浙教版七年级上册数学知识点复习资料全

合集下载

浙教版七年级上册数学知识点复习

浙教版七年级上册数学知识点复习
在此添加您的文本16字
详细描述:整式具有加法交换律、加法结合律、乘法交换 律、乘法结合律和乘法分配律等基本性质。
整式的加减运算
总结词:运算法则 详细描述:整式的加减运算遵循同类 项合并原则,即同类项的系数相加减
,字母部分不变。
总结词:步骤掌握
详细描述:进行整式的加减运算时, 需要先将整式化简为最简形式,再按 照运算法则进行计算。
线段的定义
线段是有两个端点的一段 直线,长度有限,不能延 伸。
THANKS FOR WATCHING
感谢您的观看
伸。
面的定义
面是由线的运动所产生 的封闭图形,表示一个 平面或立体的外部边界

体的定义
体是由面的运动所产生 的三维实体,表示一个 立体的外部和内部空间

直线、射线、线段
01
02
03
直线的定义
直线是无限长的,由无数 个点组成,可以向两个方 向无限延伸。
射线的定义
射线是由一个固定端点和 一条无限长的直线组成, 只能向一个方向无限延伸 。
详细描述
正数是比0大的数,负数是比0小 的数。正数和负数用来表示具有 相反意义的量,例如温度的高低 、海拔的高低等。
数轴与相反数
总结词
理解数轴的概念,掌握数轴上点的表示方法,理解相反数的 定义。
详细描述
数轴是一条直线,规定了正方向和单位长度。每一个实数都 可以在数轴上找到一个点与之对应。相反数是指与原数相加 结果为0的数。在数轴上,相反数所对应的点位于原点的两侧 ,距离原点等距。
总结词:概念理解
在此添加您的文本16字
详细描述:整式是由常数、变量、加、减、乘、幂运算构 成的代数式。
在此添加您的文本16字

浙教版七年级(上册)数学知识点复习资料全

浙教版七年级(上册)数学知识点复习资料全
4.绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:

绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知

是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.

D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319

浙教版7年级上数学知识点整理(精要)

浙教版7年级上数学知识点整理(精要)

第一章从自然数到有理数从自然数到分数知识点1.自然数:注意(1)0是最小的自然数,它表示没有,不要遗漏。

(2)表示不同作用的数有不同的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区别作用,一般不能进行计算,这也是区别数的表示作用的重要性。

剖析用于计数和测量的数往往与量词相连,而用于标号和排序的数往往与顺序有关,在阅读是应特别注意体会这一点。

知识点2.分数:注意(1)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看做分数。

(2)百分数是分母为100的分数,它是分数的特殊形式。

知识点3.数的运算(1)数的加、减、乘、除运算顺序:先乘除,后加减,有括号先做括号内的;(2)加法、乘法的运算律:交换律、结合律、乘法分配律。

注意(1)领悟加、减、乘、除的意义。

(2)明确混合计算的运算顺序,(a)同级运算从左至右依次计算,(b)不同级先乘除后加减,括号内优先。

(3)灵活掌握能运用运算律进行的简便运算。

有理数知识点1正数和负数的定义:1、像4,3,1/2,350等比0大的数叫做正数。

2、像-5,-3,-1/2,-350等在正数前面加上‘‘-’’号的数叫做负数,负数比0小。

(3)零既不是正数也不是负数。

知识点2相反意义的量:注意用正数、负数表示相反意义的量时,哪种意义为正,是可以任意选择的,但习惯上把‘‘前进、上升、收入’’等规定为正,而把‘‘后退、下降、支出’’等规定为负。

剖析对负数表示的意义的正确理解是解答此类问题的关键。

引入负数的意义之一,就是为了用简单的数学符号“+’’或“-”号来表示具有相反意义的量。

知识点3有理数的概念及分数(1)有理数的概念:整数和分数统称为有理数。

(a)整数包括正整数、零、负整数,例如3,5,6,,等。

(b)分数包括正分数和负分数,例如1/2,5/3,-3/7等。

(2)有理数的分类(a)按整数和分数分类: (b)a按正数、零、负数分类:正整数整数零正整数正有理数正分数有理数负整数有理数零负整数正分数负有理数分数负分数负分数注意(1)分类时,一定药注意零所属的数集。

七年级上数学浙教版知识点

七年级上数学浙教版知识点

七年级上数学浙教版知识点
一、实数与代数式
实数的概念,有理数、无理数的概念与判断,代数式的概念及
简单的变形。

二、一元一次方程与方程的应用
含有一个未知数的一次方程的基本概念,化简和解一元一次方程,用方程解决实际问题。

三、二元一次方程组
含有两个未知数的一次方程组的基本概念,解二元一次方程组
及应用。

四、图形的认识
各种几何图形的基本概念及简单的性质和应用,画简图、读图。

五、三角形
三角形的基本概念,特殊三角形的性质,三角形的构造和证明、应用。

六、相似
相似的概念和性质,判定、构造和应用。

七、等比数列
等比数列的概念和性质,通项公式及求和公式,等比数列在实际问题中的应用。

八、函数
函数的基本概念,函数图像和简单的函数变换,函数的应用。

九、统计图及其分析
统计图的基本类型,按比例和按数量的统计图制作,统计图的分析。

十、平面直角坐标系
平面直角坐标系的基本概念,坐标系中的图形及其性质,坐标系中的计算问题。

十一、二次根式
二次根式的基本概念,二次根式的化简及应用。

总结:七年级上数学浙教版知识点涵盖了数学基础知识、代数式、方程、几何等方面,是初步掌握数学的基础,学习这些知识点可以使学生打牢数学基础。

浙教版7年级上数学知识点整理

浙教版7年级上数学知识点整理

第一章:数学算法1.整除与因数-了解整数的概念-掌握整除的定义,以及整除的判断方法-掌握因数的定义,以及如何列举一个数的因数-掌握最大公因数与最小公倍数的概念与求解方法2.分数-了解分数的概念,分子、分母-掌握分数的读法,分子分母的关系-掌握分数的化简方法-掌握分数之间的比较大小方法-掌握分数的加减乘除运算方法-学会将分数转化为小数形式3.有理数-了解有理数的概念,正有理数和负有理数-学会有理数的比较大小-掌握有理数的加减乘除运算方法-能够将分数转化为有理数形式第二章:初一的正数、负数1.正数和负数的认识-了解数轴及其意义-了解正数和负数在数轴上的位置-掌握正数与负数的大小比较规律2.数的相反数-了解数的相反数的概念和性质-掌握求一个数的相反数的方法-掌握正数和负数的加减法第三章:数与运算1.运算法则-掌握加法和乘法的交换律、结合律、分配律-利用运算法则进行简便计算2.效法正数和百分数-学习虚拟的数3.有效数字和科学记数法-了解有效数字的概念和判断方法-掌握科学记数法形式和运算规则4.数与式-学习数的四则运算的规则-学习表示式的概念和性质第四章:比例与比例方程1.比例-了解比例的概念及比例的基本性质-掌握比例中的各种比例关系的性质及其应用-学习三个数的比例和多个数的复比例的概念和求解方法2.比例方程和比例不等式-了解比例方程和比例不等式的概念-学习方程的解法和方程及不等式的应用第五章:数的性质与正方形1.最大公因数和最小公倍数-掌握求最大公因数和最小公倍数的方法-学习最大公因数和最小公倍数的性质和应用2.正方形-了解正方形的性质和判断方法-掌握正方形内外角和周长、面积的计算。

浙教版数学七年级上知识点总结

浙教版数学七年级上知识点总结

一、数的扩展与应用1.自然数与整数的扩展:掌握自然数和整数的概念,并能够进行自然数和整数的相互转化。

2.有理数与实数的性质:了解有理数和实数的概念,能够判断给定数是否是有理数或实数。

二、数的计算1.完全平方公式:熟练掌握完全平方公式,能够运用该公式计算平方和差式。

2.分式的四则运算:了解分式的概念,熟练运用加、减、乘、除的方法进行分式的计算。

3.科学记数法:了解科学记数法的概念,能够进行科学记数法的转化和运算。

三、比例与比例运算1.比例的概念:了解比例的定义和性质,能够根据已知比例进行比例的计算。

2.比例的应用:掌握比例在日常生活中的应用,如解决实际问题中的比例关系。

3.速度与密度的计算:能够运用速度与密度的计算公式解决实际问题。

四、代数式与代数计算1.代数式的概念:了解代数式的定义和基本概念,能够根据已知条件建立代数式。

2.代数计算的基本法则:熟练掌握代数式加减乘除的基本法则,能够进行简单的代数计算。

3.一元一次方程的解及其应用:了解一元一次方程的概念、解法和应用,能够解决实际问题中的一元一次方程。

五、平面图形的认识1.角的基本概念:了解角的定义、分类和性质,能够根据已知条件判断角的大小关系。

2.三角形的分类:掌握三角形的分类标准和性质,如根据边长、角度判断三角形的类型。

3.直角三角形及其特殊性质:熟练掌握直角三角形的定义和特殊性质,如勾股定理等。

六、理解空间与图形1.空间的认识:了解空间及其基本性质,如点、线、面等的概念和关系。

2.空间图形的认识:认识几种常见的空间图形,如正方体、长方体等,并了解它们的特征和性质。

七、统计与概率1.统计调查:了解统计调查的方法和步骤,并能够进行简单的数据收集和整理。

2.平均数的计算:掌握求一组数据的平均数的方法,能够运用平均数解决实际问题。

3.基本概率:了解概率的基本概念和计算方法,能够进行简单的概率计算。

浙教版七年级上册数学知识点

浙教版七年级上册数学知识点

浙教版七年级上册数学知识点浙江省教育出版社出版的七年级上册数学教科书涵盖了多个重要的数学知识点。

以下是该教材中的主要知识点概述,以便于教师、学生和家长了解和复习。

# 第一章数与式1. 有理数- 有理数的概念- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加法、减法、乘法、除法、乘方)- 有理数的比较大小- 绝对值的概念和性质2. 整式的加减- 整式的概念- 合并同类项- 去括号法则- 带符号的运算3. 一元一次方程- 方程的概念- 解一元一次方程- 方程的解的检验- 方程的应用问题# 第二章几何图形1. 线段、射线、直线- 线段的性质- 射线和直线的定义- 两点间的距离2. 角- 角的定义- 角的度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较和运算3. 平行线- 平行线的定义- 平行公理及其推论- 平行线的判定和性质# 第三章数据的收集和处理1. 统计调查- 调查的分类(全面调查、抽样调查)- 调查的方法和步骤2. 数据的表示- 条形图、折线图、饼图的绘制和解读- 频数和频率的概念- 频数分布表的编制# 第四章探索规律1. 图形的变化- 平移、旋转、翻转的性质- 探索图形变化的规律2. 数字的变化- 探索数字变化的规律- 等差数列的初步认识# 第五章应用题1. 比例问题- 比例的概念- 比例的性质- 解决比例问题2. 利率问题- 利率的计算- 利息的计算3. 行程问题- 速度、时间和距离的关系- 解决行程问题# 附录- 数学公式和定理清单- 常见数学符号的使用- 练习题和答案以上是浙教版七年级上册数学的主要知识点。

这些知识点构成了学生数学基础的核心部分,对于培养学生的逻辑思维能力和解决实际问题的能力至关重要。

教师和家长应鼓励学生通过练习和实际应用来巩固这些知识点。

浙教版七年级上册数学重点知识归纳

浙教版七年级上册数学重点知识归纳

浙教版七年级上册数学重点知识归纳一、直角三角形与勾股定理直角三角形的性质及特殊角度1.直角三角形的性质直角三角形是指三角形中有一个角是90°的三角形。

在直角三角形中,直角边、斜边的关系及三角形的其他角度关系是非常重要的基础知识。

2.特殊角度的三角函数值在直角三角形中,我们可以根据角度的大小计算三角函数的值。

特别是对于30°、45°、60°角度,我们可以得到它们的正弦、余弦和正切值的具体计算方法。

3.勾股定理在直角三角形中,勾股定理是非常重要的定理之一,它指出了直角三角形斜边的平方等于直角边的平方和。

这个定理对于解决直角三角形中的诸多问题具有重要意义。

二、几何图形的性质1.四边形的性质在七年级的数学学习中,四边形是一个非常基础且重要的几何图形。

我们需要了解四边形的特点、分类及各种性质,如平行四边形、矩形、菱形等。

2.三角形的性质三角形也是我们数学学习中重点掌握的几何图形之一。

需要了解三角形的性质、分类以及各种角度和边长关系的计算方法。

3.合作题目在解决几何图形的问题时,我们需要同时运用多种图形知识进行综合计算,这就需要我们能够灵活运用几何图形的各种性质和定理。

三、数的运算1.分数分数是我们日常生活中经常使用的一种数,需要掌握分数的加减乘除及各种情况下分数的化简和比较大小方法。

2.小数小数也是我们生活、工作中常常接触到的一种数。

在数学学习中,我们需要掌握小数的加减乘除及运算规律,以及小数和分数的相互转换方法。

3.整数整数的运算是数学学习中的重点之一。

我们需要掌握整数的加减乘除、绝对值及大小比较等运算法则。

四、代数表达式1.了解代数表达式的含义代数表达式是含有字母和数的式子,它可以用来描述数学中的种种问题。

我们需要掌握代数表达式的含义、组成要素,以及代数表达式的计算方法。

2.代数表达式的化简在代数表达式的计算中,我们需要掌握代数表达式的化简方法,包括整理同类项、提取公因式、分配律等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:0没有倒数;若 a≠0,那么的倒数是1/a;倒 数是本身的数是±1;若ab=1 a、b互为倒数;若 ab=-1 a、b互为负倒数。
练习题
1、下列各对数中,互为相反数是( D
A、2和 1 2
B、0.5和 1
2
C、 2 和2

D、 1 和 1
2
2
2、一件商品原价100元,先涨价10%,然后降价10%,现在价格是( A )
练习题
1、下列说法中正确的是( A)
A、
的平方根是±3 B、1的立方根是±1
C、 =±1 D、
是5的平方根的相反数
2、如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方 形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是(C )
A、1
B、1.4
C、
D、
3、对于 A.有平方根
a
a 1 a 0
a
5、有理数大小的概念:
(1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0
6、互为倒数: 乘积为1的两个数互为倒数。
6、立方根
(1)立方根的定义:如果一个数的立方等于a,这个数叫做 a的立方根。
也就是说:如果 x3 a ,那么x叫做a的立方根,
数a的立方根记作 3 a
平方根与立方根的区别与联系
被开方数a 正数
负数
0
平方根( a 0 ) 正数有两个平方根,他们互 为相反数 负数没有平方根
0的平方根是0
立方根(a为任意 数)
第三章. 实数
1、平方根
(1)平方根定义:如果一个数的平方等于a,那么,这个数
叫做a的平方根.也就 是说,如果 x2 a,那么x就叫做a的平方根.
(2)平方根的性质: ①正数有正、负两个平方根,他们互为相反数;②0有一个平方 根是0(它本身) ③负数没有平方根。
2、算术平方根
(1)算术平方根定义:正数a有两个平方根,其中正数a的正
2+4+6+8+10+…+2010+2012=1006×1007=10和为正数,
且x a b c ab ac bc a b c ab ac bc
则ax3 bx2 cx 1的值是 ____.
8.已知a是 5 的整数部分,b是 5的小数部分 则 a(b 5)2 ____
2、单项式:由数与字母或字母与字母相乘组成的代数式叫做
单项式。
(1)系数:单项式中的数字因数叫做这个单项式的系数.
(2)次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
3、多项式:几个单项式相加组成的代数式叫做多项式。
(1)多项式的项:在多项式中,每个单项式叫做多项式的项. (2)常数项:多项式中,不含字母的项叫做常数项. (3)多项式次数:多项式里,次数最高的项的次数,就是这个多项式的次数.
A、20 B、119 C、120 D、319
6、计算:
1 1 1 1 1 1 1 1
32 43 54
100 99
49/100
7.如图所示,数轴上A,B两点对应的实数分别是1
和 3 ,若点A关于点B的对称点为点C,则点C
所对应的实数为____
8.实数 - , 2 ,- 3 - 8,3,- 0.121121112...
23
7

(每两个2之间依次多一个1),0.1234, 0.3
分数有( )个,无理数有( )个
9.求 x 1 x 2 x 3的最小值。
第二章. 有理数的运算
1、有理数的加法:
(1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.
(2)去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里 各项不变号;括号前面是“﹣”号,把括号和它前面的“﹣”号去掉,括号里各项都 改变符号。例:a+(b-2c)-(e-2d)=a+b-2c-e+2d
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作
5、实数的分类
①按定义分类
②按正负性质分类
正整数
整数0
实数有理数分数负 正 负分 分 整数 数 数 有限小数或无限循环小数
无理数负 正无 无理 理数 数 无限不循环小数
正实数正有理数正正分整数数 实数(0 既不是正正无数理,数也不是负数)
负实数负负无有理理数数负负分整数数
注意:(1)每一个实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示 一个实数。即实数与数轴上的点一一对应。(2)在数轴上表示的两个实数,右边的数 比左边的数大。
2、有理数的减法:减去一个数,等于加上这个数的相反数;
即a-b=a+(-b)
3、有理数的乘法:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个数为零,积为零;各个数都不为零,积的符号由负数的 个数决定
4、有理数的除法:
除以一个数等于乘以这个数的倒数;注意:零不能做除数, 即a/0无意义。
A. 都是负数 B. 其中绝对值大的数是正数,另一个是负数 C. 互为相反数 D. 其中绝对值大的数是负数,另一个是正数
5、四个互不相等整数的积为9,则和为( C )
A.9
B.6
C.0
D.8
6、从2开始,连续的偶数相加,它们和的情况如下表: 加数的个数n S 1 2 = 1×2 2 2+4 = 6 = 2×3 3 2+4+6 = 12 = 3×4 4 2+4+6+8 = 20 = 4×5 5 2+4+6+8+10 = 30 = 5×6 (1)若n=8时,则 S的值为___7_2_________. (2)根据表中的规律猜想:用n的式子表示S的公式为: S=2+4+6+8+…+2n=__n_(_n_+_1_) _____. (3)根据上题的规律计算2+4+6+8+10+…+2010+2012 的值.
4、整式:单项式和多项式统称整式。
5、同类项: 所含字母相同,并且相同字母的次数也相同的
项,叫做同类项.常数项都是同类项。
合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
6、主要运算法则
(1)合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字 母的 指数不变。
6、科学记数法:
将一个数字表示成a(1≤a<10)与10的幂相乘的形式 。
例如:13500000000000记作:1.35×1013
7、近似数的精确度:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那 一位。
例如:(1) 5.32的近似范围:5.315≤x<5.325 (2)5.32×103精确到__十__位;
七年级数学上册知识点复习
第一章. 有理数

1、有理数的分类:

正有理数正正分整数数
有理数零
负有理数负负分整数数
有理数整数负 正 零整 整数 数 分数负 正分 分数 数
2、数轴的定义:
规定了原点、正方向、单位长度的直线叫做数轴。
3、相反数:
只有符号不同的两个数叫做互为相反数。 注意! 0的相反数是0 (1)a-b+c的相反数是-a+b-c; (2)a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a,b互为相反数.
(3)一,个数( a 0 )的算术平方根,即 a 0 。
4、开平方运算中小数点移动的规律
在计算一些数的算术平方根是有时会遇到两个被开方数的有 效数字相同,而小数点位置不同的数的开放运算,如:
144 12, 1.44 1.2, 0.0144 0.12
结论:被开方数的小数点向左移动两位,它的算术平方根的小数 点就向左移动一位;反之,被开方数的小数点向右移动两位,它的 算术平方根的小数点就向右移动一位。
来说( ) B.只有算术平方根
C. 没有平方根
4、化简: 【答案】
=
+
=
5、观察右图,每个小正方形的边长均为1, ⑴图中阴影部分的面积是多少?边长是多少? ⑵估计边长的值在哪两个整数之间。 ⑶把边长在数轴上表示出来。
解:①图中阴影部分的面积17,边长是 ②边长的值在4与5之间 ③
D. 不能确定
-
6.如果3 23.7 2.872,3 23700 28.72, 则3 0.0237 ____
2、若b<0,则a+b,a,a-b的大小关系为( B ) A、a+b>a>a-b B、a-b>a>a+b C、a>a-b>a+b D、a-b>a+b>a
3、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( D )
A、0个 B、1个 C、2个 D、3个
4、两个有理数的积是负数,和也是负数,那么这两个数( D )
7.如果3 a3 4,则a __,
若 b2 4,则b ____
8.设 2 a, 3 b,用含a,b的式子表示 0.54则下列表示正确的是()
A.0.3ab B.3ab C.0.1ab2 D.0.1a2b
第四章. 代数式
1、一个代数式一般由数、表示数的字母和运算符号组成,这 里的运算是指加、减、乘、除、乘方、开方。
相关文档
最新文档