浙教版七年级数学上册每课一练

合集下载

浙教版七年级上册同步练习§4

浙教版七年级上册同步练习§4

浙教版七年级上册同步练习§4.3 代数式的值基础训练一、填空题:1、当x =-2时,代数式2x -1的值是 .2、当 x =5,y =4时,代数式x -2y 的值是 .3、明明步行的速度是5千米/小时,当他走了t 时的路程为 千米;当他走了2时的路程为 千米.二、选择题:4、把a = 121 ,b =21 代入(3a -2b )2,正确的结果是( ) A 、(3121-221)2 B 、(321-2121)2 C 、(3×21-2×21)2 D 、(3×121-2×21)2 5、设三角形的底边长为a ,高为h ,面积为S ,若a =2,h =3,则S=( )A 、3B 、4C 、5D 、66、当a =0.25,b =0.5时,代数式a1-b 2的值是( ) A 、3.75 B 、4.25 C 、0 D 、-217、当a =3,b=1时,代数式0.5(a -2b )的值是( )A 、1B 、0.5C 、0D 、258、代数式x 2+2的值( )A 、大于2B 、等于2C 、小于2D 、大于或等于2三、解答题:9、如果用C 表示摄氏温度,T 表示绝对温度,则C 与T 之间的关系是:C=T -273. 分别求出当T=0与T=273时C 的值。

10、如图是一个数值转换机综合提高 一、填空题:1、已知x =2,y 是绝对值最小的有理数,则代数式4x 2-2xy +2y 2= .2、若x+3=5-y,a,b 互为倒数,则代数式21(x +y )+5 ab = . 3、一根长10厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量输入 -2 -1 0 1 2 输出每增加1千克,可以使弹簧增长2厘米,则在正常情况下,当挂着x 千克的物体时,弹簧的长度是 厘米,当x =2厘米时,弹簧的长度是 厘米. 二、选择题: 4、在1,2,3,4,5中,使代数式(x -2)(x -3)(x -4)(x -5)的值为零的有( )个。

实数初中数学浙教版七年级上册同步练习卷(含答案)

实数初中数学浙教版七年级上册同步练习卷(含答案)

3.2 实数课时同步练习一.选择题(共7小题)1.下列实数中是无理数的是()A.3.14B.C.D.2.下列各数:3.14,,3.33311,,0.10110111011110…,,.其中无理数的个数是()A.4B.3C.2D.13.下列实数中,最大的数是()A.πB.C.|﹣2|D.34.的相反数是()A.B.C.D.5.下列说法中,正确的是()A.无限小数都是无理数B.无理数是无限不循环小数C.不带根号的数一定是有理数D.无理数就是带有根号的数6.实数+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点7.设6﹣的整数部分为a,小数部分为b,则(2a+)b的值是()A.6B.2C.12D.9二.填空题(共6小题)8.比较大小:(填写“>”或“<”或“=”).9.化简式|﹣3|+|2﹣|=.10.已知a,b是两个连续的整数,且a<<b,则2a+b=.11.如图,数轴上A表示的数为2、B点表示的数为2+,且AB=AC,那么数轴上C点表示的数为.12.若6+的整数部分是a,小数部分是b,则代数式a(2b+4)=.13.如图,数轴上A,B两点表示的数分别为和4.1,则A,B两点之间表示整数的点共有个.三.解答题(共6小题)14.把下列数填入相应的集合中.,0.,﹣,3.(1)整数集合;(2)分数集合;(3)有理数集合;(4)无理数集合;(5)实数集合.15.在数轴上近似地表示下列各数,并把它们按从小到大的顺序排列,用“<”连接:,﹣|﹣2|,π,﹣(﹣4).16.如图,点A是数轴上表示实数a的点.(1)用直尺和圆规在数轴上作出表示实数的点P;(保留作图痕迹,不写作法)(2)利用数轴比较和a的大小,并说明理由.17.已知2a﹣1的平方根是±3,a+3b﹣1的立方根是﹣2,c是的整数部分,求a+2b+c 的算术平方根.18.如图所示的是一个数值转换器.(1)当输入的x为256时,输出的y值是.(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由.(3)若输出的y值是,请写出两个满足要求的x值:.19.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共7小题)1.解:A.3.14是分数,属于有理数,故本选项不合题意;B.=3是整数,故本选项不合题意;C.是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意;故选:C.2.解:=16,在3.14,,3.33311,,0.10110111011110…,,中,无理数有,0.10110111011110…,,共有3个.故选:B.3.解:|﹣2|=2,∵2<4,∴<2,∴<2<3<π,∴最大的数是π,故选:A.4.解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.5.解:A、无限不循环小数都是无理数,本选项说法错误;B、无理数是无限不循环小数,说法正确;C、π不带根号,是无理数,则不带根号的数一定是有理数,说法错误;D、=2,2不是无理数,则无理数就是带有根号的数,说法错误;故选:B.6.解:∵1<2<4,∴1<<2,∴2<+1<3,则实数+1在数轴上的对应点可能是点D,故选:D.7.解:∵3<<4,∴2<6﹣<3,∵6﹣的整数部分为a,小数部分为b,∴a=2,b=6﹣﹣2=4﹣,∴(2a+)b=(2×2+)×(4﹣)=(4+)(4﹣)=6,故选:A.二.填空题(共6小题)8.解:∵1<<2,∴<1,即>,故答案为:>.9.解:∵2<3,∴﹣3<0,2﹣<0,∴原式=3﹣+﹣2=1.故答案为:1.10.解:∵9<10<16,∴3<<4,∴a=3,b=4,∴2a+b=2×3+4=6+4=10.故答案为:10.11.解:∵A表示的数为2,B点表示的数为2+,∴AB=2+﹣2=,∴AC=AB=,∴C点表示的数为:2﹣,故答案为:2﹣.12.解:∵4<5<9,∴2<<3,∴,∴a=8,b=,∴a(2b+4)=8×(﹣4+4)=8×=.故答案为:.13.解:∵1<2<4,∴1<<2,∴A,B两点之间的整数有2,3,4三个,故答案为:3.三.解答题(共6小题)14.解:(1)整数集合,3;(2)分数集合,;(3)有理数集合,,,3;(4)无理数集合,;(5)实数集合,,,,﹣,3.15.解:数轴如图所示,∴由小到大的顺序排列为:﹣|﹣2|<0<<π<﹣(﹣4).16.解:(1)如图所示,点P即为所求;(2)a>,理由如下:∵如图所示,点A在点P右侧,∴a>.17.解:由题意得2a﹣1=32=9,∴a=5,将a=5代入a+3b﹣1中可得:a+3b﹣1=5+3b﹣1=(﹣2)3=﹣8,解得b=﹣4,∵6<<7,∴c=6,∴a+2b+c=5﹣2×4+6=3,∴a+2b+c的算术平方根为.18.解:(1)当输入的x为256时,第一次求算术平方根得=16,是有理数,第二次求算术平方根得=4,是有理数,第三次求算术平方根得=2,是有理数,第四次求算术平方根得,是无理数,∴输出y=;故答案为:;(2)一个有理数,若算术平方根等于本身,则求算术平方根的结果总是有理数,始终输不出y值,而算术平方根等于本身得数是1和0,∴输入有效的x值后,始终输不出y值,则x=1或0;(3)∵3的算术平方根是,且是无理数,∴输入的数是3的正整数次幂,比如3或9等,故答案为:3或919.解:(1)∵4<<5,∴的整数部分是4,小数部分是,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵1<3<4,∴1<<2,∴11<10+<12,∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=10+﹣11=﹣1,∴x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数是﹣12+;。

有理数的加法 浙教版七年级数学上册同步练习(含答案)

有理数的加法 浙教版七年级数学上册同步练习(含答案)

(浙教版)-2021-2022学年初中数学七年级上册课堂同步练习2.1有理数的加法-课堂同步练时间:60分钟;满分:120分一、单选题1.甲、乙两个数都不是0,则它们的和( ) A .一定比甲数大 B .一定比乙数大 C .有可能为0D .不可能是负数2.如果两个数的和为正数,那么( ) A .这两个加数都是正数B .一个数为正,另一个为0C .两个数一正一负,且正数绝对值大D .必属于上面三种之一 3.计算(﹣2)+(﹣3)的结果是( ) A .﹣5B .﹣1C .1D .54.一个数大于另一个数的绝对值,则这两个数的和是( ) A .负数B .正数C .非负数D .非正数5.把算式:()()()()5472---+--+写成省略括号的形式,结果正确的是( ) A .5472--+-B .5472+--C .5472-+--D .5472-++-6.下列温度是由3C -上升5C 的是( ) A .2CB .2C -C .8CD .8C -7.规定向北为正,某人走了5+米,又继续走了10-米,那么,他实际上( ) A .向北走了15米B .向南走了15米C .向北走了5米D .向南走了5米8.下列各式中正确使用了加法运算律的是( ) A .(+5)+(-7)+(-5)=(+5)+(-5)+(-7) B .1()2-+1()3+=1()3-+1()2+C .(-1)+(-2)+(+3)=(-3)+(+l)+(-2)D .(-1.5)+(+2.5)=(-2.5)+(+1.5)二、填空题9.若|a |=2,|b |=5,则|a +b |=_______.10.16+(-8)=_______,(-12)+(-13)=_______.11.计算:()53-+-=__________. 12.0.45(8)(9.7)-++-+=______.13.飞机的飞行高度为1000米,上升300米,又下降500米,这时飞行的高度是__________米. 14.某公交车原坐18人,经过3个站点时上下车情况如下(上车为正,下车为负):(3,8)+-, (5,7)+-,(4,2)+-,则现在车上还有________.15.某天最低气温是-1℃,最高气温比最低气温高9℃,则这天的最高气温是________℃.16.小华计划在十一长假期间每天做5道数学题,超过的题数记为正数,不足的题数记为负数.七天中的实际做题数记录如下:+3,+5,-4,-2,-1,+7,0.则小华七天共做了________道数学题.17.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].三、解答题18.计算:(1)(6)(13)-+- (2)4354⎛⎫-+ ⎪⎝⎭19.计算:1(3)8-+(-2.16)+814+318+(-3.84)+(-0.25)+45.20.用适当的方法计算:(1)0.36+(-7.4)+0.5+(-0.6)+0.14; (2) (-51)+(+12)+(-7)+(-11)+(+36).21.运用加法运算律计算: (1)(-7)+7+(-2); (2)11162727⎛⎫-+++ ⎪⎝⎭22.已知a b >,若a b 0+>,请说明a 、b 需要满足的条件.23.从1,2,3,4,5,6,7,8,9这九个数字中各取一个数字作个位数字,再从这九个数字中各取一个数字作十位数字,随意组成九个两位数,且这九个两位数都是负数,求这九个两位数的和,并使你的算式能说明计算结果是唯一的道理.24.某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负):(1)生产量最多的一月比生产量最少的一月多生产多少辆? (2)半年内总生产量是多少?比计划多了还是少了,多或少了多少?25.一位病人发高烧进医院治疗,医生给他开了药、挂了水,同时护士每隔1小时为病人测体温,及时了解病人的好转情况,下表记载的是护士对病人测体温的变化数据:注:病人早晨进院时医生测得病人体温是40.2℃.问:(1)把上升的体温记为正数,下降的体温记为负数,请填写上表.(2)病人什么时候体温达到最高,最高体温是多少?(3)病人中午12点时体温多高?(4)病人几点后体温稳定正常(正常体温是37℃).参考答案1.C 【解析】略 2.D 【解析】略 3.A【解析】解:原式=﹣(2+3)=﹣5 故选:A 4.B【解析】假设一个数为a ,另一个数为b , 故由题意可知:a b >,即0a b ->, 由于绝对值非负,可知a 为正数, 当0b ≥时,有a b >,则0a b +>; 当0b <时,有0()a b -->,即0a b +>.综上:不论b 为何值,均有0a b +>,即两数之和为正数. 故选:B . 5.C【解析】解:原式=-5+4-7-2 故选C. 6.A【解析】35-+=2C , 故选A . 7.D【解析】解:因为规定向北为正,()5105++-=-米, 所以他实际上向南走了5米. 故选:D . 8.A【解析】解:A 、(+5)+(-7)+(-5)=(+5)+(-5)+(-7),正确运用了加法运算律,故本选项符合题意;B 、1()2-+1()3+=1()3-+1()2+,交换加数的位置时,改变了加数的符号,故本选项不符合题意;C 、(-1)+(-2)+(+3)=(-3)+(+l)+(-2),交换加数的位置时,改变了加数的符号,故本选项不符合题意;D、(-1.5)+(+2.5)=(-2.5)+(+1.5),交换加数的位置时,改变了加数的符号,故本选项不符合题意.故选:A.9.7或3【解析】略10.85 6 -【解析】略11.-2【解析】解:()53532-+-=-+=-.故答案为:-2.12.-2.15【解析】0.45(8)(9.7)-++-+=-0.45+8-9.7=8-10.15=-2.1513.800【解析】由题意可得:1000+300+(-500)=1300-500=800(米),故答案为:800.14.13人【解析】解:根据题意,现在车上的人数为:1838574213+-+-+-=人;故答案为13人.15.8【解析】℃最低气温是-1℃,最高气温比最低气温高9℃,℃这天得最高气温是-1+9=8(℃),故答案为8.16.43【解析】(+3)+(+5)+(-4)+(-2)+(-1)+(+7)+0+5×7=43(道).17.1621 (3)3 -【解析】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.18.(1)-19;(2)1 20 -【解析】解:(1)(6)(13)-+-=-6-13 =-19; (2)4354⎛⎫-+ ⎪⎝⎭=3445- =15162020- =120-19.425.【解析】解:原式=()()()111433 2.16 3.8480.258845⎡⎤⎛⎫⎡⎤-++-+-++-+⎡⎤ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦⎣⎦ =0+(-6)+8+45=425.20.(1)-7;(2)-21.【解析】解:(1)0.36+(-7.4)+0.5+(-0.6)+0.14 =()()()0.360.140.57.40.6+++-+-⎡⎤⎣⎦ =()18+- =-7;(2)(-51)+(+12)+(-7)+(-11)+(+36) =()()()()()517111236-+-+-++++⎡⎤⎡⎤⎣⎦⎣⎦ =()()6948-++ =﹣21.21.(1)-2;(2)1【解析】解:(1)原式=[(-7)+7]+(-2)=0+(-2)=-2;(2)原式=1122⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦+1677⎛⎫+ ⎪⎝⎭=0+1=1.22.见解析【解析】解:分为三种情况:℃当a b 0>≥时,a 、b 在取值范围内任意取值,都有a b 0+>; ℃当a 0b >≥,a b >时,则有a b 0+>;℃当0a b >>时,无论a 、b 取何值,都无法得到a b 0+>.23.495-【解析】解:由于9个数字刚好组成9个两位数,每个数字都用完且只用一次,那么十位之和就是102030...90++++,个位之和就是123...9++++,前面加负号就是结果: 故这九个两位数的和为唯一值:()102030...90123...9495-+++++++++=- 24.(1)9辆;(2)半年内生产总量121辆;比计划多了;多了1辆【解析】(1)由表格可知,生产最多的一个月为四月份,共生产了20424+=辆 生产最少的一个月为六月份,共生产了20515-=辆所以生产量最多的月份比生产量最少的月份多生产24159-=辆 (2)半年内生产的总量为()321425206121--++-+⨯=辆 计划每月生产20辆,则半年共生产206120⨯=辆1211201-=∴半年内生产的总量为121辆,比计划多了,多了1辆25.(1)+0.2,-1.0,-0.8,-1.0,-0.6,+0.4,-0.2,-0.2,0;(2)7:00时体温最高为40.4℃;(3)37.4℃;(4)14:00点后 【解析】(1) 1.0 1.0 )每个时刻温度为: 7:00时,40.20.240.4+=℃, 8:00时,40.4 1.039.4-=℃, 9:00时,39.40.838.6-=℃, 10:00时,38.6 1.037.6-=℃, 11:00时,37.60.637.0-=℃, 12:00时,37.00.437.4+=℃, 13:00时,37.40.237.2-=℃, 14:00时,37.20.237.0-=℃, 15:00时,37.0037.0+=℃, 则时7:00时体温最高为40.4℃.(3)由(2)得病人中午12:00体温为37.4℃. (4)由(2)可知14:00点后体温稳定正常.。

浙教版七年级数学上册第1章有理数1.1从自然数到有理数1.1.2有理数同步练习

浙教版七年级数学上册第1章有理数1.1从自然数到有理数1.1.2有理数同步练习

浙教版七年级数学上册第 1 章有理数从自然数到有理数 1.1.2 有理数同步练习浙教版七年级数学上册第 1 章有理数从自然数到有理数有理数同步练习1.以下各数中是正数的为 ()A.-2B1C.3D.0.-22.以下说法错误的选项是 ()A.- 2 是负有理数B.0 不是整数C.2D.- 0.31 是负分数5是正有理数3.假如向北走 6 步记为+ 6 步,那么向南走 8步记为( )A.+8 步 B.-8步 C.+14 步 D.-2 步4.《九章算术》中注有“今两算得失相反,要令正负以名之” ,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10 ℃记做+ 10 ℃,则- 3 ℃表示气温为 ( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃5.以下不是拥有相反意义的量的是 ( )A.上涨 3 米和降落 5 米B.收入200元和支出300元C.向东走 3 米和向北走 3 米D.增添3千克和减少2千克6.以下说法中错误的选项是()A.正整数、负整数统称整数B.正分数、负分数统称为分数C.0 既不是正数,也不是负数D.自然数就是零和正整数7.四个数-,0,1,2中为负数的是()A.- 3.14 B.0C.1D.28.以下数中,既是分数又是负数的数是 ( )11A.- 7B.2 C .-3D.-59. 以下对于“ 0”的说法正确的选项是()①是整数,也是有理数;②不是正数,也不是负数;③不是整数,是有理数;④是整数,不是自然数.A.①④B.②③C.①②D.①③10.如图是加工部件的尺寸要求,现有以下直径尺寸的产品 ( 单位: mm),此中不合格的是 ( )A.Φ45.02 B.ΦC.ΦD.Φ11.在一条东西走向的道路上,小亮先向东走8 米,记为“+ 8 米”,又向西走了 10 米,此时他的地点可记为( )A.+2 米B.-2米C.+18米D.-18米12.在一次数学测试中,某班同学的均匀分为 85 分,假如轩轩得 94 分记做+ 9 分,那么婷婷得80 分记做 _______分,亮亮得 85 分记做 ______分.13.假如正午 ( 正午 12:00) 记作 0 小时,午后 3 点钟记作+ 3 小时,那么上午 8 点钟可表示为 __________.14.小明的妈妈在商场买了一瓶消毒液,在瓶上印有这样一段文字:“净含量(750 ±5)mL”,这瓶消毒液起码有_________mL.1不是正数也不是负数的是________.16.某中学对七年级男生进行引体向上测试,能做7 个即达标,此中有8 名男生的成绩分别为 ( 单位:个 )9 , 6, 7,10,5,4,8,7. 请你用正数或负数表示它们.17.认真察看以下数的规律后回答以下问题:1 1 1 1 1-1,2,-3,4,-5,6, .(1)第 2016 个数前方的符号是“+”仍是“-”?(2)第 2017 个数可表示成什么?18.某游泳池的标准水位记为 0 米,假如用正数表示水面高于标准水位的高度,那么:(1)+0.05 米和- 0.8 米各表示什么?(2)水位高于标准水位 0.45 米如何表示?19.如图,海边的一段堤岸超出海平面 12 米,邻近的某建筑物超出海平面 50 米,演习中的某潜水艇在海平面下30 米处.(1)现以海平面的高度为基准,将其记为 0 米,高于海平面记为正,低于海平面记为负,那么堤岸、邻近建筑物及潜水艇的高度各应如何表示?(2)若以堤岸高度为基准,则堤岸、建筑物及潜水艇的高度又应如何表示?20.将一串有理数按以下规律摆列,回答以下问题.(1)在 A 处的数是正数仍是负数?(2)负数排在 A,B,C,D 中的什么地点?(3)第 2017 个数是正数仍是负数?排在对应于 A,B,C,D 中的什么地点?参照答案:1---11 CBBBC AACCB B12.-5 013.-4 小时14.74515.-8+16.解: 8 名男生的成绩用正数或负数表示为+ 2,- 1,0,+ 3,- 2,- 3,+1,017.解: (1) 第 2016 个数前方的符号是“+”1(2) -201718.解: (1) +0.05 米表示水面高于标准水位 0.05 米,-0.8 米表示水面低于标准水位 0.8 米(2) +0.45 米19.解:(1) 堤岸的高度为+ 12 米,建筑物的高度为+ 50 米,潜水艇的高度为-30 米(2)以堤岸高度为标准,则堤岸的高度为 0 米,建筑物的高度为+ 38 米,潜水艇的高度为- 42 米20.解: (1)A 处的数是正数(2)负数排在 B 和 D 的地点(3)第 2017 个数是负数,排在对应于 B 的地点。

浙教版数学七年级上册一课一练附解析2.7 近似数

浙教版数学七年级上册一课一练附解析2.7 近似数

2.7 近似数一、选择题(共10小题;共50分)1. 2019年6月止,高新区(滨江)实现地区生产总值亿元,比去年增长.近似数亿是精确到位.A. 十分B. 千C. 万D. 千万2. 近似数所表示的准确数的范围是A. B.C. D.3. 用四舍五入法按要求对分别取近似值,其中错误的是A. (保留两个有效数字)B. (精确到百分位)C. (精确到十分位)D. (精确到)4. 下列各数是准确数的是A. 小明投铅球后,测得距离是米B. 小明体重为千克C. 七年级一班有名同学D. 地球与太阳的距离为亿千米5. 下列四个数据,精确的是A. 小莉班上有人B. 某次地震中,伤亡万人C. 小明测得数学书的长度为厘米D. 吐鲁番盆地低于海平面大约米6. 用四舍五入法对(精确到千分位)取近似数是A. B. C. D.7. 下列各数中,准确数是A. 某工厂每天节约用电度B. 杭州市人口达万C. 我家有口人D. 某围墙的长度达米8. 下列说法错误的是A. 近似数有四个有效数字B. 近似数与的意义不同C. 近似数万精确到十分位D. 近似数精确到千位是9. 小明体重为,这个数精确到十分位的近似值为A. C.10. 用四舍五入法按要求对进行近似,其中错误的是A. (精确到)B. (精确到千分位)C. (精确到百分位)D. (精确到)二、填空题(共5小题;共25分)11. 用四舍五入法,精确到,对取近似值的结果是12. 根据要求用四舍五入法取的近似数.(精确到百分位);这个近似数有个有效数字.13. 2008 年,我省经济总量(GDP)突破万亿大关,达到亿元,用科学记数法表示为亿元(保留三个有效数字).14. (1)用四舍五入法取近似数:(精确到);(2)精确到位.15. 把数字保留三个有效数字,并用科学记数法可表示为.三、解答题(共3小题;共45分)16. 按照括号内的要求对下列个数取近似值(1)(精确到千分位);(2)(保留三个有效数字);(3)(精确到);(4)(保留两个有效数字).17. 用四舍五入法求下列各数的近似数.(1)(精确到千分位);(2)(精确到)(3)(精确到万位).18. 若的近似值为,求的取值范围.。

有理数的加法 浙教版七年级上册课时同步练习(含答案)

有理数的加法 浙教版七年级上册课时同步练习(含答案)

《2.1 有理数的加法》课时同步练习2020-2021年数学浙教新版七(上)一.选择题(共8小题)1.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.52.计算的正确结果是()A.B.C.1D.﹣13.下列说法中:①两个数的和一定大于其中任何一个加数;②如果两个数的和是正数,那么这两个加数一定都是正数;③如果两个数的和为负数,则必有一个加数是负数;④一个有理数与它的绝对值的和一定不是负数.其中正确的有()A.①②③B.①③C.③④D.②④4.如果|a+b|=|a|+|b|,那么()A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为05.已知|x|=3,|y|=2,且x>y,则x+y的值为()A.5B.﹣1C.﹣5或﹣1D.5或16.两个有理数相加,如果和小于每一个加数,那么()A.这两个加数同为负数B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零7.下列交换加数的位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5B.1﹣2+3﹣4=﹣(2﹣1+4﹣3)C.﹣D.4.5﹣1.7﹣2.5+1.8=4.5+2.5﹣1.8﹣1.78.两个有理数的和是正数,则这两个有理数()A.都为负数B.差为零C.至少有一个为正数D.都是正数二.填空题(共10小题)9.绝对值小于2的所有整数的和是.10.用﹣4、﹣3、﹣2、﹣1、0、1、2、3、4这9个数填在图中.使得横行、竖行、对角线之和为0.11.一个加数是6,和是﹣9,另一个加数是.12.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是;两个有理数的和为5,其中一个加数是﹣7,那么另一个加数是.13.大于﹣2且不大于2的所有整数的和是.14.绝对值不大于100的所有整数的和是.15.小毛同学的作业本上出现了一个错误的等式﹣3+2=5,请你直接在算式中添“括号”或“绝对值符号”或“负号”(不限定个数),使等式成立:.16.计算:1+2+3+…9+10+9…+3+2+1=.17.若a与b互为相反数,则a+b=.18.(2+4+6+8+10+﹣﹣﹣+98)+(3+5+7+9+11+﹣﹣﹣+97)=.三.解答题(共2小题)19.﹣4、5、﹣7这三个数的和比这三个数绝对值的和小多少?20.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?参考答案一.选择题(共8小题)1.解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.2.解:=﹣()=﹣1.故选:D.3.解:因为﹣1+2=1,1不大于2,所以两个数的和不一定大于其中任何一个加数,故①错误;因为﹣1+2=1,两个数的和是正数,这两个加数不一定都是正数,故②错误;因为两个负数相加,其和为负,异号两数相加,当负加数的绝对值较大时,其和为负,两个正数相加时,其和为正.所以两个数的和为负数,则必有一个加数是负数,故③正确;因为正数与其绝对值的和为正数,0与其绝对值的和为0,负数与其绝对值的和为0.所以一个有理数与它的绝对值的和一定不是负数.故④正确.综上③④正确.故选:C.4.解:∵|a+b|=|a|+|b|,∴a,b同号,或a,b中至少有一个为0,故选:D.5.解:∵|x|=3,|y|=2,∴x=±3,y=±2,又∵x>y,∴x=3,y=2,x+y=5;或x=3,y=﹣2,x+y=1.故选:D.6.解:根据分析可得:这两个数都为负数.故选:A.7.解:A、1﹣4+5﹣4=1﹣4﹣4+5,故错误;B、正确;C、﹣+﹣﹣=﹣+﹣﹣,故错误;D、4.5﹣1.7﹣2.5+1.8=4.5﹣2.5+1.8﹣1.7,故错误.故选:B.8.解:两个有理数的和是正数:①两个加数都是正数;②两个加数一正一负,且正数的绝对值较大.故选:C.二.填空题(共10小题)9.解:绝对值小于2的所有整数有﹣1,0,1,之和为﹣1+0+1=0.故答案为:010.解:.11.解:依题意有﹣9﹣6=﹣15.故答案为﹣15.12.解:点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1或5;两个有理数的和为5,其中一个加数是﹣7,那么另一个加数是12,故答案为:﹣1,5,12.13.解:大于﹣2且不大于2的整数是﹣1、0、1、2,﹣1+0+1+2=2.故答案为:2.14.解:绝对值不大于100的所有整数有﹣100、﹣99、﹣98…﹣1、0、1、2、3、…99、100,和为﹣100+(﹣99)+(﹣98)…+(﹣1)+0+1+2+3+…+99+100=(﹣100+100)+(﹣99+99)…+(﹣1+1)+0=0.故答案为0.15.解:如|﹣3|+2=5;﹣(﹣3)+2=5等.(答案不唯一).16.解:观察该式发现:原式=2×(1+2+3+…9+10)﹣10=2×5×11﹣10=100.17.解:根据互为相反数的定义,得a+b=0.18.解:原式=2+3+4+5+6+…+97+98==4850.故答案为4850.三.解答题(共2小题)19.解:﹣4+5+(﹣7)=﹣3.|﹣4|+|5|+|﹣7|=16.16﹣(﹣3)=16+3=19,﹣4、5、﹣7这三个数的和比这三个数绝对值的和小19.20.解:(1)根据题意:规定向东为正,向西为负:则(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升。

浙教版七年级上册同步练习§4

浙教版七年级上册同步练习§4

浙教版七年级上册同步练习§4.2 代数式基础训练一、填空题:1、七年级有x 名男生,y 名女生,则七年级共有 名学生.2、x 的2倍与2的差,可以表示为 .3、一个教室有2扇门和5扇窗户,n 个这样的教室有 扇门和 扇窗户.二、选择题:4、下列属于代数式的是( )A 、S=abB 、a 2-b 2=(a +b )(a -b )C 、2a +3D 、S=πR 2 5、“a 的相反数与a 的2倍的差”,用代数式表示为( )A 、a -2aB 、-a -2aC 、a +2aD 、-a +2a6、在-2,π,2x ,x +1,2xy 中,代数式有( ) A 、2个 B 、3个 C 、4个 D 、5个7、下列代数式书写规范的是( )A 、a ×2B 、121 a C 、(5÷3)a D 、2a 28、“m 与n 的差的平方”,用代数式表示为( )A 、(m -n )2B 、 m 2-n 2C 、m -n 2D 、m 2-n三、解答题:9、用代数式表示:⑴ x 的2倍与y 的3倍的差⑵ x 的2110、已知甲数是乙数的相反数的2倍,设乙数为x , 用关于x 的代数式表示甲数.综合提高一、填空题:1、a 与b 的平方差可表示为 .2、2x +3y 可以解释为 .3、某商店钢笔每枝a 元,铅笔每枝b 元,小明买了3枝钢笔和2枝铅笔,应付 元.二、选择题:4、已知长方形的周长为C ,长为2,则宽为( )A 、C -2B 、1/2(C -2) C 、C -1D 、1/2 C -15、某厂去年产值是x 万元,今年比去年增产40%,今年产值是( )万元。

A 、40%xB 、(1+40%)xC 、%40xD 、1+40%x 6、代数式a +b 2的意义是( ) A 、a 与b 的和的平方 B 、a 、b 两数的平方和C 、a 与b 的平方的和D 、a 与b 的平方7、正方体的棱长为a ,当棱长增加x 时,体积增加了( )A 、a 3-x 3B 、x 3C 、(a +x )3-a 3D 、(a +x )3-x 38、某班有a 个学生,其中女生人数占46%,那么男生人数是( )A 、46%aB 、(1-46%)aC 、%46a D 、%)461(-a 三、解答题:9、指出下列各组代数式所表示的意义有什么不同:⑴ 2(a +b )与2a +b ⑵ a -b +c 与a -(b +c )10、甲、乙两品牌服装的单价分别为a 元和b 元,现实行打折销售,甲种服装按8折(即原价的80%)销售,乙种服装按7折销售,若购买两种品牌服装各一件,共需多少元?探究创新一、填空题:1、个位数字是a ,十位数字是b 的两位数可表示为 ,交换个位与十位数字后的两位数是 .2、一项工程,甲队单独完成需a 天,乙队单独完成需b 天,两队合作要 天完成.3、当n 为整数时,偶数可表示为 ,奇数可表示为 .二、选择题:4、下列各式:⑴132ab ⑵ x ﹒2 ⑶ 30%a ⑷ m -2℃ ⑸ 232y x - ⑹ a -b ÷c ,其中不符合代数式书写要求的有( )A 、5个B 、4个C 、3个D 、2个5、如果两个数的和是10,其中一个数用字母x 表示,那么表示这两个数的积的代数式是( )A 、10xB 、x (10+x )C 、x (10-x )D 、x (x -10)6、今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元A 、(1+20%)aB 、(1-20%)aC 、%201+aD 、%201-a 7、x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( )A 、yxB 、y +xC 、10y +xD 、100y +x8、观察下列算式:21=2 22=4 23=8 24=1625=32 26=64 27=128 28=256……通过观察,用你所发现的规律得出227的末位数是( )A 、2B 、4C 、8D 、6三、解答题;9、甲、乙两人从同一地点出发,甲每小时走5km,乙每小时走3km ,用代数式表示: ⑴反向行走t 时,两人相距多少千米?⑵同向行走t 时,两人相距多少千米?⑶反向行走,甲比乙早出发m 时,乙 走n 时,两人相距多少千米?⑷同向行走,甲比乙晚出发m 时,乙 走n 时(n ﹥m ),两人相距多少千米?思维点拨行程问题应画图分析10、先观察图形,阅读相关文字后,再回答问题。

浙教版数学七年级上册一课一练附解析2.2有理数的减法

浙教版数学七年级上册一课一练附解析2.2有理数的减法

2.2有理数的减法一、选择题(共12小题;共48分)1. 我市某天的最高气温是,最低气温是,那么这一天的最高气温比最低气温高2. 食品店一周内各天的盈亏情况如下(盈余为正,亏损为负,单位:元):,,,,,,,则这一周的盈亏情况是A. 盈B. 亏C. 不盈不亏D. 以上都不对3. 北京等个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么A. 汉城与纽约的时差为小时B. 汉城与多伦多的时差为小时C. 北京与纽约的时差为小时D. 北京与多伦多的时差为小时4. 某天上午太湖的水位为,到上午水位上涨了,到下午水位下跌了,则下午的水位为A.5. 下列算式:① ;② ;③ ;④.其中正确的有A. 个B. 个C. 个D. 个6. 已知从山脚起每升高米,气温就下降摄氏度,现测得山脚处的气温为摄氏度,山上点处的气温为摄氏度,则点距离山脚处的高度为A. 米B. 米C. 米D. 米7. 大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法.比如:写成,;写成,;写成,.总之,数字上画一杠表示减去它,按这个方法请计算A. B. C. D.8. 一只蚂蚁沿数轴从点向右直爬个单位长度到达点,点表示的数为则点所表示的数为A. B.9. 某交警巡逻车沿公路来回巡逻值勤,约定向前为正,向后为负.某天从岗亭出发至下班时该车所走的路线(单位:千米)为:,,,,,则下班时该车所在位置是A. 岗亭前千米B. 岗亭后千米C. 岗亭前千米D. 岗亭后千米10. 记,令,称为,,,这列数的“理想数”.已知,,,的“理想数”为,那么,,,,的“理想数”为A. B. C. D.11. 如图,数轴上点表示的数减去点表示的数,结果是A. C.12. 下列表示某地区早晨、中午和午夜的温差(单位:),则下列说法正确的是A. 午夜与早晨的温差是B. 中午与午夜的温差是C. 中午与早晨的温差是D. 中午与早晨的温差是二、填空题(共6小题;共30分)13. 扬州今年冬季某天测得的最低气温是,最高气温是,则当日温差是.14. 某地一天早晨的气温是,中午气温上升了,下午又下降了,晚上又下降了,则晚上的温度为.15. .16. .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级上册同步练习1.2 有理数一、填空1、 如果零上28度记作280C ,那么零下5度记作2、 2、若上升10m 记作10m ,那么-3m 表示3、比海平面低20m 的地方,它的高度记作海拔二、选择题4、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个5、下列既不是正数又不是负数的是( )A 、-1B 、+3C 、0.12D 、06、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米。

7、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。

8、下列一定是有理数的是( )A 、πB 、aC 、a+2D 、72 三、解答题9、A 地海拔高度是-40m ,B 地比A 地高20m ,C 地又比B 地高30m ,试用正数或负数表示B 、C 两地的海拔高度。

10、一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?浙教版七年级上册同步练习1.3 数轴一、填空1数轴的三要素是 ,_ 和2、 4的相反数是 ,-6的相反数是 ,0的相反数是 。

3、在数轴上,A 、B 两点在原点的两侧,但到原点的距离相等,,如果点A 表示73,那么点B 表示二、选择:4、在已知的数轴上,表示-2.75的点是 ( )A 、E 点B 、F 点C 、G 点D 、H 点5、以下四个数,分别是数轴上A.B.C.D 四个点可表示的数,其中数写错的是 ( )6、下列各语句中,错误的是 ( )A.、数轴上,原点位置的确定是任意的;B.、数轴上,正方向可以是从原点向右,也可以是从原点向左;C.、数轴上,单位长度1的长度的确定, 可根据需要任意选取;D.、数轴上,与原点的距离等于36.8的点有两个.7、数轴上,对原点性质表述正确的是( )A 、表示0的点B 、开始的一个点C 、数轴上中间的一个点D 、它是数轴上的一个端点8、下列说法错误的是( )A 、5是-5的相反数B 、-5是5的相反数C 、-5和5是互为相反数D 、-5是相反数三、解答9、在数轴上表示出-2,1,-0.2,0,0.5 。

10、写出下列各数的相反数:5,-32,-5.8,0,59浙教版七年级上册同步练习1.4 绝对值一、填空1、│-321│= ;│-1.6│= 2、计算:│-(+4.8)│=3、绝对值等于2的数是二、选择:4、-61的绝对值是( ) A 、—6 B 、-61 C 、61 D 、6 5、-│-43│的相反数是( ) A 、43 B 、-43 C 、34 D 、-34 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个8、│-3│的相反数是( )A 、3B 、-3C 、31 D 、-31 三、解答9、如果a,b 互为相反数,c,d 互为倒数,x 的绝对值是1,求代数式xb a +x 2+cd 的值。

10、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

浙教版七年级上册同步练习1.5 有理数的大小比较一、填空1、比较大小:-2 -3,0 │-821│,-32 -43 2、最大的负整数是 ,最小的正整数3、在-5,-0.3,0,1,π,-π,-521,0.0002中,最小的数是 二、选择:4、大于-3的负整数的个数是( )A 、2B 、3C 、4D 、无数个5、在数轴上,-2,-21,-31,0这四个数所对应的点从左到右排列的顺序是( ) A 、0,-31,-21,-2 B 、-2,-21,-31,0 C 、0,-31,-21,-2 D 、-2,-31,-21,0 6、数轴上原点及其左边的点表示的数一定( )A 、正数B 、负数C 、非正数D 、非负数7、下列各式中,正确的是( )A 、 ―│―16│>0B 、│0.2│> │―0.2│C 、-74>-75 D 、│―6│<0 8、绝对值大于其相反数的数一定是( )A 、负数B 、正数C 、非负数D 、非正数三、解答9、先把3.5,-2.5,0,-1,3表示在数轴上,再按从小到大的顺序用“<”连接。

10、对于一个数,给定条件A :负整数,且大于-3;条件B :绝对值等于2。

(1)分别写出满足条件A ,B 的数,并把它们表示在同一条数轴上。

(2)试问是否存在同时满足A 、B 两个条件的数?若存在,求出该数;若不存在,说明理由。

浙教版七年级上册同步练习 2.1 有理数的加法一、填空:1、(+ 3.5)+(– 8.5 )= ( – 0.7 )+( – 0.3 )=2、三个不同的有理数(不全同号)和为1,请你写出一个算式3、用“>”,“<”或“=”连接下列各式:│(– 4)+(– 5)│ │– 4│+│– 5││(– 4)+(+ 5)│ | – 4| + |+ 5|二、选择题:4、若 a 比10大–3,则a=( )A 、 13B 、7C 、8D 、125、在数轴原点的左边3个单位处有一点A ,向数轴正方向移动了4.5个单位.则点A 最后停在( )处A 、–1.5B 、– 7.5C 、 1.5D 、 7.56、下列计算正确的是 ( )A 、(– 4 )+( – 5 )= – 9B 、 5 +( –6 )=11C 、( – 7 )+10= –3D 、( – 2 )+ 2 = 47、下列说法正确的是 ( )A 、两个数的和一定大于每一个加数B 、互为相反数的两个数的和等于零C 、若两数和为正,则这两个数都是正数D 、若│a │=│b │、则a=b8、一小商店,一周盈亏情况如下:(亏为负,单位:元):128.3 、– 25.6 、–15 、27、– 7、36.5、98,则小商店该周的盈亏情况是 ( )A 、 盈240元B 、亏240元C 、盈242.2元D 、亏 242.2元三、解答题:9、在数轴上表示下列有理数的运算,并求出计算结果1)、( – 2.5 )+( – 3. 5 ) 2)、7 + ( – 9 )10、用简便方法计算,并说明理由:1)、(– 243)+ 143 + 131 + (– 531)2)、(– 1.8)+ 0.2 + ( – 1.5 ) + ( – 0.3 ) + 1.5 + 0.1综合提高一、填空1、算式( –10 )+ 7和的符号为 ,和的绝对值是 ,计算结果是2、小丽沿着东西方向的道路行走,她先向正东方向走77米,再向正西方向走108 米,最后小丽停在出发点 方向 米处。

3、a + b =0 时,a 、b 的关系是二、选择题:4、如果两个有理数的和是负数,则这两个数是 ( )A 、都是负数B 、一定是一正一负C 、一定是0和负数D 、至少一个是负数5、某次数学测试,以80分为基准,张老师公布成绩为:小丽+8 分、小颖0分、小 彬–3分,则小彬的实际得分是 ( )A 、88分B 、80分C 、77分D 、83分6、下列哪组数的和加上–211大于0 ( )A 、101,10B 、–1000,2000C 、–9991 , 1098 D 、0 ,│–106│ 7、绝对值 小于7而大于3的所有整数的和是 ( )A 、15B 、–15C 、0D 、308、若│a │=7 ,b 的相反数是2,则a+b 的值是 ( )A 、–9B 、–9或+9C 、+5或–5D 、+5或–9三、解答题9、1)、计算:1)(–2.5)+(–52.6) 2) (–8)+(+21)+(–12)3) (+30)+(–17.5)+(–20)+(+17.5) 4)(–2.75)+(–441)+(–283) +85浙教版七年级上册同步练习2.2 有理数的减法一、填空题1、减去一个数,等于加上这个数的 。

2、0–(–3)= , –3–(–7.5)=3、(–2)+(–7)–(–5)+(–6)写成省略括号的和的形式是 。

读作 。

二、选择题:4、在下列等式:2–(–2)=0 ,(–3)–(+3)=0 ,(–3)– |–3|=0,0–(–1)=1,其中正确的算式有( )A 、1个B 、2个C 、3个D 、4个5、在(–5)–( )= –7中的括号里应填( )A 、–2B 、2C 、–12D 、126、下列说法中错误的有( )①若两数的差是正数,则这两个数都是正数②若两个数是互为相反数,则它们的差为零③零减去任何一个有理数,其差是该数的相反数A 、0个B 、1个C 、2个D 、3个7、减去一个正数,差一定 ( ) 被减数。

A 、大于B 、等于C 、小于D 、不能确定谁大8、若M+|–20|=|M|+|20|,则M 一定是( )A 、任意一个有理数B 、任意一个非负数C 、任意一个非正数D 、任意一个负数三、解答题9、计算1)(–23)–(–27)–27 2)(–732)+(+421)–213)(–1)+(+2)–(–3)–(–4) 4)(–331)–(+21)+(+443)–(–132)综合提高一、填空题:1、(– 431)+( )= –2 ( )–(–641)=2121 2、算式是5–7看成减法运算,减数是 ,看成加法运算,第一个加数是5,第二个加数是3、要求出数轴上– 4和 4.5所对应的两点之间的距离,可列算式 。

二、选择题4、下列说法错误的是( )A 、减去–2等于加上2B 、a –b <0,说明b 大于aC 、a 与b 互为相反数,则a+b=0D 、若a 与b 的绝对值相等,则这两个数相等5、欣欣同学去年身高156cm ,今年身高为163c m ,则欣欣身高增长了( )m.A 、0.7B 、–0.07C 、0.07D 、–0.76、两个负数的和为a,它们的差为b ,则a 与b 的大小关系是( )A 、a >bB 、a=bC 、a <bD 、a ≤b7 、数m 和n ,满足m 为正数,n 为负数,则m,m –n,m+n 的大小关系是( )A 、m >m –n >m+nB 、m+n >m >m –nC 、m –n >m+n >mD 、m –n >m >m+n8 =a+b –c –d, 则 的值是( )A 、4B 、–4C 、10D 、–10三、解答题9、 1)(–21)–(+31)+(+41) 2)(–321)–(+531)–(+751)3)(+6)–(+4)+7–(–2)4)(–21)+(–31)–(+41)+(+51)10、在数轴上表示–2和10两点之间插入三个点,使这5个点每相邻两点之间的距离相等,求这三个点 所表示的数。

相关文档
最新文档