概率树形图
画树状图求概率

2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
Байду номын сангаас
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
所以穿相同一双袜子的概率为
(1)取出的3个小球上恰好有1个、2个和3个 元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是 多少?
本题中元音字母: A E I 辅音字母: B C D H
B AA
D
EB C
I H
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I
∴
P(恰有两个数字相同)=
18 27
=
2 3
5.小明和小丽都想去看 电影,但只有一张电影 票.小明提议:利用这三 张牌,洗匀后任意抽一 张,放回,再洗匀抽一张 牌.连续抽的两张牌结 果为一张5一张4小明 去,抽到两张5的小丽去, 两张4重新抽.小明的办 法对双方公平吗?
当一次试验中涉及3个因素或更多的因素时,用列 表法就不方便了.为了不重不漏地列出所有可能的结果, 通常采用“树形图”.
纸上谈兵: 因素1:有两种可能,分别是 △ ☆ 因素2:有两种可能,分别是 ◎ ☆ 因素3:有三种可能,分别是 △ ◎ ☆
人教版九年级上册2第2课时用画树状图法求概率课件

正
反
正 反正反
正 反 正 反正 反正反
25.2 第2课时 用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次实验的几个步骤及顺序; (2)画出树状图列举一次实验的所有可能结果; (3)数出随机事件A包含的结果数m,实验的所有 可能结果数n; (4)代入概率公式进行计算.
25.2 第2课时 用画树状图法求概率
色上的区分,随机从袋中摸出2个小球,两球恰好是一个黄
球和一个红球的概率为( A )
A. 1
2
B. 1
3
C. 1
4
D. 1
6
25.2 第2课时 用画树状图法求概率
3.某市教育局为提高教师业务素养,扎实开展了“课内比教学” 活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有 “A”“B”内容的签中,随机抽出一个作为自己的讲课内容, 某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中 内容“A”,一个抽中内容“B”的概率是___3__.
②在摸球实验一定要弄清“放回”还是“不放回”.
25.2 第2课时 用画树状图法求概率
第二十五章 概率初步
25.2 第2课时 用画树状图法求概率
25.2 第2课时 用画树状图法求概率
情景导入 问题1:同时掷两枚质地均匀的硬币,落地后,两枚都是正面向上的
概率是多少?
解:设正面向上为1,反面向上为2.
第二枚
第一枚
1
2
1
(1,1) (1,2)
2
(2,1) (2,2)
25.2 第2课时 用画树状图法求概率
取球实验
甲
A
B
乙
CD ECD E
丙 H I H I H I H IH I H I
用画树状图法求概率(22张PPT)

⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场
概率树形图

概率树形图33.2 概率树形图一、复习提问巩固旧知问题1.用列举法求概率的基本步骤是什么?(1)列举出一次试验的所有可能结果;(2)数出;(3)计算概率.问题2.列举一次试验的所有可能结果时,学过哪些方法?直接列举、列表法.本节课是用列举法求概率的第三节课,对前两节课所学方法的步骤进行归纳,温故以利知新.二、创2006年6月5日是中国第一个“文化遗产日”,我校承办了“责任与使命——亲近文化遗产,传承文明火炬”的活动,其中有一项“抖空竹”的表演.已知有塑料、木质两种空竹,甲、乙、丙三名学生各自随机选用其中的一种空竹.求甲、乙、丙三名学生恰好选择同一种空竹的概率.学生利用学过的知识,自主探究解决上述问题.学生在探究学习活动中会有不同的表现,针对可能出现的情况设计教学预案如下:教学预案1:直接列举法的指导具体到抽象:有的学生用“木质”“塑料”来直接列举;有的学生用字母、数字、符号来表示“木质”“塑料”进行列举.及时对学生不同的方法给予肯定,对那些进行简化的同学更要给予表扬,在简化过程中培养学生抽象思维能力.无序到有序:及时肯定学生的参与意识.对于列举不完全或重复的同学,引导他们进行有序地列举,同时请学生思考如何做到不重不漏;对于列举完全的同学,启发他思考能否更直观地展现列举过程.教学预案2:列表法的指导用这个方法时,如何把一次试验的三个步骤同时反映在一个表格中,学生会遇到困难.此时引导学生思考:为什么这个问题用列表的方法不容易解决呢?还有没有其它更好的列举方法呢?教学预案3:画树形图的指导少数学生也有可能画出树形图,表扬使用这种方法的学生,并请学生阐述这种方法的优越性,及如何实施这种方法.如果没有学生画出树形图,由于学生在小学或其它学科接触过树形图,引导列举完全的学生画出树形图.以我国第一个“文化遗产日”为背景提出问题,激发学生学习兴趣和参与意识.设计探究学习活动,有利于展示学生对问题解决的不同策略,真正体会问题解决的过程,培养学生的创新精神和克服困难的勇气.探究活动前的教学预案使课堂的指导更有针对性.把发现新方法的机会留给学生,增强学生学习的自信心和成就感.三、交流展示引出新知请有序列举的同学板书探究结果,并进行简单说明.塑料—A 木质—B方法1:方法2:(甲、乙、丙三名学生恰好选择同一种空竹为事件).点评:两种方法各有优点,尤其方法2借助图形来计数,当一次试验要经过多个步骤才能完成时,方法2比方法1更能直观地展示思维的过程.教师指出方法2画出的图形称为“树形图”,今天我们的课题是画树形图求概率.教师板书:画树形图求概率问题:如何根据题意画出树形图列举一次试验的所有可能结果?师生归纳总结:(1)明确完成一次试验要经过几个步骤;(2)根据一次试验中几个步骤的顺序直接画出树形图.由两位学生板书展示他们的思维过程,引导大家对两种方法进行比较,并和自己的方法也进行比较.通过生生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.学生完成对画树形图的初步认识.四、剖析例题加深认识例题.甲、乙、丙三个盒中分别装有大小、形状相同的卡片若干,甲盒中装有2张卡片,分别写有字母A和B;乙盒中装有3张卡片,分别写有字母C、D和E;丙盒中装有2张卡片,分别写有字母H和I;现要从3个盒中各随机取出一张卡片.求(1)取出的3张卡片中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3张卡片上全是辅音字母的概率是多少?师生分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?一次试验中有三个步骤,但抽取顺序是不确定的.不妨设抽取顺序为从甲盒取一张、从乙盒取一张、从丙盒取一张.第二、画出树形图:学生试画后,教师板书.教师板书:解:根据题意,我们可以画出如下“树形图”:第三、计算概率:明确随机事件,正确数出的值,计算概率.师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中的值.学生讨论后归纳出正确数出的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出的值.方法2:直接看树形图的最后一步,就可以求出的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出的值了.教师板书:由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.(1)只有一个元音字母的结果有5个,所以;有两个元音字母的结果有4个,所以;全部为元音字母的结果有1个,所以;(2)全是辅音字母的结果有2个,所以.第四、归纳方法:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)明确随机事件,数出;(4)计算随机事件的概率.第五、思考:前面我们按甲、乙、丙的顺序画出树形图,如果改为其它的顺序,求出的概率还是一样的吗?适当改编书上的例题,让背景更简单些,有利于学生把更多的精力放在树形图的画法和概率的计算上,让绝大多数学生在解决这个问题中,掌握画树形图求概率的方法,增强学习的自信心.明确随机事件的过程培养学生的随机意识,总结不同的数的方法供不同层次的学生选择使用.使学生体会一次试验步骤的不同顺序,不影响随机事件发生的概率.五、课堂练习巩固新知练习1.三个同学约好一起去打乒乓球,可每次只能两个人先玩。
用列表法和树状图法求概率课件

你的理由.不公平.其概率分别为13/25和12/25.
本题中元音字母: A E I
辅音字母: B C D H
A
B
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I
HI
H
I
HI
解:由树形图得,所有可能出现的结果有 12个,它们出现的可能性 相等。
(1)满足只有一个元音字母的结果有5个,
则P(1个元音)=
5 12
(2)两辆车右转,一辆车左转的结果有 3个,则
P(两辆车右转,一辆车左转) =
3
=
1
27
9
7 (3)至少有两辆车左转的结果有 7个,则 P(至少有两辆车左转) = 27
.依据闯关游戏规则,请你探究“闯关游戏” 的奥秘:(1)用列表的方法表示有可能的 闯关情况; (2)求出闯关成功的概率
1、掷一枚骰子,落地后4或2朝上的概率为( 1 )
9、两人一组,每人在纸上随机1 写出一个1----5之间的整数,两人所写的两 个整数恰好是相同的概率是(5 )
10、(2009江西中考题)某市今年中考理化实验操作考试,采用学生抽签 方式决定自己的考试内容。规定:每位考生必须在三个物理实验(用纸签 A,B.C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试, 小刚在看不到纸签的情况下,分别从中各随机抽取一个 (1):用“列表法”或“树状图法'表示可能出现的结果; (2):小刚抽到物理实验B和化学实验F(记事件M)的概率是多少?
33.2概率树形图(二)

奇
1 2 1 12
圆盘(2) 奇 偶
积的奇偶性 奇 偶
对应概率
1 2 1 3 3 2
2 1 1 3 2 3
偶
1 ∴p(积为奇数) 3
2 1 2
奇 偶
1 1 3 2 1 1 偶 3 2 1 1 1 2 p(积为偶数) + + = 3 6 6 3
偶
1 6 1 6
错
错
对 错
有十道竞猜题,每题的四个选择答案中只有
一个是正确的。如果每题任意猜一个答案, 0.25 那么十道题全部猜对的概率是_____
10
一只不透明的袋子中装有5个白球和7个红球, 这些球除颜色外都相同,搅匀后从中任意摸出 一个球,记录下颜色后放回袋中,再从中任意 摸出一个球,两次都摸出红球的概率是多少?
第一题 第二题
对ቤተ መጻሕፍቲ ባይዱ
第三题
对 错 对
结果
对对对 对对错 对错对 对错错 错对对 错对错 错错对 错错错
对应概率
0.25
3
对
错 对
0.75
0.25 ×0.75 0.25 ×0.75 0.25 ×0.75
2 2 2
2
错 对
0.25 ×0.75 0.25 ×0.75 0.25 ×0.75 0.75 3
2 2
错
1
2
3
4
不公平
像以上的两个图形,我们把它叫做 树形图.树形图可以清楚地表示实验结 果,便于计算结果总数. 如果一个实验可分为几个步骤进 行,那么可以借助树形图计算事件的概 率. 树形图的每个分支对应结果的概 率等于这个分支中由“树根”到“树 梢”路径中几个事件概率的乘积.
用树状图求概率

.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
2.小明是个小马虎,晚上睡觉时将两双不同的袜子放在 床头,早上起床没看清随便穿了两只就去上学,问小 明正好穿的是相同的一双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
►
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
丙 H IH I
E
CD
E
H I H IH I H I
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
AAAAAABBBBBB CC DDEECCDDEE HI HI HIHIHI HI
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
► 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
率;(3)求这个家庭至少有一个男孩的概
率.
解:
(1)这个家庭的3个孩子都是男孩的概率为 1/8;
(2)这个家庭有2个男孩和1个女孩的概率
为3/8;
(3)这个家庭至少有一个男孩的概率为7/8.
例2.在一个不透Βιβλιοθήκη 的袋中装有除颜色外其余都相► 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
画树状图求概率

3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
当一次试验涉及3个因素或3个以上的因素时, 列表法就不方便了,为不重复不遗漏地列出所有
B A
甲口袋
D E
C
乙口袋
本题中元音字母: A E I
辅音字母: B C D H
I H
丙口袋
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
E
CD
E
丙H I H I H I H I H I H I
解:由树形图得,所有可能出现的结果有12个, 它们出现的可能性相等。
解:根据树形图,可以看出,所有可能出现的结果 是12个,这些结果出现的可能性相等,
(1)三辆车全部继续直行的结果有1个,则
P(三辆车全部继续直行)=
1 27
(2)两辆车右转,一辆车左转的结果有3个,则
P(两辆车右转,一辆车左转)= 2=37
1 9
(3)至少有两辆车左转的结果有7个,则
7
P(至少有两辆车左转)= 27
4、不透明的口袋里装有红、黄、蓝三种颜色的小球 (除颜色不同外,其他都一样),其中红球2个,蓝球 1个,现在从中任意摸出一个红球的概率为 (1)求袋中黄球的个数;
作为升旗手,则小明和小红同时入选的概率 是.
练习2:在一个不透明的盒子里,装有3个小球,其中有2个白 球,1个红球,它们除颜色外完全相同.先从盒子里随机取出 一个小球,记下颜色不放回,把剩下的小球摇匀后再随机取 出一个小球,记下颜色.请你用列表的方法,求两次都摸到 白球的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33.2 概率树形图一、复习提问巩固旧知
问题1.用列举法求概率的基本步骤是什么?
(1)列举出一次试验的所有可能结果;
(2)数出;
(3)计算概率.
问题2.列举一次试验的所有可能结果时,学过哪些方法?
直接列举、列表法.
本节课是用列举法求概率的第三节课,对前两节课所学方法的步骤进行归纳,温故以利知新.
二、创设情境探究学习
2006年6月5日是中国第一个“文化遗产日”,我校承办了“责任与使命——亲近文化遗产,传承文明火炬”的活动,其中有一项“抖空竹”的表演.已知有塑料、木质两种空竹,甲、乙、丙三名学生各自随机选用其中的一种空竹.求甲、乙、丙三名学生恰好选择同一种空竹的概率.
学生利用学过的知识,自主探究解决上述问题.学生在探究学习活动中会有不同的表现,针对可能出现的情况设计教学预案如下:
教学预案1:直接列举法的指导
具体到抽象:
有的学生用“木质”“塑料”来直接列举;有的学生用字母、数字、符号来表示“木质”“塑料”进行列举.及时对学生不同的方法给予肯定,对那些进行简化的同学更要给予表扬,在简化过程中培养学生抽象思维能力.
无序到有序:
及时肯定学生的参与意识.对于列举不完全或重复的同学,引导他们进行有序地列举,同时请学生思考如何做到不重不漏;对于列举完全的同学,启发他思考能否更直观地展现列举过程.
教学预案2:列表法的指导
用这个方法时,如何把一次试验的三个步骤同时反映在一个表格中,学生会遇到困难.此时引导学生思考:为什么这个问题用列表的方法不容易解决呢?还有没有其它更好的列举方法呢?
教学预案3:画树形图的指导
少数学生也有可能画出树形图,表扬使用这种方法的学生,并请学生阐述这种方法的优越性,及如何实施这种方法.如果没有学生画出树形图,由于学生在小学或其它学科接触过树形图,引导列举完全的学生画出树形图.
以我国第一个“文化遗产日”为背景提出问题,激发学生学习兴趣和参与意识.
设计探究学习活动,有利于展示学生对问题解决的不同策略,真正体会问题解决的过程,培养学生的创新精神和克服困难的勇气.探究活动前的教学预案使课堂的指导更有针对性.
把发现新方法的机会留给学生,增强学生学习的自信心和成就感.三、交流展示引出新知
请有序列举的同学板书探究结果,并进行简单说明.
塑料—A 木质—B
方法1:方法2:
(甲、乙、丙三名学生恰好选择同一种空竹为事件).
点评:两种方法各有优点,尤其方法2借助图形来计数,当一次试验要经过多个步骤才能完成时,方法2比方法1更能直观地展示思维的过程.
教师指出方法2画出的图形称为“树形图”,今天我们的课题是画树形图求概率.
教师板书:画树形图求概率
问题:如何根据题意画出树形图列举一次试验的所有可能结果?
师生归纳总结:
(1)明确完成一次试验要经过几个步骤;
(2)根据一次试验中几个步骤的顺序直接画出树形图.
由两位学生板书展示他们的思维过程,引导大家对两种方法进行比较,并和自己的方法也进行比较.通过生生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.
学生完成对画树形图的初步认识.
四、剖析例题加深认识
例题.甲、乙、丙三个盒中分别装有大小、形状相同的卡片若干,甲盒中装有2张卡片,分别写有字母A和B;乙盒中装有3张卡片,分别写有字母C、D和E;丙盒中装有2张卡片,分别写有字母H和I;现要从3个盒中各随机取出一张卡片.求
(1)取出的3张卡片中恰好有1个,2个,3个写有元音字母的概率各是多少?
(2)取出的3张卡片上全是辅音字母的概率是多少?
师生分析:
第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?
一次试验中有三个步骤,但抽取顺序是不确定的.不妨设抽取顺序为从甲盒取一张、从乙盒取一张、从丙盒取一张.
第二、画出树形图:学生试画后,教师板书.
教师板书:
解:根据题意,我们可以画出如下“树形图”:
第三、计算概率:明确随机事件,正确数出的值,计算概率.
师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中的值.学生讨论后归纳出正确数出的方法:
方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出的值.
方法2:直接看树形图的最后一步,就可以求出的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出的值了.
教师板书:
由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.
(1)只有一个元音字母的结果有5个,所以;
有两个元音字母的结果有4个,所以;
全部为元音字母的结果有1个,所以;
(2)全是辅音字母的结果有2个,所以.
第四、归纳方法:画树形图求概率的基本步骤:
(1)明确一次试验的几个步骤及顺序;
(2)画树形图列举一次试验的所有可能结果;
(3)明确随机事件,数出;
(4)计算随机事件的概率.
第五、思考:前面我们按甲、乙、丙的顺序画出树形图,如果改为其它的顺序,求出的概率还是一样的吗?
适当改编书上的例题,让背景更简单些,有利于学生把更多的精力放在树形图的画法和概率的计算上,让绝大多数学生在解决这个问题中,掌握画树形图求概率的方法,增强学习的自信心.
明确随机事件的过程培养学生的随机意识,总结不同的数的方法供不同层次的学生选择使用.
使学生体会一次试验步骤的不同顺序,不影响随机事件发生的概率.五、课堂练习巩固新知
练习1.三个同学约好一起去打乒乓球,可每次只能两个人先玩。
于是他们决定用“手心手背”的游戏方式来确定哪两个人先玩,并说出了如下规则:
三人同时伸出一只手,三只手中,恰好有两只手心向上或者手背向上的两人先打乒乓球.如果三只手的手心方向一致,再次进行,直到确定二人为止.
试求出一次游戏就确定出两人先玩的概率.
实物投影展示学生的答案,师生共同进行点评.
变式1:从本班中选三个学生参加公益活动,试求选出的三人中恰好有两个学生性别相同的概率?
变式2:同时抛三枚硬币,其中恰好有两枚正面朝上的概率是多少?
练习2、袋中放有北京08年奥运会吉祥物五福娃纪念币一套,依次取出(不放回)两枚纪念币,求取出的两枚纪念币中恰好有一枚是“欢欢”的概率是多少?
解:两枚纪念币中恰好有一枚是“欢欢”记为事件.
解法1:直接列举求得;
解法2:列表法求得;
解法3:画树形图求得.
发散思维训练:你能以此题为背景编一道计算等可能事件概率的题目吗?
请学生小组讨论后派代表发言,教师点评.
练习1巩固画树形图求概率的知识,感受概率与生活的密切联系.
变式训练使学生正确区分随机事件,并体会不同的实际问题可以抽象为同一个数学模型.。