用矢量表示分别为F1、F2和F3。
可以通过将这三个力的矢量相加,得到它们的合力,即F = F1 + F2 + F3。
如果合力F为零,则说明物体受到的力是平衡的,物体将保持静止或者匀速直线运动。
二、力的不平衡力的不平衡指的是物体所受到的合力不为零的状态。
当物体受到的合力不为零时,物体将发生加速度。
根据牛顿第二定律,当物体所受合力不为零时,物体将产生加速度,加速度的大小和方向与合力成正比。
这种情况下,物体将发生变速直线运动。
在力的不平衡情况下,我们需要了解力的作用方向和力的大小。
通过利用力的合成与分解原理,我们可以将合力分解成多个分力,分别计算它们的大小和方向。
这样我们就可以得知物体所受到各个分力的影响,进而判断物体的运动状态和加速度。
三、力的平衡与不平衡的应用力的平衡与不平衡不仅仅是物理学中的一个理论概念,它还有广泛的应用。
在工程领域,力的平衡与不平衡是设计稳定结构的关键。
例如,对于大型建筑物或桥梁,工程师需要确保物体所受的外力与内力平衡,以确保结构的稳定性和安全性。
在运动学中,分析力的平衡与不平衡可以帮助我们理解复杂的运动现象。
例如,通过分析物体所受到的力的平衡与不平衡,我们可以解释自由落体运动、摩擦力的产生和运动学中的各种现象。
在生物学中,力的平衡与不平衡是研究人体平衡和动作的基础。
通过研究力的平衡与不平衡的原理,我们可以了解人体姿势的保持和人体运动控制的机理。
物体的匀速圆周运动与力的平衡

物体的匀速圆周运动与力的平衡物体的匀速圆周运动是一种特殊的运动形式,它既具有圆周运动的特征,又具有匀速运动的特点。
在这种运动中,物体沿着圆周轨道运动,速度的大小保持不变。
然而,要保持这种运动状态,必须满足一定的条件,其中之一就是力的平衡。
力的平衡是指物体所受的合力为零,即物体受到的力相互抵消,使物体保持静止或匀速运动。
在物体的匀速圆周运动中,力的平衡起着至关重要的作用。
首先,我们来看一下匀速圆周运动过程中物体所受的力。
物体在圆周运动中,必须受到向心力的作用,否则就无法保持圆周运动的状态。
向心力是一种指向圆心的力,它不仅使物体沿着圆周轨道运动,还改变了物体的速度方向。
同时,在匀速圆周运动中,物体的速度大小保持不变,因此必须受到另一个力的作用,即离心力。
离心力是一种指向远离圆心方向的力,它与向心力大小相等、方向相反,正好与向心力抵消,使物体保持匀速运动。
其次,我们来探讨一下力的平衡与物体匀速圆周运动的关系。
物体进行匀速圆周运动时,必须保持两个方向上的力平衡,即向心力与离心力之间的平衡。
如果这两个力不相互平衡,那么物体将会偏离圆周轨道。
以一个绳子连接的物体作为例子,当绳子因为向心力的拉扯向圆心方向时,物体会被牵引沿圆周运动。
此时,如果没有离心力的作用,物体将会沿直线运动,而不是匀速圆周运动。
而当离心力与向心力大小相等、方向相反时,这两个力相互抵消,物体将保持匀速圆周运动的状态。
然而,力的平衡与物体的匀速圆周运动并不总是成立的。
如果存在其他力的干扰,如摩擦力、斥力等,就会打破力的平衡,导致物体的运动状态发生改变。
比如,当物体在平面上进行匀速圆周运动时,摩擦力可能使物体减速或甚至停止运动。
同样地,当物体在空间中进行匀速圆周运动时,外界的斥力或吸引力也会干扰物体的运动轨迹。
综上所述,物体的匀速圆周运动与力的平衡密切相关。
力的平衡是保持匀速圆周运动的必要条件,使物体能够沿着圆周轨道保持匀速运动。
然而,力的平衡并非一成不变,受到其他力的干扰时,物体的运动状态可能会发生变化。
力与物体平衡专题

力与物体平衡专题一、知识要求1、记住高中所有的力及其特点。
2、能正确进行受力分析、作出受力图。
3、能用平行四边形和三角形对力进行合成和分解,并能利用几何知识求力。
4、知道平衡状态(有静态平衡、动态平衡两种)和平衡条件及其推论。
二、熟练掌握常见的平衡题型1、斜面上物体的平衡研究斜面上物体的静止和运动的问题是考试中的常规题,而物体所受静摩擦力大小方向的判断是此类题中的重点、难点(如右图)。
找临界状态是判断静摩擦力的关键。
练习1. 如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。
当用水平向左的恒力推Q时,P、Q仍静止不动,则A.Q受到的摩擦力一定变小B.Q受到的摩擦力一定变大C.轻绳上拉力一定变小D.轻绳上拉力一定不变如果用竖直向下的力压Q呢?物体一定会运动吗?练习2、将一物体轻放在一个倾斜的沿逆时针方向匀速转动的传送带上A(上)端,此后物体在从A到B(底端)的运动过程中(ACD)A 物体可能一直向下做匀加速直线运动,加速度不变。
B 物体可能一直向下做匀速直线运动C物体可能一直向下做加速运动,加速度改变D 物体可能先向下作加速运动,后做匀速运动。
如果改成顺时针转动应该怎么做?练习3.(03年理综)如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。
一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与O点的连线与水平线的夹角为α=60°。
两小球的质量比m2/m1为AA 3/3B 2/3C 3/2D 2/2练习4.(04上海)物体B 放在物体A 上,A 、B 的上下表面均与斜面平行(如图),当两者以相同的初速度靠惯性沿光滑固定斜面C 向上做匀减速运动时 ( C ) A .A 受到B 的摩擦力沿斜面方向向上B .A 受到B 的摩擦力沿斜面方向向下C .A 、B 之间的摩擦力为零D .A 、B 之间是否存在摩擦力取决于A 、B 表面的性质练习5、一质量为m 的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。
力与物体的平衡

,日光灯保持水平,所受重D.0.6如图所示,一夹子夹住木块,在力F作用下向上提升。
夹,夹子与木块两侧间的最大静摩擦力均为f。
由以上高考试题可以看出,本专题的高频考点主要集中在物体受力分析、摩擦力的分析与计算、力的合成与分解、共点力的平衡等几个方面,难度适中。
本专题知识还可与电场、磁场知识相结合,考查带电体在复合场中的平衡或导体棒在磁场中的平衡问题,复习时要侧重如图所示,桌面上固定一个光滑的竖直挡板,现将一个质量一定的重球A的拉力为多大?中心的孔穿过,A的质量为M.细线中张力大小为QE sin θ的支持力大小为Mg 系统的电势能减小【总结提升】抓住同一根细线上张力大小相等,通过水平方向受力平衡分析细线与竖直方向的夹角,从而确定角度或角度的变化,注意应用数学知悬挂一重物,可分析出两边细线与=d/L,再根据竖直方向受力平衡得出结论。
注意有结点类平衡问题,只有满足三个条件(受三个力、才可应用图解法。
搁在挡板与滑块上且仍处于静止状态,则与原来相比()关于绳子在不同情况下的受力的绳子,两边拉力相等,两个拉力的合力在角平分线上;若绳子在某点拴结,则绳子两边拉力不一定相等,拉力的合力也不一定在角平分线上,在解题中,必须分清楚这两种情的固定斜面上有一质量m=1.0 kg的物体。
细绳的一端与物体相连。
另一端经摩擦不计的定滑轮与固定的弹簧秤,方向沿斜面向上,方向竖直向上端铰接在竖直墙上,另一端C为一滑轮。
重力.如图所示,两相同轻质硬杆OO1、OO2可绕其两端垂直纸面的水平轴转动,在O点悬挂一重物M,将两相同木块m紧压在竖直挡板上,此时整个系统保持静止。
F f表示木块与挡板间摩擦力的大小,F N表示木块与挡板间正压力的大小。
若挡板间的距离稍许增大。
高中物理必修一《力与物体平衡》共点力平衡

§2.4 共点力作用下的物体平衡【考点聚焦】1.共点力:作于物体上同一点的力,或力的作用线相交于一点的力叫做共点力.2.平衡状态:物体处于静止或匀速直线运动状态叫做平衡状态.物体的加速度和速度都为零的状态叫做静止状态.物体的加速度为零,而速度不为零,且保持不变的状态是匀速直线运动状态.3.共点作用下的物体的平衡条件:共点作用下的物体的平衡条件是物体所受合外力零,即F 合= 0.在正交分解形式下的表达式为F x = 0,F y = 0.要掌握意两个基本推论:○1 若物体受两个力作用而平衡,则这两个力一定大小相等,方向相反,且作用在同一直线.○2 若一个物体受三个力而平衡,则三个力中任意两个力的合力必与第三个力小相等,方向相反,且作用在同一直线.若这三个力是非平行力,则三个力一定是共点力,简称为不平行必共点.如果将三个力的矢量平移,则一定可以得到一个首尾相接的封闭三角形.【好题精析】例1 有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 上套有小环P ,OB 套有小环Q ,两环质量均为m ,两环间由一根质量可以忽略、不可伸长的细绳相连,并在某一位置平衡,如图1.4-1所示.现将P 环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO 杆对P 的支持力F N 和细绳上的拉力F 的变化情况是 ( )A .F N 不变,F 变大B .F N 不变,F 变小C .F N 变大,F 变大D .F N 变大,F 变小解析:选择环P 、Q 和细绳为研究对象.在竖直方向上只受重力和支持力F N 的作用,而环动移前后系统的重力保持不变,故F N 保持不变.取环Q 为研究对象,其受如图2.4-1(解)所示.F cos α = mg ,当P 环向左移时,α将变小,故F 变小,正确答案为B .点评:利用整体与隔离相结合的方法分析求解是本题解决问题的重要思想方法与手段. 例2 如图2.4-2所示,轻绳的A 端固定在天花板上,B 端系一个重力为G的小球,小球静止在固定的光滑的大球球面上.已知AB 绳长为l ,大球半径为R ,天花板到大球顶点的竖直距离AC = d ,∠ABO > 900.求绳对小球的拉力和大球对小球的支持力的大小.(小球可视为质点)解析:以小球为研究对象,其受力如图2.4.2(解)所示.绳的拉力F 、重力G 、支持力F N 三个力构成封闭三解形,它与几何三角形AOB 相似,则根据相似比的关系得到:l F =R d G +=R F N ,于是解得F = R d l +G ,F N = Rd R +G . 点评:本题借助于题设条件中的长度关系与矢量在角形的特殊结构特点,运用相似三角形巧妙地回避了一些较为繁琐的计算过程.例3 如图2.4-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α < 450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化?图2.4-1(解) 图2.4-2图2.4-2(解)图2.4-3解析:取O 为研究对象,O 点受细线AO 、BO 的拉力分别为F 1、F 2,挂重力的细线拉力F 3 = mg .F 1、F 2的合力F 与F 3大小相等方向相反.又因为F 1的方向不变,F 的末端作射线平行于F 2,那么随着β角的减小F 2末端在这条射线上移动,如图2.4-3(解)所示.由图可以看出,F 2先减小,后增大,而F 1则逐渐减小. 点评:一般情况下,物体已知合力与一个分力的方向,求其中一个合力或两个分力的变化情况时,用图解法可以简化繁琐的数学论证过程,提高解题效率. 例4 一表面粗糙的斜面,放在水平光滑的地面上,如图2.4-4所示,θ为斜面的倾角.一质量为m 的滑块恰好能沿斜面匀速下滑.若一推力F 用于滑块上使之沿斜面匀速上滑,为了保持斜面静止不动,必须用一大小为f = 4mg cos θsin θ的水平力作用于斜面上,求推力F 的大小和方向.解析:因物块恰好能够沿斜面下滑,设斜面与物块间的动摩擦因数为μ,则可得到:mg sin θ = μmg cos θ,即μ = tan θ.设推力F 沿斜面的分量为F x ,垂直于斜面的方向的分量为F y ,其受力分析如图2.4-4(解a )所示,其中支持力为F 1、摩擦力为F 2.根据平衡条件列出方程:F x = mg sin θ + F 2、F 1 = F y + mg cos θ且F 2 = μF 1. 斜面的受力如图2.4-4(解b )所示,其中Mg 为斜面所受重力,F 3为地面对斜面的支持力,斜面静止:f = F 2cos θ +F 1sin θ.综合上述各式可解得:F x = 3mg sin θ;F y = mg cos θ,则推力F =22y x F F += mg θ2sin 81+,与斜面方向夹角φ满足:tan φ = x yF F = 31tan θ. 点评:本题利用正交分解的方法并通过隔离法对斜面和物块分别研究后建立方程进行求解. 例5 如图2.4-5所示,汽车用绳索通过定滑轮牵引小船,使小船匀速靠岸,若水对船的阻力不变,则下列说法中正确的是:( )A .绳子的拉力不断增大B .船受到的浮力不断减小C .船受到的合力不断增大D .绳子的拉力可能不变解析:小船受重力mg 、浮力F 1、绳索拉力F 2、水的阻力F 3作用.其受力如图2.4-5(解)所示,并建立直角坐标系,且设绳索拉力与水平方向成θ角,则由平衡条件:F 2cos θ = F 3、F 2sin θ + F 1 = mg ,在小船匀速靠的过程中,θ角增大,阻力F 3、重力mg 保持不变,故绳索的拉力F 2增大,浮力F 1减小,船受到的合力一直为零.所以A 、B 正确.点评:本题引入角度θ从而建立函数关系式来判断各物理量的变化情况,这种形式是平衡问题常的手段之一.另外,小船匀速靠,但牵引的汽车却做减速运动,根据运动的合成与分解可知汽车速度和船的速度关系为v 车 = v 船cos θ,随着θ的增大v 车减小,即汽车做减速运动.【当堂反馈】1.放在斜面上的小盒内装有砂,小盒恰好能匀速下滑,若在运动中在盒内再加一些砂子,是下列判断中正确的是:( )A .小盒将静止不动B .小盒将做减速运动C .小盒所受的合外力变大D .小盒所受的合外力不变图2.4-3(解) 图2.4-4 图2.4-4(解a) 图2.4-4(解b)图2.4-5 图2.4-5(解 )2.如图2.4-6是滑板的简化示意图.运动员在快艇的水平牵引下,脚踏倾斜滑板在水上匀速滑行,设滑板光滑,且不计质量,滑板的滑水面积为S ,滑板与水平方向夹角为θ角(板的前端抬起的角度),水的密度为ρ,理论证明:水对板的作用力大小为F = ρSv 2sin 2θ,方向垂直于板面,式v 为快艇的牵引速度.若运动员受重力为G ,则快艇的水平牵引速度v = _____________.【强化训练】1.如图2.4-7所示,一铁球放在板与竖直墙壁之间,当板向上缓慢抬起时,使θ角变小时,下在正确的是: ( )A .球对墙的压力将变大B .球对墙的压力将变小C .球对板的压力将变大D .球对板的压力将变小2.如图2.4-8所示,物体A 、B 用细绳连接后跨过滑轮.A 静止在倾角为450的斜面上,B 悬挂着.已知质量m A = 2m B ,不计滑轮摩擦,现将斜面倾角由450增大到500,但物体仍保持静止,那么下列说法中正确的是:( )A .绳子的张力将增大B .物体A 对斜面的压力将减少C .绳子的张力及A 受到的静摩擦力都不变D .物体A 受到的静摩擦力将增大3.如图2.4-9所示,质量为m 的物体,在恒力F 作用下沿天花板匀速直线运动,物体与顶板间的动摩擦因数为μ,则物体受到的摩擦力大小为: ( )A .F ·sin θB .F ·cos θC .μ(F sin θ—mg )D .μ(mg —F sin θ) 4.如图2.4-10所示,质量为M 的人用轻绳绕过定滑轮拉—个质量为m的物体,斜绳的倾角为α,物体正在匀速下降,则: ( )A .轮对轴的压力的mg + Mg sin α,方向竖直向下B .人对绳的拉力小于mgC .人对地的压力一定小于Mg 、大于mgD .人对地的摩擦力等于mg cos α 5.如图2.4-11所示,质量为m 的质点,与三根相同的螺旋形轻弹簧相连。
力和物体的平衡知识点复习

力和物体的平衡知识点复习力的基本概念:力是物体与其他物体或外界发生相互作用时产生的一种物理量。
力有大小、方向和作用点,通常用矢量表示。
经典力学中的常见力包括重力、弹力、摩擦力等。
力的合成:当一个物体受到多个力的作用时,可以使用力的合成来求出合力。
合力是多个力的矢量和,可以用平行四边形法则或三角形法则来求解。
力的分解:与力的合成相反,力的分解将一个力分解为多个部分力。
常见的分解方法包括平行分解和垂直分解。
通过分解力,可以将复杂的力问题简化为更容易解决的问题。
杠杆原理:杠杆原理是指在一个杠杆平衡的情况下,杠杆两侧的力矩相等。
杠杆原理为解决力矩和旋转平衡问题提供了有力的工具。
杠杆原理可以用于计算力矩、杠杆的长度和所需的力等。
力矩:力矩是一个物体受力时旋转的程度。
力矩等于力乘以力臂(即力和转轴之间的垂直距离)。
力矩可以用于解决平衡问题,当力矩和为零时,物体处于平衡状态。
平衡条件:物体处于平衡状态时,力矩和和合力为零。
这是静力学的基本条件。
通过平衡条件,可以确定物体的未知力或未知长度,以解决平衡问题。
静摩擦力和滑动摩擦力:静摩擦力是物体相对于另一个物体没有发生滑动时的摩擦力。
静摩擦力等于物体受到的作用力的最大值。
滑动摩擦力是物体相对于另一个物体滑动时的摩擦力。
滑动摩擦力则与物体之间的接触面质量和滑动速度有关。
重力:重力是地球或其他天体对物体的吸引力。
在地球上,重力的大小等于物体的质量乘以重力加速度。
重力是导致物体下落的原因,也是地球上物体平衡的重要因素。
物体的平衡条件:物体处于平衡状态时,受力平衡和力矩平衡两个条件必须同时满足。
受力平衡条件是物体受到的合力为零,即合力的水平和垂直分量都为零。
力矩平衡条件是物体受到的合力矩为零,即对物体受力的任何旋转都没有产生。
支撑力:支撑力是支持物体的垂直向上的力。
在物体平衡的情况下,支撑力等于物体的重力。
当物体受到多个力的作用时,支撑力也可以通过平衡条件来计算。
以上是力和物体平衡的一些基本知识点的概述。
物体的平衡与力的平衡条件

物体的平衡与力的平衡条件物体的平衡是指物体处于静止状态或在匀速直线运动中没有受到外力的干扰。
在力学中,平衡被分为静平衡和动平衡两种情况。
本文将探讨物体的平衡以及力的平衡条件。
一、物体的平衡物体处于平衡状态时,可以分为两种情况:静平衡和动平衡。
1. 静平衡静平衡是指物体处于静止状态,在这种状态下,物体的位置和姿态不发生变化。
要实现静平衡,物体必须满足以下两个条件:(1)合力为零:物体受到的所有外力的合力等于零。
如果合力不为零,物体就会沿着合力的方向产生加速度,从而改变其状态。
(2)力矩为零:物体受到的所有外力对物体中心的力矩之和等于零。
力矩是指力在物体上产生的转动效果,它由两个因素决定:力的大小和力的臂长。
当一个物体受到的力矩为零时,它不会发生旋转。
2. 动平衡动平衡是指物体处于匀速直线运动中,但没有受到外力的干扰。
在动平衡状态下,物体不会改变其速度和方向。
二、力的平衡条件要实现物体的平衡,力也必须满足一定的平衡条件。
下面是力的平衡条件:1. 合力为零合力是指作用在物体上的所有外力的矢量和。
当物体受到的合力为零时,物体处于平衡状态。
2. 分力为零除了合力为零外,物体受到的每一个分力的矢量和也必须为零。
分力是指作用在物体上的每一个单独力的矢量。
当每一个分力的矢量和都为零时,物体才能保持平衡。
3. 力矩为零力矩是指力在物体上产生的转动效果。
当物体受到的所有外力对物体中心的力矩之和等于零时,物体处于平衡状态。
三、力的平衡与物体结构的关系物体的形状和结构对力的平衡起着重要的影响。
以下是一些常见的示例:1. 杆的平衡当在杆的一侧施加一个重力或其他力,要使杆处于平衡状态,需要在相应的位置施加一个与之相等的力。
这是因为杆的平衡要求力矩为零。
2. 悬挂物体的平衡当悬挂一个重物时,需要使悬挂点和重力的垂直作用线重合,这样才能保持稳定。
如果悬挂点与重心不重合,就会产生一个力矩,物体将会发生旋转。
四、结论物体的平衡与力的平衡条件密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力与物体的平衡
【方法总结】
一、动态平衡:物体在缓慢..移动过程中,可认为其速度、加速度均为零,物体处于平衡
状态.
二、共点力平衡条件的应用
(一)若物体所受的力在同一条直线上,则在一个方向上各力大小之和,与另一个方向
上各力之和相等。
(二)若物体受三个力作用而平衡时
1. 三个力的作用线(或反向延长线)必交于一点,且三个力共面,称为汇交共面性。
2. 任两个力的合力与第三个力的大小相等,方向相反。
3. 三个力的矢量图必组成一个封闭的矢量三角形。
(三)若物体受到三个或三个以上力的作用而平衡时
一般运用正交分解法处理较方便,将物体所受的力分解到相互垂直的 x轴与y轴
上去,因为220xyFFF , 则0xF 、0yF。
三、动态平衡问题分析的常用方法
(一)解析法:一般把力进行正交分解,两个方向上列平衡方程,写出所要分析的力与变
化角度的关系,然后判断各力的变化趋势.
(二)图解法:能用图解法分析动态变化的问题有三个显著特征:①物体一般受三个力作
用;②其中有一个大小、方向都不变的力;③还有一个方向不变、大小变的力;④第三个力
大小、方向都变。图解法指在同一图中作出物体在若干状态下的受力平衡图,再由动态力的
合成(或分解)图,利用三角形的边长变化及角度来确定某些力的大小及方向的变化情况。
(三)相似三角形法
如果物体受到三个力的作用,其中的一个力大小、方向均不变,另外两个力的方向都发
生变化,可以用力三角形与几何三角形相似的方法.
(四)求解动态平衡问题的两点技巧
(1)在用图解法求解动态平衡问题时,要确定好力的矢量三角形中哪个力是不变的,哪个
力是变化的;对于变化的力,要明确其大小和方向的变化范围.
(2)用“力三角形法”解决三力作用下物体的动态平衡问题的关键是要构建适当的力三
角形.构建力三角形的一般原则:不移动大小和方向不变的力,移动大小和方向均变化的力,
从动态变化中分析力的大小和方向的变化情况.
四、物体平衡中的临界、极值问题
研究临界极值问题,基本观点是物理分析和数学讨论相结合,即一般先通过对物理过程
的分析确定临界或极值条件,再根据物理规律列出各物理量间的函数方程式,充分利用数学
知识及作图的方法确定最大值、最小值或取值范围等。
【典例分析】
例题1.质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中
点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中( )
A.F逐渐变大,T逐渐变大
B.F逐渐变大,T逐渐变小
C.F逐渐变小,T逐渐变大
D.F逐渐变小,T逐渐变小
[思路点拨]解此题的关键有两点:
(1)以O点为研究对象时注意O点的受力情况,并画出示意图.
(2)“缓慢拉动”过程中哪些是变量?如何变化?
解析: 方法一(解析法):
以O点为研究对象,受力分析如图所示,设绳OA与竖直方向的夹角为θ,物体的重力
为G,根据力的平衡可知,F=Gtan θ,T=Gcos θ,随着O点向左移,θ变大,则F逐渐变大,
T逐渐变大,A项正确.
方法二(图解法):
以O点为研究对象,受力分析如图所示,水平力F缓慢拉动绳的过程中,夹角θ的变化
及各力的变化如图所示,由图可知F和T都变大,故A项正确.
答案:A
例题2. 水平地面上有一木箱,木箱与地面之间的动摩擦因数为μ(0<μ<1).现对木箱施
加一拉力F,使木箱做匀速直线运动.设F的方向与水平面的夹角为θ,如图所示,在θ从
0°逐渐增大到90°的过程中,木箱的速度保持不变,则( )
A.F先减小后增大 B.F一直增大
C.Fcos θ先减小后增大 D.Fcos θ一直减小
解析:方法一(解析法)
木箱匀速运动,水平方向受力平衡,则Fcosθ=μ(mg-Fsin θ),
所以F=μmgμsin θ+cos θ
=μmg1+μ2μ1+μ2sin θ+11+μ2cos θ
=μmg1+μ2sin θ+φ,
当sin (θ+φ)=1时,F最小,故F先减小后增大,选项A正确,B错误;当θ=0°时,
Fcos θ最大,当θ=90°,Fcos θ=0,所以Fcos θ一直减小,选项C错误,D正确.
方法二(图解法)
对木箱进行受力分析如图所示,因Ff=μFN,则FN与Ff的合力F1的方向时刻不变(因为
tan α=FNFf=1μ,α为一定值),则作出FN与Ff的合力F1、重力mg与力F三力的动态平衡矢
量三角形知:力F先减小后增大,选项A正确,B错误;由图可知Fcos θ逐渐减小,故选
项C错误,D正确.
答案:AD
例题3. 如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔,质量为
m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使
小球沿圆环缓慢上移.在移动过程中手对线的拉力F和环对小球的弹力FN的大小变化情况
是( )
A.F减小,FN不变 B.F不变,FN减小
C.F不变,FN增大 D.F增大,FN减小
解析:对小球受力分析,其所受的三个力组成一个闭合三角形,如图所示.力三角形与
圆内的三角形相似.由几何关系可知mgR=FNR=FL,小球上移时mg不变,R不变,L减小,F
减小,FN不变,A正确.
答案:A
例题4.(多选)如图所示,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,
其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系
统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )
A.绳OO′的张力也在一定范围内变化
B.物块b所受到的支持力也在一定范围内变化
C.连接a和b的绳的张力也在一定范围内变化
D.物块b与桌面间的摩擦力也在一定范围内变化
解析:只要物块a质量不变,物块b保持静止,则连接a和b的细绳的张力就保持不变,
细绳OO′的张力也就不变,选项A、C错误.对物块b进行受力分析,物块b受到细绳的
拉力(不变)、竖直向下的重力(不变)、外力F、桌面的支持力和摩擦力.若F方向不变,大
小在一定范围内变化,则物块b受到的支持力和物块b与桌面间的摩擦力也在一定范围内变
化,选项B、D正确.
答案:BD
【练习提高】
1. (多选)如图所示,一根绳子一端固定于竖直墙上的A点,另一端绕过动滑轮P悬
挂一重物B,其中绳子的PA段处于水平状态,另一根绳子一端与动滑轮P的轴相连,在绕
过光滑的定滑轮Q后在其端点O施加一水平向左的外力F,使整个系统处于平衡状态,滑
轮均为光滑、轻质,且均可看做质点,现拉动绳子的端点O使其向左缓慢移动一小段距离
后达到新的平衡状态,则该平衡状态与原平衡状态相比较( )
A.拉力F增加 B.拉力F减小 C.角θ不变 D.角θ减小
2.如图所示,粗糙的水平面上放有一个截面为半圆的柱状物体A,A与竖直挡板间放有一
光滑圆球B,整个装置处于静止状态. 现将挡板水平向右缓慢平移,A始终保持静止. 则在
B着地前的过程中( )
A. 挡板对B的弹力减小
B. 地面对A的摩擦力增大
C. A对B的弹力减小
D. 地面对A的弹力增大
3.如图所示,开口向下的“П”形框架,两侧竖直杆光滑固定,上面水平横杆中点固定一
定滑轮,两侧杆上套着的两滑块用轻绳绕过定滑轮相连,并处于静止状态,此时连接滑块A
的绳与水平方向夹角为θ,连接滑块B的绳与水平方向的夹角为2θ,则A、B两滑块的质量
之比为( )
A.2sin θ∶1 B.2cos θ∶1C.1∶2cos θ D.1∶2sin θ
4.(多选)如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平面上,三条细绳结
于O点.一条绳跨过定滑轮平行于斜面连接物块P,一条绳连接小球Q,P、Q两物体处于
静止状态,另一条绳OA在外力F的作用下使夹角θ<90°,现缓慢改变绳OA的方向至θ>90°,
且保持结点O位置不变,整个装置始终处于静止状态.下列说法正确的是( )
A.绳OA的拉力先减小后增大
B.斜面对物块P的摩擦力的大小可能先减小后增大
C.地面对斜面体有向右的摩擦力
D.地面对斜面体的支持力等于物块P和斜面体的重力之和
5.一轻绳一端系在竖直墙M上,另一端系一质量为m的物体A,用一轻质光滑圆环O
穿过轻绳,并用力F拉住轻环上一点,如图所示.现使物体A从图中实线位置缓慢下降到
虚线位置.则在这一过程中,力F、绳中张力FT和力F与水平方向夹角θ的变化情况是( )
A.F保持不变,FT逐渐增大,夹角θ逐渐减小
B.F逐渐增大,FT保持不变,夹角θ逐渐增大
C.F逐渐减小,FT保持不变,夹角θ逐渐减小
D.F保持不变,FT逐渐减小,夹角θ逐渐增大