离散型随机变量的期望

合集下载

关于离散型随机变量数学期望的几种求法

关于离散型随机变量数学期望的几种求法

关于离散型随机变量数学期望的几种求法离散型随机变量数学期望是衡量随机变量数字大小指标之一,也是概率论与数理统计中最基本也最重要的概念。

它可以体现利用该变量值观察数据的水平。

本文将介绍离散型随机变量的求数学期望的几种方法。

首先,关于离散型随机变量的数学期望,最基本的求法是加法法则。

即将分布函数f(x)的每一个取值乘以相应样本量x取,并把所有乘积相加就可以得到离散型随机变量的数学期望。

用数学符号表示就是:E[X] = Σ xf (x)。

如果离散型随机变量X的取值和概率f (x)都很多,那上述乘加过程就不方便进行。

此时,可以利用乘法法则求数学期望。

乘法运算公式表示如下:E[X] = Σ xP(X=x)。

乘法运算的结果可以让抽样的数据简单明了,只要把每一个X的取值乘以相应的概率P(X=x)即可得到期望值,这不仅仅可以大大简化计算,而且是个较为可靠的评价指标。

而数学期望的另一种求解方法则叫做函数法则,其思想就是把μ作为一个函数,给定P(x),当E[X]为函数f (X),其结果可由函数f(X)与P(X)给出,函数法则可以有效降低传统加法法则求法中变量和概率的乘积,减小计算量,提高效率。

最后还有另一种求离散型随机变量数学期望的方法,它叫做采样平均法,这种法则的思想就是,根据我们了解到的离散型随机变量的取值及概率,以此为基础,根据实际的情况随机抽取一定数量的样本来分析离散型随机变量的期望,然后将抽到取值的平均值作为期望值来表示。

用数学符号表示就是:E[X] =抽样值x1+ x2 +。

+xn/n。

该方法结果较加法法则有一定的偏差,但也较准确。

总结来说,以上三种不同的方法都可以用来求离散型随机变量的数学期望,每一种方法都有其使用优劣之处。

但是,总体来说,最佳的方式是采用函数法则,当然,这也取决于需求的精确度。

期望与方差公式离散型随机变量连续型随机变量

期望与方差公式离散型随机变量连续型随机变量

期望与方差公式离散型随机变量连续型随机变量概述:在概率论和数理统计中,期望和方差是两个重要的统计量。

它们用于描述随机变量的集中程度和离散程度。

本文将介绍期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。

一、离散型随机变量的期望和方差公式:离散型随机变量是指在有限或可数的样本空间内取值的随机变量。

对于一个离散型随机变量X,其期望和方差的公式如下:1. 期望公式:期望是用来衡量随机变量取值的中心位置,常表示为E(X)。

对于离散型随机变量X,其期望的计算公式为:E(X) = ∑[x * P(X = x)]其中,x表示随机变量X取到的每个可能值,P(X = x)表示相应取值的概率。

2. 方差公式:方差是用来衡量随机变量取值的离散程度,常表示为Var(X)或σ²。

方差的计算公式为:Var(X) = ∑[(x - E(X))² * P(X = x)]其中,x表示随机变量X的每个可能值,P(X = x)表示相应取值的概率,E(X)表示X的期望。

二、连续型随机变量的期望和方差公式:连续型随机变量是指取值在某一连续区间内的随机变量。

对于一个连续型随机变量X,其期望和方差的公式如下:1. 期望公式:连续型随机变量的期望的计算公式为:E(X) = ∫[x * f(x)] dx其中,f(x)表示随机变量X的概率密度函数。

2. 方差公式:连续型随机变量的方差的计算公式为:Var(X) = ∫[(x - E(X))² * f(x)] dx其中,f(x)表示随机变量X的概率密度函数,E(X)表示X的期望。

总结:本文介绍了期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。

对于离散型随机变量,期望的计算公式为E(X) = ∑[x * P(X = x)],方差的计算公式为Var(X) = ∑[(x - E(X))² * P(X = x)]。

对于连续型随机变量,期望的计算公式为E(X) = ∫[x * f(x)] dx,方差的计算公式为Var(X) = ∫[(x - E(X))² * f(x)] dx。

离散型随机变量的数学期望(均值)

离散型随机变量的数学期望(均值)

1
0 2
t 2et
1
dt
1
2
t 31etdt
0
1
1
2
2
2 (3) 2 (2 1) 2 (2) 2
x1exdx [( 1) ( ), (n) (n 1)!] 0
第九讲 均值与矩
四. 二维随机变量条件下的单变量数学期
1望.已知离散变量(X ,Y)的P( xi , y j ) :
k2 e E( X ) 2ee 2
k2 (k 2)!
例9-3-3 设X ~ e(),试求E( X 2 )





:f
x
e
x
,
0,
x 0;,Y g( X ) X 2 其 它.
E(Y )
yf ( y)dy
g( x) f ( x)dx
+ x2exdx
0
令t x, dx 1 dt,则E( X 2 )
第九讲 均值与矩

3
3
3
E(Y ) yi p( yi ) g( xi ) p( xi ) xi2 p( xi )
i 2
i 2
i 2
(2)2 0.10 (1)2 0.20 02 0.25 12 0.20 22 0.15 32 0.10
2.30
例9-3-2 已知X ~ P(),试求E( X 2 )
PX ( xi ) P( xi , y j ),由 均 值 定 义 :
j
E( X ) xi PX ( xi )
xi P( xi , y j )
i
ji
类似地,E(Y ) y j PY ( y j )
y j P( xi , y j ).

13个期望计算公式

13个期望计算公式

13个期望计算公式期望是概率论中的一个重要概念,它描述了一个随机变量的平均值。

在现实生活中,我们经常需要计算某种随机变量的期望,以便更好地理解和预测各种现象。

本文将介绍13个常见的期望计算公式,帮助读者更好地理解和运用期望的概念。

1. 离散型随机变量的期望计算公式。

对于离散型随机变量X,其期望可以通过以下公式计算:E(X) = Σx P(X=x)。

其中,x表示随机变量X可能取的值,P(X=x)表示X取值为x的概率。

2. 连续型随机变量的期望计算公式。

对于连续型随机变量X,其期望可以通过以下公式计算:E(X) = ∫x f(x) dx。

其中,f(x)表示X的概率密度函数。

3. 二项分布的期望计算公式。

对于二项分布B(n,p),其期望可以通过以下公式计算:E(X) = n p。

其中,n表示试验的次数,p表示每次试验成功的概率。

4. 泊松分布的期望计算公式。

对于泊松分布P(λ),其期望可以通过以下公式计算:E(X) = λ。

其中,λ表示单位时间(或单位面积)内事件发生的平均次数。

5. 几何分布的期望计算公式。

对于几何分布G(p),其期望可以通过以下公式计算:E(X) = 1/p。

其中,p表示每次试验成功的概率。

6. 均匀分布的期望计算公式。

对于均匀分布U(a,b),其期望可以通过以下公式计算:E(X) = (a+b)/2。

其中,a和b分别表示随机变量X的取值范围的下限和上限。

7. 指数分布的期望计算公式。

对于指数分布Exp(λ),其期望可以通过以下公式计算:E(X) = 1/λ。

其中,λ表示事件发生的速率。

8. 正态分布的期望计算公式。

对于正态分布N(μ,σ²),其期望可以通过以下公式计算:E(X) = μ。

其中,μ表示分布的均值。

9. 超几何分布的期望计算公式。

对于超几何分布H(N,M,n),其期望可以通过以下公式计算:E(X) = n (M/N)。

其中,N表示总体容量,M表示总体中具有成功属性的个体数量,n表示抽取的样本容量。

随机变量的期望值计算

随机变量的期望值计算

随机变量的期望值计算随机变量的期望值是概率论中一个非常重要的概念,它代表了随机变量在一次试验中平均取值的大小。

在实际问题中,计算随机变量的期望值可以帮助我们更好地理解问题的特性和规律。

本文将介绍随机变量的期望值的计算方法,包括离散型随机变量和连续型随机变量的情况。

一、离散型随机变量的期望值计算对于离散型随机变量X,其取值为有限个或可数个,记为{x1,x2, ..., xn},对应的概率分布为{p1, p2, ..., pn},则随机变量X的期望值E(X)的计算公式为:E(X) = x1*p1 + x2*p2 + ... + xn*pn其中,xi为随机变量X的取值,pi为对应的概率。

通过这个公式,我们可以计算出离散型随机变量的期望值。

例如,假设有一个随机变量X的取值为{1, 2, 3, 4},对应的概率分布为{0.1, 0.2, 0.3, 0.4},那么随机变量X的期望值E(X)的计算如下:E(X) = 1*0.1 + 2*0.2 + 3*0.3 + 4*0.4 = 2.8因此,随机变量X的期望值为2.8。

二、连续型随机变量的期望值计算对于连续型随机变量X,其取值为一个区间[a, b],概率密度函数为f(x),则随机变量X的期望值E(X)的计算公式为:E(X) = ∫(a到b) x*f(x) dx其中,f(x)为随机变量X的概率密度函数。

通过这个公式,我们可以计算出连续型随机变量的期望值。

例如,假设有一个连续型随机变量X的概率密度函数为f(x) = 2x,取值区间为[0, 1],那么随机变量X的期望值E(X)的计算如下:E(X) = ∫(0到1) x*2x dx = 2∫(0到1) x^2 dx = 2*[x^3/3] (0到1) = 2/3因此,随机变量X的期望值为2/3。

三、随机变量的期望值计算的应用随机变量的期望值计算在概率论和统计学中有着广泛的应用。

通过计算随机变量的期望值,我们可以得到随机变量的平均取值大小,从而更好地理解问题的特性和规律。

离散型随机变量的期望与方差

离散型随机变量的期望与方差

点评:当ξ的所有可能取值为x1,x2,…,xn这n个值时,若p1= p2=…=pn= ,则x1,x2,…,xn的方差就是我们初中学过 的方差.因此,现在学的方差是对初中学过的方差作了进一步 拓展.
4.方差的性质 (1)D(C)=0(C 为常数). (2)D(aξ+b)=a2Dξ. (3)Dξ=Eξ2-(Eξ)2. (4)如果 ξ~B(n,p),那么 Dξ=npq.这里 q=1-p. (5)如果随机变量 ξ 服从几何分布,且 P(ξ=k)=g(k,p),q=1 -p,那么 Dξ=pq2.
B.1
C.2
D.4
解析:由ξ=2η+3得Dξ=4Dη,而Dξ=4,Dη=1.故选B.
答案:B
5.(2011·安徽蚌埠二中练习)若随机变量 ξ 的分布列为:P(ξ
=m)=13,P(ξ=n)=a,若 Eξ=2,则 Dξ 的最小值等于(
)
A.0 B.2
C.4 D.无法计算
解析:由题意得13+a=1,m×13+n×a=2, a=23,m+2n=6,Dξ=13×(2-m)2+23×(2-n)2=13×(2n-4)2 +23×(2-n)2=2(n-2)2≥0,则 Dξ 的最小值等于 0.故选 A.

考点陪练 1.下面说法中正确的是( ) A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值 B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平 C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平 D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值 答案:C
【典例2】 编号1,2,3的三位学生随意入座编号为1,2,3的三个 座位,每位学生坐一个座位,设与座位编号相同的学生的个数 是ξ.
(1)求随机变量ξ的概率分布;

离散型随机变量的期望和方差

离散型随机变量的期望和方差

离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。

期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。

在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。

期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。

离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。

方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。

运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。

可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。

总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。

以上就是关于离散型随机变量期望和方差的主要内容。

随机变量及其分布-离散型随机变量的数学期望和方差

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。

2.意义:反映离散型随机变量取值的平均水平。

3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。

2.意义:反映离散型随机变量偏离均值的程度。

3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1离散型随机变量的期望教学目标:知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。

教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值x i(i=1,2,…)的概率为,则称表ξx1x2…x i…P P1P2…P i…为随机变量ξ的概率分布,简称ξ的分布列6. 分布列的两个性质:⑴P i≥0,i=1,2,...;⑵P1+P2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ0 1 …k …nP ……称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k=0,1,2,…,).于是得到随机变量ξ的概率分布如下:ξ 1 2 3 …k …P ……称这样的随机变量ξ服从几何分布记作g(k,p)= ,其中k=0,1,2,…,.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ 4 5 6 7 8 9 10P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n次射击中,预计大约有次得4环;次得5环;…………次得10环.故在n次射击的总环数大约为,从而,预计n次射击的平均环数约为.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:….1.均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为ξx1x2…x n …P p1p2…p n…则称……为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机ξx1x2…x n …η……P p1p2…p n…于是……=……)……)=,由此,我们得到了期望的一个性质:5.若ξB(n,p),则Eξ=np证明如下:∵,∴0×+1×+2×+…+k×+…+n×.又∵,∴++…++…+.故若ξ~B(n,p),则np.三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为,所以例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B (20,0.9),,由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01.该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元.为保护设备,有以下3 种方案:方案1:运走设备,搬运费为3 800 元.方案2:建保护围墙,建设费为2 000 元.但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水.试比较哪一种方案好.解:用X1、X2和X3分别表示三种方案的损失.采用第1种方案,无论有无洪水,都损失3 800 元,即X1 = 3 800 .采用第2 种方案,遇到大洪水时,损失2 000 + 60 000=62 000 元;没有大洪水时,损失2 000 元,即同样,采用第3 种方案,有于是,EX1=3 800 ,EX2=62 000×P (X2 = 62 000 ) + 2 00000×P (X2 = 2 000 )= 62000×0. 01 + 2000×(1-0.01) = 2 600 ,EX3 = 60000×P (X3 = 60000) + 10 000×P(X3 =10 000 ) + 0×P (X3 =0)= 60 000×0.01 + 10000×0.25=3100 .采取方案2的平均损失最小,所以可以选择方案2 .值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案 2 将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2 也不一定是最好的.例4.随机抛掷一枚骰子,求所得骰子点数的期望解:∵,=3.5例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:(=1,2, (10)需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:1 2 3 4 5 6 7 8 9 100.15 0.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316根据以上的概率分布,可得的期望例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ 1 2 3 4 5 6P所以1×+2×+3×+4×+5×+6×=(1+2+3+4+5+6)×=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量ξ15161718P 0.10.50.30.1求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得η=2(ξ-4)十10,即η=2ξ+2;(Ⅱ)∵η=2ξ+2∴2Eξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15所以出租车在途中因故停车累计最多15分钟四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则()A.4;B.5;C.4.5;D.4.75答案:C2.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望;⑶他罚球3次的得分ξ的数学期望.解:⑴因为,,所以1×+0×⑵η的概率分布为η0 1 2P所以0×+1×+2×=1.4.⑶ξ的概率分布为ξ01 2 3P所以0×+1×+2×=2.1.3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.∴P(ξ=k)=P n(k)=C)k(1-)n-k(k=0,1,2,….,n).∴ξ~B(n,),故Eξ =n×=五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E (aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np六、课后作业:P64-65练习1,2,3,4 P69 A组1,2,31.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)解:令取取黄球个数 (=0、1、2)则的要布列为0 1 2p于是 E ()=0×+1×+2×=0.8故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数①求的概率分布列②求的数学期望解:①依题意的取值为0、1、2、3、4=0时,取2黑 p(=0)==1时,取1黑1白 p(=1)==2时,取2白或1红1黑p(=2)= +=3时,取1白1红,概率p(=3)==4时,取2红,概率p(=4)=0 1 2 3 4∴分布列为p(2)期望E=0×+1×+2×+3×+4×=3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望解:设表示产生故障的仪器数,A i表示第i台仪器出现故障(i=1、2、3)表示第i台仪器不出现故障,则:p(=1)=p(A1··)+ p(·A2·)+ p(··A3)=p1(1-p2) (1-p3)+ p2(1-p1) (1-p3)+ p3(1-p1) (1-p2)= p1+ p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3p(=2)=p(A1· A2·)+ p(A1··)+ p(·A2·A3)= p1p2 (1-p3)+ p1p3(1-p2)+ p2p3(1-p1)= p1p2+ p1p3+ p2p3-3p1p2p3p(=3)=p(A1· A2·A3)= p1p2p3∴=1×p(=1)+2×p(=2)+3×p(=3)= p1+p2+p3注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2解:从5个球中同时取出2个球,出现红球的分布列为0 1 2P5. 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率B队队员胜的概率A1对B1A2对B2A3对B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,(1)求,的概率分布;(2)求,解:(Ⅰ),的可能取值分别为3,2,1,0根据题意知,所以(Ⅱ);因为,所以七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np 。

相关文档
最新文档