浙教版七年级上数学1.2《有理数》教案
浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案课本简介本教案针对浙江教育出版社出版的《浙教版七年级数学上册》进行教学设计。
《浙教版七年级数学上册》是按照新课标标准编写的,分为9个章节,共计155页,适用于初中七年级的数学教学。
教案内容第一章有理数第一节有理数的初步认识课时1 有理数的概念•教学目标学生能够初步了解有理数的概念,了解有理数的分类,能够辨析正数、负数和零。
•教学重点有理数的概念和有理数的分类。
•教学难点正数、负数、零的比较和辨析。
•教学过程1.导入新课环节,引导学生了解数的分类,带入有理数的概念,并讲解有理数的定义。
2.通过数轴和实例,让学生掌握有理数的表示方法和分类。
3.帮助学生掌握正数、负数和零的概念,并通过课堂练习让学生了解正数和负数之间的大小关系。
4.结合实际问题,让学生了解有理数的应用。
•教学反思本节课难度适中,学生易于理解并能够理清有理数的概念和分类。
但是,在掌握正负数之间的比较和辨析时,需要进行数轴的练习和多个实例操练才能够巩固知识。
第二章整式的加减法第二节同类项的加减法课时1 同类项的概念及分类•教学目标学生能够了解同类项的概念及分类,掌握同类项的加减法原理。
•教学重点同类项的概念及分类,同类项的加减法原理。
•教学难点同类项的分类和加减法的应用。
•教学过程1.导入新课环节,引出同类项的概念,通过实例让学生了解同类项的分类。
2.授予同类项的加减法原理,让学生了解同类项的加减法步骤,并通过练习题让学生巩固掌握。
3.通过实际问题让学生了解同类项的应用。
•教学反思本节课难度适中,学生易于理解同类项的概念和分类。
但在掌握同类项加减法的应用时,学生需要多练习才能够掌握。
因此,教师需要根据学生不同的水平分组,提供不同难度的练习题,帮助学生掌握同类项加减法的应用。
教学方法本教案采用教师授课和学生学习相结合的教学方法,通过课堂讲解、实例操练和练习题等方式,让学生掌握知识,提高自身能力,同时激发学生学习数学的兴趣。
浙教版七年级上册第一章有理数章节复习教案+同步课堂练习+课后作业

有理数复习教案(七上)一、知识能力聚焦1.有理数例1:回顾我们小学阶段学过的所有数的种类: 整数、自然数、小数、分数、偶数、奇数、质数、合数、无限循环小数、无限不循环小数。
自然数回顾:1、定义:0,1,2,3,......叫做自然数2、分类: 0; 1; 质数(也叫素数,是只能被1和它本身整除的自然数);合数(除1和它本身外,还能被其他非零的自然数整除的数)3、作用:计数:一般地,用数数的方法得到的数据具有“计数”的含义。
例如:51枚金牌,是自然数最初的作用;测量:一般地,借助工具得到的数据具有“测量”的含义,测量的本质是比较。
例如:小明身高是168厘米;排序:为了表示某一种顺序的数据具有“排序”的含义,如年份、月份、名次等。
例如:2016年;标号:像门牌号、学号、座位号、车牌号、邮政编码、汽车路线等具有“标号”的含义。
例如:全班第10既不是正数也不是负数。
2.数轴和相反数 数轴:规定了原点、单位长度和正方向的直线叫做数轴。
相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
若a ,b 互为相反数,则有⎩⎨⎧=+=--=0,b a b a b a例2:相反数性质的运用。
(1)-2的相反数是,a 的相反数是,a-b 的相反数是。
(2)若a ,b 互为相反数,则3a+3b+2=;若c ,d 互为倒数,=222d c 。
(3)若a ,b 互为相反数,c ,d 互为倒数,计算:=++cd b a 122;=++dc c bc ac 22。
例3:0的相反数是0。
若b 12+-与a 互为相反数,那么a+b=。
3.绝对值绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等,绝对值相等。
任何数的绝对值都为非负数:0≥a⎩⎨⎧<-≥=)0()0(a a a a a ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数例4:去绝对值符号(1)=<a a 那么若,0,=-a ;=->b a b a 那么若,, =-a b ;=+<<b a b a 那么若,0,0, =--b a ;=-<>b a b a 那么若,0,0, =-a b , =ab ;(2)有理数在数轴上表示的点如下图所示,则的大小关系是 ,化简: b a b a -++= ,b a b a --+= 。
浙教版七年级数学上册全册教案

1.1从自然数到分数一、教学内容义务教育课程标准实验教科书《数学》(浙江版)七年级上册二、教学目标1、知识目标:使学生了解自然数的意义和用处;了解分数(小数)的意义和形式;了解分数产生的必然性和合理性;2、能力目标:通过自然数和分数的运算,解决一些简单实际问题。
3、情感目标:初步体验数的发展过程,体验数学来源于实践,又服务于实践,增强学生用数学的意识。
三、教学重点使学生了解自然数和分数的意义和应用。
四、教学难点合作学习中的第2题的第⑵小题。
五、教学准备多媒体课件六、教学过程㈠创设情境出示材料:(多媒体显示)请阅读下面这段报道:2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。
我国金牌数约占总金牌数的110。
跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。
提问:你在这篇报道中看到了哪些数?请你把它们写下来,并指出它们分别属于哪一类数?如果将12秒91写成12.91秒,12.91又属于什么数?(由雅典奥运会有关报道引入,既合时事形势,又具有爱国主义教育,并使学生体验到生活中处处有数学)提出课题:今天我们复习自然数、分数和小数及它们的应用 [板书课题]第1节从自然数到分数㈡提问复习问题1:先请同学们回忆小学里学过的自然数,哪一些数属于自然数?你了解自然数最初是怎样出现的吗?注意:自然数从0开始。
问题2:你知道自然数有哪些作用?(让学生思考、讨论后来回答,教师提示补充)自然数的作用:①计数如:32枚金牌,是自然数最初的作用;②测量如:小明身高是168厘米;③标号和排序如:2004年,金牌榜第二。
注意:基数和序数的区别。
(因为自然数在小学里已经非常熟悉,因此教师以提问的形式,帮助学生回忆有关知识)㈢做一做(多媒体显示,学生独立思考完成后,请学生回答)下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?⑴ 2002年全国共有高等学校2003所;⑵小明哥哥乘1425次列车从北京到天津;⑶香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼;⑷信封上的邮政编码325608⑸刘翔在雅典奥运会中的号码1363;⑹.今天的最高气温是35℃(补充3小题,加强巩固自然数的作用)㈣小组讨论问题1:我们知道小学里先学自然数再学分数,但你了解分数是怎样产生的吗?你能用自然数表示四人均分一个西瓜,每人可得多少西瓜吗?(用分配等实际问题说明自然数还不能满足实际需要,使学生了解分数产生的必要性和必然性)问题2:在解答下列问题时,你会选用分数和小数中的哪一类数?为什么?⑴小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?⑵小明的身高是168厘米,如果改用米作单位,应怎样表示?(让学生说说为什么,使学生理解什么时候用分数,什么时候用小数,关键是怎样方便简单)问题3:分数可以转化为小数吗?怎样转化?如18= ;415= ;23= 。
浙教版七年级上册数学第一章有理数教案(全章)

1.1 从自然数到分数【教学目标】知识目标:1.理解自然数、分数的产生和发展的实际背景。
2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。
能力目标:会运用自然数、分数(小数)的计算解决简单的实际问题,并从实际中体验由于需要而再次将数进行扩充的必要性。
情感目标:1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。
2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。
【教学重点、难点】重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。
难点:用自然数、分数(小数)的计算解决简单的实际问题。
【教学过程】一、新课引入小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。
二、新课过程用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥——杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。
师问:你在这段报道中看到了哪些数?它们都属于哪一类数?学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等显示以下练习让学生口答下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所。
(标号和排序 计数)(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。
(标号和排序 标号和排序)(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。
(测量结果,计数,标号和排序,标号和排序)做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。
七年级数学上册 1.2 有理数教案 浙教版

引入课题 “有 理数”
数的 推广引 出负数并对 负号加以解 释
50 2 , 7 3
加深印象, 理 解概念
2、填空: (1) 规定盈利为正,某公司去年亏损了 2.5 万元,记做_______万元,今年盈利了 3.2 万元,记做_________万元; (2) 规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面 918 米,记做海拔 知识运用 ________米,吐鲁番盆地最低点低于海平面 155 米,记做海拔_______米。
例 2:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有 理数?
8.4 , 22,
17 3 , 0.33 ,0 , , - 9 6 5
做一做:把下列各数填入相应集合的大括号内: 22 2 7,,-9.5, ,0,-2004,3.14,+4.3,-12% 3 7 正数集合 { „} 负数集合{ „}正整数集合 { „} 负整数集合{ „}正分数集合{ „} 负分数 集合{ „}非负数集合{ „} 非整数集合{ „} 有理数集合{ „} 六、小结 1、用正数与负数表示相反意义的量。2、正数与负数:像 1,+2.5 等这样的数叫正 数。像-6,-1.4,
称为正分数。 正整数,零和负整数统称为整数,正分数,负分数统称为分数。 整数和分数统称为有理数。 你能对学过的数做出一张分类表吗?
正整数 整数 零 自然数 负整数 正整数 正有理数 有理数 正分数 正分数 有理数 零 分数 负整数 负有理数 负分数 负数 负分数
教学反思:
资料来源:3A 备课网
有理数
教学目标 教学重点 教学难点 设计亮点 教学过程 一、创设情景,引入新知: 看一看, 说一说: 本章章前图(珠穆朗玛峰与吐鲁番盆地两地海拔与气温比较)与节前图(月 球表面的昼夜温度),在图中你发现了你还不是很熟悉的数了吗?凭你的经验,你能解释这些 陌生数字的意义吗?这里零下 233℃不用-233℃表示,直接用自然数 233℃表示,可以吗? 看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需。因此必须把数的内容 推广。 二、合作讨论、探究新知 你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。把学生讲出的较 恰当的量写到黑板上, 再引导学生把与之相对的量分别写在后边, 如: 零下 20℃——零上 10℃, 降低 5 米——升高 8 米, 支出 100 元——收入 500 元。指出这样的量就是具有相反意义的量, 并从以下方面加以理解。 具有相反意义的量是:意义相反,与值无关。 区分“意义相反”与“意义不同” 。 以上具有相反意义的量能用我们学过的自然数和分数表示出来吗? 显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。 我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,如 8848,123 等,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写) , ;把另一种与之 意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,如-155,-233 等, 这样的数就叫做负数(负号不能省略) 。读作“负 155,负 233” 。 零既不是正数,也不是负数。 例1(1)在知识竞赛中,如果+10 分表示加 10 分,那么扣 20 分怎样表示? (2)某人转动转盘,如果用+5 表示沿逆时针方向转了 5 圈,那么沿顺时针方向转了 12 圈怎样 表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标准质量 0.02 克记作+0.02,那么-0.03 克 表示什么? 【做一做】 : 1、 (口答)读出下列各数,它们各是正数还是负数? 7,-7.46,0, 备 注 1、借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛 2、 理解有理数的概念。3、会用正数、负数、零表示生活中具有相反意义的量。4、理解有理数 的分类。 有理数的概念。 建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计

浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
七年级数学上册第1章有理数1.2数轴教学设计新版浙教版

七年级数学上册第1章有理数1.2数轴教学设计新版浙教版一. 教材分析本节课的教学内容是浙教版七年级数学上册第1章有理数1.2数轴。
数轴是数学中的一种重要工具,用于表示实数的大小和相对位置。
通过数轴,学生可以更好地理解有理数的概念,掌握有理数的加减法运算。
教材通过生动的例题和练习,引导学生掌握数轴的画法,理解数轴上的点和实数之间的关系。
二. 学情分析七年级的学生已经学习了有理数的基本概念,对加减法运算有一定的了解。
但学生在理解有理数的大小比较和绝对值概念时,还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,通过具体实例和练习,让学生在数轴上表示有理数,从而更好地理解有理数的大小关系和绝对值。
三. 教学目标1.知识与技能:使学生掌握数轴的定义和画法,能够正确地在数轴上表示有理数,理解数轴上的点和实数之间的关系。
2.过程与方法:通过数轴,让学生学会比较有理数的大小,掌握有理数的加减法运算。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力、思维能力和动手能力。
四. 教学重难点1.数轴的画法2.在数轴上表示有理数3.利用数轴比较有理数的大小4.利用数轴解决有理数的加减法问题五. 教学方法1.情境教学法:通过生活实例,引导学生理解数轴的实际意义。
2.直观教学法:利用数轴模型,让学生直观地理解有理数的大小关系。
3.引导发现法:教师引导学生发现数轴上的点和实数之间的关系,培养学生独立思考的能力。
4.练习法:通过大量的练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学课件:制作课件,展示数轴的定义、画法和应用。
2.数轴模型:准备数轴模型,方便学生直观地理解数轴。
3.练习题:准备适量的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如温度计,引导学生思考实数的大小关系。
通过提问,引出数轴的概念。
2.呈现(10分钟)展示数轴的定义、画法和特点。
让学生观察数轴,理解数轴上的点和实数之间的关系。
浙教版七年级上第一章有理数教案

1.1从自然数到有理数【教学目标】1.了解自然数到有理数的发展过程2.借助生活中的实例引入负数,会用正数、负数表示具有相反意义的量3.理解有理数的概念,并能对有理数进行分类【教学重点、难点】重点:会应用正负数表示生活中具有相反意义的量;有理数的分类。
难点:负数的理解。
【教学过程】一、提出问题、创设情景教:首先我们来回顾下,在小学数学中我们学过哪些数?像0、1、2、3、4…..等这些我们叫做自然数,而且我们都知道自然数都是整数,0也是整数。
在日常生活中,自然数常常用来计数和测量,如教室现在有2个人(这是计数),这面墙有3米高,这是测量。
教:但是仅仅有自然数还是不能解决生活中的问题,怎么理解呢?打个比方1)小华和她的7位朋友一起过生日,要平均分享一块蛋糕,每人可得多少蛋糕?2)小明的身高是168厘米,如果改用米做单位,应怎么表示?预设:每人可得1/8蛋糕,小明身高1.68米教:这就是我们学习过的分数和小数,方便我们进行测量和分配,是不是还学习了分数和小数的转化,这个大家应该都会,如0.5=1/2 1/3=0.33333等等转化。
二、合作讨论、探究新知教:那么初中阶段,我们来学习新的数。
我们常常在日常生活和生产实践中遇到这样几组数字,+6℃和-3℃,你们知道他们的含义吗?是不是表示气温零上6℃和零下3℃,大家可以发现他们是相互对立的,大家还能举出这一类数吗?教:地上3层和地下-1层,收入1000元和支出-3000元,加10分和扣10分等等.这些量是不是都是相互对立的?因此我们把这些称为具有相反意义的量,那么如何用数来把这些具有相反意义的量表示出来呢?这个就是我们初中要学到的-正数和负数的概念。
教:为了表示具有相反意义的量,我们把一种意义的量规定为正,用大于0的数,比如123,15,2/3等来表示,这样的数叫做正数,正数前面放上正号“+”来表示(正号往往省略);把另一种与之意义相反的量规定为负,用大于0的数前面放上负号“-”,如-123,-15,-2/3等来表示,这样的数叫做负数,(负数符号不能省略)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2有理数
一、教学目标:
1.借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有
理数应用的广泛性,体验数学和现实生活的紧密联系,提高学习的兴趣.
2.能判断一个数是不是有理数
3.会用正数、负数、零表示生活中具有相反意义的量.
4.能将有理数进行正确的分类.
二、重点、难点:
1. 重点:有理数的概念.
2. 难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃.
三、教学过程:
1.创设情景,引入新知:
将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:
(说明:学生自己做的作业,较能引起学生的兴趣.)
问:材料中含有哪几类数据?
(1)本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛.我市爱绿艺校代表队的32
名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的
荣誉却是幼儿组最高的金奖.
答:都是自然数.
(2)据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和倍,是世界上公路隧道最多的国家.我国目前最
长的隧道是铁路线上的秦岭隧道,全长18.46公里.正在施工的双向分
离式四车道终南山隧道是世界第二、亚洲第一的公路隧道.
答:有自然数,分数.
师:我们在小学的时候已经学过自然数和分数,这些数能够满足我们生活的需要吗?还会不会有新的数?
(3)珠穆朗玛峰是喜玛拉雅山脉的主峰,海拔8848米,是中国第一高峰,也
是地球上第一高峰; 吐鲁番盆地位于新疆维吾尔自治区中部,天山山地
东端.盆地底部海拔-155米.是中国海拔最低处.
2.具有相反意义的量:
师:这里的两个数据分别表示什么意思?“-155”这个带符号的数我们以前没有见过,它在这里表示什么意思?
生:地理上学过测量高度时,规定海平面的高度为0米,8848表示比海平面高出8848米,而-155表示比海平面低155米.
切换到另一个投影材料:
月球表面白天气温可高达123℃,夜晚可低至-233℃,图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服.
师:这里123℃,-233℃这两个量分别表示什么意思?
生:123℃表示零上123℃,-233℃表示零下233℃.
师:你还在哪些地方见过用带“-”这个号的数?
生:在知道竞赛中,加分与扣分中的扣分经常用带“-”号的数表示,如加10分用+10记,扣20分用-20记.
生:股票中上升6元记做6,下跌3元记做-3.
师:大家观察黑板上我们刚刚举的这些例子,每个例子中出现的一对量,有什么共同特点呢?
生:这里出现的每一对量,都是表示相反意义的量.
3.正数和负数
师:这里零下233℃不用-233℃表示,直接用自然数233℃表示,可以吗?
生:不可以,因为233℃表示零上233℃而不是零下233℃.
师:看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需.
在日常生活和生产实践中,我们经常会这种具有相反意义的量,如表示高度有“海拔上”与“海拔下”,温度有“零上”与”零下”,经营情况有“盈利”
与“亏损”等等,为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外)表示,这样的数叫做正数.把另一种与之相反的量规定为负,用过去学过的数(零除外)前面放上“-”这个符号来表示,“-”这个符号称为负号,如-155,-233等,这样的数就叫做负数.读作“负155,负233”.与负号具有相反意义的符号是“+”号,为了突出符号正数前面可以放上正号(常省略不写).特别要指出的是:零既不是正数也不是负数.
2.做一做,【课内练习】:P8
1、填空.
(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正,汽车向北行驶75km,记做_______km(或______km)汽车向南行驶
100km,记做_____km.
(2)如果向银行存入50元记为50元,那么-30.50元表示_________ (3)规定增加的百分比为正,增加25%记做________,-12%表示__________.
师:在现实生活中有具有相反意义的量实在挺多的,大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结)
体育课上,老师对九年级男生进行了了引体向上的测试,以能做7个子为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:
2,-1,0,3,-2,-3,1,0
(1)这8名男生有百分之几达到标准?
(2)他们共做了多少个引体向上?
4. 数的分类.
师:通过今天的学习,我们数的家族出现了新的成员——负数.我们来回顾一下我们学过的数有哪些呢,并进行分类.
学生讨论结果:
师:还有其他的分类方法吗?
生: 【做一做】:P7
1、(口答)读出下列各数,它们各是正数还是负数?
7,-7.46,0,
师生总结:判断正数与负数的关键师看它前面的正、负号:
有“-”号就是负数,有“+”号或省略了正号的数就是正数.
例:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?
解:是正数;是负数;是整数;是分数,都是有理数.
小结
(1) 用正数与负数表示相反意义的量.
(2) 正数与负数:像1,+2.5等这样的数叫正数.像-6,-1.4,等这样的数
叫负数.0既不是正数也不是负数.
(3) 正数与负数在形式上的区别:负数一定带有负号.
(4) 数的分类 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧0零:负分数负整数负有理数正分数正整数正有理数有理数。