动能和动能定理的应用

合集下载

高考物理科普动能与动能定理

高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。

在高考物理中,学生需要对动能与动能定理有一定的了解。

本文将介绍什么是动能以及动能定理的含义和应用。

一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。

简单来说,物体的动能与物体的质量和速度有关。

动能的单位是焦耳(J)。

动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。

例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。

二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。

它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。

净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。

根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。

当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。

三、动能定理的应用动能定理在物理学中具有很多应用。

以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。

例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。

2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。

例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。

3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。

例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。

四、总结动能与动能定理是高考物理中的重要知识点。

动能定理与动能守恒

动能定理与动能守恒

动能定理与动能守恒动能定理和动能守恒定律是物理学中两个重要的基本原理,它们描述了物体在运动过程中动能的变化和守恒性质。

本文将介绍动能定理和动能守恒的概念、原理以及应用。

一、动能定理动能定理是描述物体动能变化的原理。

它表明,物体的动能变化等于物体所受的净外力沿着物体运动方向所做的功。

动能定理可以用以下公式表示:ΔKE = W其中,ΔKE表示动能的变化量,W表示净外力所做的功。

根据动能定理,当物体所受的净外力做功时,物体的动能将发生变化。

做正功的力会增加物体的动能,而做负功的力会减小物体的动能。

二、动能守恒动能守恒定律是描述物体在闭合系统内,动能守恒的性质。

它表明,在没有外力做功的情况下,物体系统的总动能保持不变。

动能守恒可以用以下公式表示:KE₀ = KE₁其中,KE₀表示初始状态下物体系统的总动能,KE₁表示最终状态下物体系统的总动能。

根据动能守恒定律,如果物体系统中没有外部力做功或者净外力所做的功为零,物体的总动能将保持不变。

三、应用举例动能定理和动能守恒定律在物理学中有广泛的应用。

以下是一些具体的应用举例:1. 自由落体运动:在自由落体运动中,一个物体在没有空气阻力的情况下,其总机械能保持不变。

在上升阶段,重力做负功,减小物体的动能;在下降阶段,重力做正功,增加物体的动能。

根据动能定理和动能守恒,可以计算物体在不同高度下的速度和位移。

2. 弹性碰撞:在弹性碰撞中,两个物体之间的动能可以互相转化,总动能保持不变。

通过应用动能守恒定律,可以计算碰撞前后物体的速度和动能变化。

3. 静止物体加速:当一个静止的物体受到恒定力作用时,可以利用动能定理计算物体的最终速度。

由于物体在初始状态时没有动能,因此动能定理可以简化为:物体所受的净外力所做的功等于物体最终动能。

总结:动能定理描述了物体动能的变化与外力做功之间的关系,而动能守恒定律则描述了动能在闭合系统内的守恒性质。

这两个原理在物理学中有着广泛的应用,可以帮助我们理解和计算物体运动中的各种现象。

动能定理的概念及应用 -回复

动能定理的概念及应用 -回复

动能定理的概念及应用-回复标题:动能定理的概念及应用【动能定理】,作为物理学中最为基础且广泛应用的力学定理之一,它揭示了物体运动状态改变与外力做功之间的内在关系。

在理解和解决涉及物体运动和能量转换的实际问题时,动能定理扮演着至关重要的角色。

一、动能定理的基本概念动能定理是牛顿力学的重要组成部分,其内容表述为:在一个封闭系统中,若只有保守力(如重力、弹力)做功,那么该系统总动能的变化量等于所有作用于系统上的外力所做的功。

数学表达式为:ΔK = W,其中,ΔK代表动能的变化量,即末态动能减去初态动能;W则表示在此过程中所有外力对物体所做的总功。

动能定义为物体由于其运动而具有的能量,计算公式为K=1/2mv²,其中m代表物体的质量,v代表物体的速度。

二、动能定理的理解与解析动能定理的核心思想是能量守恒原理的一种体现。

在没有非保守力作用(如摩擦力、阻力等)或非保守力做功为零的情况下,物体动能的变化完全由外力做功决定。

也就是说,如果一个物体受到外力并发生速度变化,那么它的动能变化量就等于这段时间内所有外力对该物体做的功。

三、动能定理的应用1. 求解物体运动问题:当仅知道物体受力情况而无法直接通过牛顿第二定律求解物体运动状态时,动能定理为我们提供了另一种解决问题的方法。

例如,在不考虑阻力的情况下,可以通过计算初始和最终动能之差以及外力所做的功来分析抛体运动、碰撞等问题。

2. 机械能守恒问题:在一些物理过程中,如理想弹性碰撞、无摩擦滑轮系统、自由落体等,由于系统只受到保守力作用,动能与势能可以相互转化但总量保持不变,此时动能定理与势能定理相结合,可有效解决这类问题。

3. 工程领域应用:在工程技术中,动能定理被广泛应用于各种机械设备的动力学分析、汽车制动距离计算、火箭推进动力分析等领域。

例如,设计车辆安全系统时,可通过计算撞击前后车辆动能的变化以及摩擦力做功来确定制动距离。

4. 体育运动分析:在体育科学研究中,动能定理同样发挥着重要作用。

动能定理及应用知识框图

动能定理及应用知识框图

动能定理及应用知识框图动能定理是力学中的基本定律之一,它描述了一个物体的动能与其所受作用力之间的关系。

根据动能定理,物体的动能的变化等于作用力对物体所做的功。

换句话说,动能定理表示了物体的动能的增加是由外力对物体做功所引起的。

动能定理可以用以下公式表示:\Delta KE = W其中,\Delta KE表示动能的变化量,W表示作用力对物体所做的功。

动能定理可以应用在很多实际问题中,下面举几个例子来说明其应用:1. 自行车运动:当我们骑自行车时,我们对踏板施加力,使自行车前进。

根据动能定理,我们对自行车施加的力所做的功等于自行车的动能的变化量。

如果我们用F表示对踏板施加的力,d表示骑自行车的距离,m表示自行车的质量,v_f表示自行车的最终速度,v_i表示自行车的初始速度,那么根据动能定理,我们可以得到以下等式:\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = Fd2. 自由落体:当一个物体自由下落时,重力对物体做功,这个过程中物体的动能会增加。

根据动能定理,物体的动能的增加等于重力对物体做的功。

设物体的质量为m,下落的高度为h,重力加速度为g,则根据动能定理可以得到以下等式:mgh = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^23. 弹簧振子的运动:当一个弹簧振子在振动过程中,弹簧对物体施加力,使得物体产生加速度,从而改变其速度和动能。

根据动能定理,我们可以得到以下等式:\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2 = \frac{1}{2}m(v_f^2 - v_i^2)其中,k是弹簧的劲度系数,x_f和x_i分别是弹簧振子的最大位移和初始位移。

通过动能定理,我们可以研究物体在作用力下的运动过程,计算物体的动能的变化量以及作用力对物体所做的功。

这些都有助于我们理解和解决各种实际问题,例如工程中的动力系统设计,运动物体的能量转换等。

第2讲动能定理及其应用

第2讲动能定理及其应用

第2讲动能定理及其应用思维诊断(1)动能是机械能的一种表现形式,凡是运动的物体都具有动能.()(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(3)动能不变的物体所受合外力一定为零.()(4)做自由落体运动的物体,动能与下落距离的平方成正比.()(5)物体做变速运动时动能一定变化.()考点突破2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少;合外力对物体不做功,物体的动能不变.4.高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.5.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.mv2变式训练1如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A.不变B.变小C.变大D.变大变小均可能=Mv+.显然考点二动能定理的应用1.应用动能定理解题的步骤:2.注意事项:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简便.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理没有任何依据.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.[例2]如图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W f;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.2m1-④点时绳的拉力大小为F,绳与水平方向夹角为+1--2m1-+1--f m考点三用动能定理处理多过程问题优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.[例3]如图是翻滚过山车的模型,光滑的竖直圆轨道半径R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数为μ=0.5,加速阶段AB的长度l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,取g=10 m/s2.试问:(1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车能沿着出口平直轨道CD滑行多远的距离?(3)要使小车不脱离轨道,求平直轨道BC段的长度范围.[解析](1)设小车恰好通过最高点的速度为mg=mv20R①变式训练3如图所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8 m,质量为m=2 kg的小物块M从斜面顶端A处由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g=10 m/s2,下滑时逆着毛的生长方向.求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零).(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程.示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.A.2 m/sB.8 m/s类题拓展质量均为m的两物块A、B以一定的初速度在水平面上只受摩擦力而滑动,如图所示是它们滑动的最大位移x与初速度的平方v20的关系图象,已知v202=2v201,下列描述中正确的是()A.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是对B做功的2倍B.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是v2H H⎛⎫11质点在轨道最低点时受重力和支持力,根据牛顿第三定律可知,支持力2R,得v=gR.对质点的下滑过程应用动能定理,,C正确..甲车的刹车距离随刹车前的车速v变化快,甲车的刹车性能好乙车与地面间的动摩擦因数较大,乙车的刹车性能好.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好。

动能与动能定理

动能与动能定理

动能与动能定理动能是物体运动时所具有的能量,是描述物体运动状态的重要物理量。

本文将介绍动能的概念、计算方法以及动能定理的原理和应用。

一、动能的概念与计算方法动能是物体运动时所具有的能量,它与物体的质量和速度有关。

动能的计算公式为:动能 = 1/2 ×质量 ×速度的平方式中,“质量”表示物体的质量,单位为千克,“速度的平方”表示物体的速度的平方,单位为米每秒。

二、动能定理的原理与表达方式动能定理是描述物体运动过程中能量变化的定理,它表明,当物体受到合外力作用时,物体的动能会发生变化。

动能定理可用以下方式表达:动能的变化量 = 物体所受合外力的功其中,“动能的变化量”表示物体动能的增量或减量,“物体所受合外力的功”表示作用在物体上的合外力所做的功。

三、动能定理的应用动能定理在物理学中有广泛的应用,以下是其中两个重要方面:1. 机械能守恒原理根据动能定理,当物体只受重力做功或只受弹力做功时,物体的总机械能保持不变。

即动能和势能之和保持不变。

2. 动能定理与运动的描述动能定理可以用来分析和描述物体的运动过程。

通过计算物体在不同位置或不同时间点的动能变化量,可以了解物体的运动状态和受力情况,进而预测物体的运动轨迹。

四、总结动能是物体运动时所具有的能量,可以通过物体质量和速度来计算。

动能定理描述了物体受到合外力作用时动能的变化规律,可以用来研究和描述物体运动的特性。

在实际应用中,动能定理在机械能守恒和运动分析等方面发挥着重要的作用。

通过本文的介绍,相信读者对动能与动能定理有了更深入的理解,能够运用这些概念和定理解决有关的物理问题。

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用动能定理是物理学中的一个基本定理,它描述了物体的动能与其速度之间的关系。

具体地说,动能定理指出,一个物体的动能等于其速度平方的一半乘以其质量,即:K = 1/2mv²其中,K表示动能,m表示物体的质量,v表示物体的速度。

这个公式告诉我们,物体的动能与其速度的平方成正比,与其质量成正比。

动能定理的意义非常重要,在物理学、机械工程、交通运输等领域都有广泛的应用。

下面我们来介绍一些动能定理在生活中的应用。

1. 刹车距离的计算在汽车的行驶过程中,如果突然要停车,刹车就成为了至关重要的关键。

当汽车行驶速度越快时,刹车所需要的距离也越长,因此,为了保证行车安全,刹车距离必须得到科学的计算和控制。

在这个过程中,动能定理就发挥了重要的作用。

根据动能定理,汽车在刹车时释放掉的动能与其刹车前的动能之差,就是刹车所需要消耗的能量,这个能量可以用来计算刹车距离。

2. 对撞实验的分析在粒子物理学中,对撞实验被广泛应用,通过对撞前后粒子的动能变化来研究微观粒子间的相互作用。

在对撞过程中,由于相互作用的力,粒子的动能会发生变化,这时候动能定理就成为了分析对撞结果的重要工具。

可以利用动能定理计算出粒子的动能变化,从而得出粒子的质量、速度等信息。

3. 跳伞运动员的跳跃高度计算当跳伞运动员从飞机上跳下时,因为重力作用,运动员会逐渐加速,同时由于空气阻力的存在,他的速度也会逐渐趋向极限。

根据动能定理,运动员的动能来自于其势能,而势能则与距离高度相关。

因此,可以用动能定理来计算跳伞运动员在不同高度的初始动能,从而判断其跳跃高度。

4. 物体的机械能转化物体的机械能是指动能和势能的总和,如果做功的力不做功,物体的机械能会保持不变。

由于动能定理和势能公式的存在,我们可以很方便地计算物体在不同过程中的机械能,从而分析其能量转化过程。

例如,在一个弹簧系统中,如果我们知道弹簧实际上是如何工作的,那么我们可以通过计算势能和动能的变化来分析弹簧工作时的能量转化。

曲线运动第12讲 功能关系(动能定理及其应用篇)

曲线运动第12讲  功能关系(动能定理及其应用篇)

功能关系(动能定理及其应用)知识点梳理1.动能:物体由于运动而具有的能量。

影响因素:<1>质量 <2>速度 表达式:E k =221mv 单位:J 2、动能定理<1>定义:物体动能的变化量等于合外力做功。

<2>表达式:△E k =W F 合3、W 的求法动能定理中的W 表示的是合外力的功,可以应用W =F 合·lc os α(仅适用于恒定的合外力)计算,还可以先求各个力的功再求其代数和,W =W 1+W 2+…(多适用于分段运动过程)。

4.适用范围动能定理应用广泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功等各种情况均适用。

5.动能定理的应用(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的始末状态的动能E k 1和E k 2;母本身含有负号。

方法突破之典型例题题型一对动能定理的理解1.一个人用手把一个质量为m=1kg的物体由静止向上提起2m,这时物体的速度为2m/s,则下列说法中正确的是()A.合外力对物体所做的功为12JB.合外力对物体所做的功为2JC.手对物体所做的功为22JD.物体克服重力所做的功为20J2.关于对动能的理解,下列说法不正确的是()A.凡是运动的物体都具有动能B.动能总是正值C.一定质量的物体,动能变化时,速度一定变化D.一定质量的物体,速度变化时,动能一定变化光说不练,等于白干1、若物体在运动过程中所受的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化2、物体在合外力作用下,做直线运动的v﹣t图象如图所示,下列表述正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功3、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则()A.从第1秒末到第3秒末合外力做功为4WB.从第3秒末到第5秒末合外力做功为-2WC.从第5秒末到第7秒末合外力做功为WD.从第3秒末到第4秒末合外力做功为-0.75W4、美国的NBA篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能表达正确的是()A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh15、轻质弹簧竖直放在地面上,物块P 的质量为m ,与弹簧连在一起保持静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动 能 定 理 的 应 用一、动能定理应用的思路动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。

由于只需从力在各段位移内的功和这段位移始末两状态动能变化去研究,无需注意其中运动状态变化的细节,又由于功和动能都是标量,无方向性,无论是对直线运动或曲线运动,计算都会特别方便。

当题给条件涉及力的位移效应,而不涉及加速度和时间时,用动能定理求解一般比用牛顿第二定律和运动学公式求解简便。

用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力作用过程、曲线运动等问题。

二、应用动能定理解题的一般步骤:① 确定研究对象和研究过程。

② 分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。

③ 找出研究过程中物体的初、末状态的动能(或动能的变化量)④ 根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。

例题评讲:1、应用动能定理求变力的功。

例1. 如图1所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求物体在轨道AB 段所受的阻力对物体做的功。

解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。

根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J点评:如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。

例2 .电动机通过一条绳子吊起质量为8kg 的物体。

绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2)解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。

在匀加速运动过程中,加速度为8108120⨯-=-=m mg F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 52102221⨯==a v h t m=10m 。

在功率恒定的过程中,最后匀速运动的速度为 1082001⨯==mg P v m m m/s=15m/s , 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间 t 2=5.75s 。

图1图2 所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为 t=t 1+t 2=2s+5.75s=7.75s 。

2、应用动能定理解多过程问题例3 . 一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.解答 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0得 h -μS 1-μS 2=0.式中S1为斜面底端与物体初位置间的水平距离.故点评 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性. 例4 从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k <1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?解答:(1) 设小球第一次与地面碰撞后,能够反弹起的最大高度是h ,则由动能定理得:mg (H -h )-kmg (H +h )=0 解得 H kk h +-=11 (2)、设球从释放开始,直至停止弹跳为止,所通过的总路程是S ,对全过程由动能定理得mgH -kmgS =0 解得 k H S =图表 1点评:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。

例5、如图3所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?解答:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。

在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。

设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα 得αμαcos 21sin mgS 200mg mv L += αμcos 1mgl W f -=mgh mgl W G ==αsin V 0 S 0αP图33、利用动能定理巧求机车脱钩问题例6、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图4所示。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离是多少?解答:此题用动能定理求解比用运动学、牛顿第二定律求解简便。

对车头,脱钩后的全过程用动能定理得:201)(21)(V m M gS m M k FL --=-- 对车尾,脱钩后用动能定理得: 20221mV kmgS -=- 而21S S S -=∆,由于原来列车是匀速前进的,所以F =kMg 由以上方程解得mM ML S -=∆。

【同步检测】1.对于做匀速圆周运动的物体,下面说法中正确的是( )A .速度在改变,动能也在改变B .速度改变,动能不变C .速度不变,动能改变D .动能、速度都不变2.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( )A .0B .8JC .16JD .32J3.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( )A .1:3B .3:1C .1:9D .9:14.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( )A .4LB .L )12(-C .2LD .2L 5.质点在恒力作用下,从静止开始做直线运动,则质点的动能( )A .与它通过的位移成正比B .与它通过的位移的平方成正比C .与它运动的时间成正比D .与它的运动的时间的平方成正比6.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是( )A .乙大B .甲大C .一样大D .无法比较7.两辆汽车在同一水平路面上行驶,它们的质量之比为m 1:m 2=1:2,速度之比为v 1:v 2=2:1当汽车急刹车后,甲、乙两辆汽车滑行的最大距离为s 1和s 2,若两车与路面的动摩擦因数相同,且不计空气阻力,则( )A .s 1:s 2=1:2B .s 1:s 2=1:1C .s 1:s 2=2:1D .s 1:s 2=4:18.如图5所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( )A .fL =21Mv 2B .f s =21mv 2 S 2 S 1L V 0 V 0 图4C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 2 图5 9.两个物体的质量分别为m 1和m 2,且m 1=4m 2,当它们以相同的动能在动摩擦因数相同的水平面上运行时,它们的滑行距离之比s 1:s 2和滑行时间之比t 1:t 2分别为( )A .1:2,2:1B .4:1,1:2C .2:1,4:1D .1:4,1:210.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h ,空气阻力的大小恒为f ,则从抛出至回到原出发点的过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2fhD .-4fh11.有两个物体其质量M 1>M 2,它们初动能一样,若两物体受到不变的阻力F 1和F 2作用经过相同的时间停下,它们的位移分别为s 1和s 2,则( )A .F 1>F 2,且s 1<s 2B .F 1>F 2,且s 1>s 2C .F 1<F 2,且s 1<s 2D .F 1<F 2,且s 1>s 212.质量为m 的物体从地面上方H 高处无初速释放,落在地面后出现一个深度为h 的坑,如图所示,在此过程中( )A .重力对物体做功为mgHB .重力对物体做功为mg (H +h )C .外力对物体做的总功为零D .地面对物体的平均阻力为mg (H +h )/h图613.物体与转台间的动摩擦因数为μ,与转轴间距离为R ,m 随转台由静止开始加速转动,当转速增加至某值时,m 即将在转台上相对滑动,此时起转台做匀速转动,此过程中摩擦力对m 做的功为( )A .0B .2πμmgRC .2μmgRD .μmgR /214.如图7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( )A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/8图715.如图8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( )A .v 2>v 2'B .v 2<v 2’C .v 2=v 2’D .沿水平面到B 点时间与沿斜面到达B 点时间相等图816.木块受水平力F 作用在水平面上由静止开始运动,前进sm 后撤去F ,木块又沿原方向前进3sm 停止,则摩擦力f=________.木块最大动能为________.17.质量M=500t 的机车,以恒定的功率从静止出发,经过时间t=5min 在水平路面上行驶了s=2.25km ,速度达到了最大值v m =54km /h ,则机车的功率为________W ,机车运动中受到的平均阻力为________N .18.如图9所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________. 图919.有一质量为0.2kg 的物块,从长为4m ,倾角为30°光滑斜面顶端处由静止开始沿斜面滑下,斜面底端和水平面的接触处为很短的圆弧形,如图10所示.物块和水平面间的滑动摩擦因数为0.2求:(1)物块在水平面能滑行的距离;(2)物块克服摩擦力所做的功.(g取10m/s2)图10 20.如图11所示,AB和CD是半径为R=1m的1/4圆弧形光滑轨道,BC为一段长2m的水平轨道质量为2kg的物体从轨道A端由静止释放,若物体与水平轨道BC间的动摩擦因数为0.1.求:(1)物体第1次沿CD弧形轨道可上升的最大高度;(2)物体最终停下来的位置与B点的距离图11 .如图12所示的装置中,轻绳将A、B相连,B置于光滑水平面上,拉力F使B以1m/s匀速的由P运动到Q,P、Q处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m,已知m A=10kg,m B=20kg,不计滑轮质量和摩擦,求在此过程中拉力F做的功(取sin37°=0.6,g取10m/s2)图12 22.人骑自行车上坡,坡长200m,坡高10m,人和车的质量共100kg,人蹬车的牵引力为100N,若在坡底时自行车的速度为10m/s,到坡顶时速度为4m/s.(g取10m/s2)求:(1)上坡过程中人克服阻力做多少功?(2)人若不蹬车,以10m/s的初速度冲上坡,能在坡上行驶多远?23.质量m=1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力F停止作用,运动到位移是8m时物体停止,运动过程中Ek-S的图线如图13所示。

相关文档
最新文档