离散型随机变量及其分布列教案
离散型随机变量及其分布列教案

2/4
7. 某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外的概率为 0.1,落在靶内的各个点是 随机的。 已知圆形靶中三个圆为同心圆, 半径分别为 30cm, 20cm, 10cm, 飞镖落在不同区域的环数如图。 设这位同学投掷一次得到的 环数为随机变量 X,求 X 的分布列。 【参考答案】由题意可知,飞镖落在靶内各个区域的概率与它们的 面积成正比,而与它们的位置和形状无关,由圆的半径值可得到三 个同心圆的半径比为 3:2:1,面积比为 9:4:1,所以 8 环区域,9 环区域,10 环区域的面积 比为 5:3:1,则掷得 8 环,9 环,10 环的概率课分别设为 5k ,3k, k,根据离散型随机变 量分布列的性质(2)有 0.1 + 5k + 3k + k = 1 解得k = 0.1 .得到离散型随机变量 X 的分布列为 X P 0 0.1 8 9 0.3 10 0.1
1 6 1
5 1 6
6 1 6
1 6
(2)P X > 4 = P X = 5 + P x = 6 =
+6 =3 ;
1 5
1
(3) P X ≤ 5 = P X = 1 + P X = 2 + P X = 3 + P X = 4 + P X = 5 = 5 ∙ 6 = 6. 或P X ≤ 5 = 1 − P X > 5 = 1 − P X = 6 = 1 − 6 = 6.
2 第一步:从 1,3,5 中选取两个数字有������3 = 3种办法;第二步将选取的两个数
字与 0 一起组成三位数的奇数有������2 (0 只能放在十位上) , 由分 2 = 2种方法 步乘法计数原理,第一类中的奇数共有������1 = 3 × 2 = 6种。
离散型随机变量教案

离散型随机变量及其分布列第一课时2.1.1离散型随机变量教学目标:1.知识与技能:理解随机变量和离散型随机变量的概念,能够应用随机变量表示随机事件,学会恰当的定义随机变量;2.过程与方法:在教学过程中,以不同的实际问题为导向,引导学生分析问题,归纳共性,提高分析能力和抽象概括能力;3.情感、态度与价值观:列举生活实例,使学生进一步感受到数学与生活的零距离,增强数学的应用意识.教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用.教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识.教学方法:问题情境法、引导探究.教学手段:多媒体.教学过程:一、创设情境,引出随机变量问题1:掷一枚骰子,向上的点数有哪些?问题2:某人射击一次,射中的环数有哪些?问题3:掷一枚硬币的结果有哪些?思考:掷一枚硬币的结果是否也可以用数字来表示?任何随机试验的结果都可以用数字表示吗?二、探究发现,归纳概念问题4:从装有黑色,白色,黄色,红色四个球的箱子中摸出一个球,可能会出现哪几种结果?能否用数字来刻画这种随机试验的结果?引导学生从例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示。
由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量.随机变量的概念:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示,在这个对应关系下,数字随着试验结果的变化而变化。
像这种随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.思考:随机变量和函数有类似的地方吗?函数随机变量问题5:在掷骰子的试验中,如果我们仅关心的是“掷出的点数是否为偶数”,怎样构造随机变量?问题6:在含有10件次品的100件产品中,任意抽取4件,设其中含有的次品件数为X ,思考:(1)求出随机变量X 的所有可能取值(2){X=4}表示什么事件?(3){X <3}表示什么事件?(4)事件“抽出3件以上次品”如何用X 表示?(5)事件“至少抽出1件次品”如何用X 表示?思考:前面所涉及的随机变量,从取值的角度看有什么共同特点?(取值可以一一列出)0,掷出奇数点1,掷出偶数点{Y 实数 实数离散型随机变量的概念:所有取值可以一一列出的随机变量,称为离散型随机变量.问题7:下面两个例题中的随机变量是离散型随机变量吗?(1)某网页在24小时内被浏览的次数(2)某人接连不断的射击,首次命中目标需要射击的次数合作交流:你能举出一些离散型随机变量的例子吗?问题8:下列随机变量是离散型随机变量吗?(1)在某项体能测试中,某同学跑1km所花费的时间;(2)公交车每10分钟一趟,一乘客等公交车的时间;(3)笔记本电脑的寿命.非连续型随机变量的概念:有的随机变量,它可以取某一区间内的一切值这样的随机变量叫做连续型随机变量.问题9:上例体能测试中,如果跑1km时间在3'39"之内的为优秀;时间在3'39"到3'49"之间的为良好;时间在3'49"到4'33"之间的为及格,其他的不及格.(1)如果我们只关心该同学是否能够取得优秀,应该如何定义随机变量?(2)如果我们关心学生的成绩等级,是优秀、良好还是及格,又应该如何定义随机变量呢?三、实际应用,加深理解练习:下列随机试验的结果能否用离散型随机变量表示?若能,则写出它可能的取值,并说明这些值所表示的随机试验的结果.(1)一袋中装有5个同样的球,编号依次为1,2,3,4,5.从该袋中随机取出3个球.三个球中的最小编号,最大编号呢?(2)袋子中有2个黑球6个红球,从中任取 3个,其中含有的红球个数?含有的黑球个数呢?(3)某同学打篮球投篮5次,投中的次数;(4)甲乙两队进行乒乓球单打比赛,采用“5局3胜制”,则分出胜负需要进行的比赛次数;四、课堂小结本节课你学到了什么?两个概念:随机变量、离散型随机变量一种思想:数字化五、布置作业必做题:1.有5把钥匙串在一起,其中有1把是有用的,若依次尝试开锁,若打不开就扔掉,直到找到能开锁的钥匙为止,则试验次数X 的所有可能取值是_______;2.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,求这名同学回答这三个问题的总得分ξ的所有可能取值及对应的试验结果.选做题:先后抛掷两枚骰子,向上的点数之和 X 的所有可能取值及取这些值时对应的概率.六、板书设计多媒体 典例分析 学生练习区: (1) (2) (3) (4) 2.1.1离散型随机变量1.随机变量的概念和本质:2.离散型随机变量概念:3.非离散型随机变量概念:。
离散型随机变量及其分布复习课教案

离散型随机变量及其分布复习课教案一、教学目标1. 回顾和巩固离散型随机变量的概念、性质和常用分布律。
2. 提高学生运用离散型随机变量及其分布解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 离散型随机变量的定义及其性质。
2. 离散型随机变量的分布律及其计算方法。
3. 常用离散型随机变量的分布律(如二项分布、泊松分布、均匀分布等)。
4. 离散型随机变量期望和方差的计算方法及其性质。
5. 离散型随机变量及其分布在实际问题中的应用。
三、教学方法1. 采用案例分析法,通过具体例子引导学生回顾和巩固离散型随机变量及其分布的知识。
2. 运用小组讨论法,培养学生团队合作精神和独立思考能力。
3. 采用互动式教学法,激发学生的学习兴趣,提高课堂参与度。
4. 利用多媒体辅助教学,增强学生对知识点的理解。
四、教学准备1. 教案、课件及教学素材。
2. 计算器、投影仪等教学设备。
3. 练习题及答案。
五、教学过程1. 导入新课:通过一个简单的案例,引导学生回顾离散型随机变量的定义及其性质。
2. 知识回顾:讲解离散型随机变量的分布律及其计算方法,引导学生复习常用分布律。
3. 案例分析:分析实际问题,运用离散型随机变量及其分布解决这些问题,巩固知识。
4. 小组讨论:让学生分组讨论离散型随机变量期望和方差的计算方法及其性质。
5. 课堂练习:布置练习题,让学生运用所学知识解决问题,教师点评答案。
6. 总结与展望:对本节课的主要内容进行总结,并提出下一节课的教学内容。
7. 课后作业:布置课后作业,巩固课堂所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对离散型随机变量及其分布的理解程度。
2. 练习题解答:评估学生运用离散型随机变量及其分布解决实际问题的能力。
3. 小组讨论:观察学生在团队合作中的表现,评价其团队合作精神和独立思考能力。
七、教学拓展1. 介绍离散型随机变量及其分布在其他学科领域的应用。
离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列一.教学目标:1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列. 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子. 二.教学重点:离散型变量的分布列及其求法. 教学难点:理解随机变量分布列的性质. 三.教学用具:投影仪 四.教学过程: 1.复习提问(1)可问:随机变量、离散型随机变量、连续型随机变量的概念. (2)点评上节课学生做的课外作业. 2.提出教科书中关于抛掷一枚骰子的例子 可问:你能举出类似这样的例子吗?精选1~2个学生举的例子,加以分析和研究.3.提出随机变量ξ的分布列的概念,总结任一离散型随机变量的分布列具有的两个简单性质在分析和研究上述例子的基础上,概括出:一般地,设离散型随机变量ξ可能取的值为,,,,,21 i x x xξ取每一个值),2,1( =i x i 的概率为i i P x P ==)(ξ,则称表ξ 1x 2x (i)x…P1P2P…iP…为随机变量ξ的概率分布,简称ξ的分布列.引导学生回顾概率的基本性质,归纳总结出任一离散型随机变量的分布列的两个简单性质:(1) ,2,1,0=≥i P i ; (2).121=++ P P4.讲解例1、例2例1 一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.解:设黄球的个数为n ,依题意知道绿球个数为2n ,红球个数为4n ,盒中球的总数为7n .∴.717)0(,7272)1(,7474)1(=====-====n n P n n P n n P ξξξ ∴从该盒中随机取出一球所得分数ξ的分布列为ξ 1 -1 0P7472 71例2 一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是),3,2,1(21=n n .记ξ为原物体在分裂终止后所生成的子块数目.求)10(≤ξP .解:依题意,原物体在分裂终止后所生成的子块数目ξ的分布列为ξ 2 4 8 16 …n 2 …P214181 161 … n 21…∴)8()4()2()10(=+====≤ξξξξP P P P .87814121=++=通过例2及教科书中的例子,归纳总结出: 一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.5.提出离散型随机变量服从二项分布的概念引导学生回顾n 次独立重复试验中事件A 恰好发生k 次的概率公式.然后提出离散型随机变量ξ服从二项分布的概念.可问:你能举出离散型随机变量服从二项分布的例子吗? 根据学生举的例子,教师引导他们对此加以简单分析. 6.讲解例3、例4例3 某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量%)5,2(~B ξ.所以,.0025.0%)5()2(,095.0%)95%)(5()1(,9025.0%)95()0(22212202=========C P C P C P ξξξ因此,次品数ξ的概率分布是ξ 0 1 2P0.9025 0.095 0.0025例4 重复抛掷一枚骰子5次,得到点数为6的次数记为ξ,求)3(>ξP . 解:依题意,随机变量)61,5(~B ξ.∴.77761)61()5(,77762565)61()4(555445====⋅==C P C P ξξ ∴.388813)5()4()3(==+==>ξξξP P P7.课堂练习教科书中的“练习”. 8.归纳总结(1)对离散型随机变量ξ的分布列及其性质和二项分布的概念作一次小结. (2)对本课的4道例题的解题思路进行总结. 五.布置作业:教科书习题第3、5、6题。
高中数学离散型随机变量的分布列教案新人教A版选修

一、教案简介本教案为人教A版高中数学选修课程《离散型随机变量的分布列》的教学设计,主要针对高中学生,旨在帮助学生理解离散型随机变量的概念,掌握分布列的性质及其计算方法,培养学生的数学思维能力和实际应用能力。
二、教学目标1. 理解离散型随机变量的定义及其性质。
2. 掌握离散型随机变量的分布列的概念及其计算方法。
3. 能够运用分布列解决实际问题,提高数学建模能力。
三、教学内容1. 离散型随机变量的定义及其性质。
2. 分布列的概念及其计算方法。
3. 常用离散型随机变量的分布列(如伯努利分布、二项分布、几何分布等)。
4. 离散型随机变量分布列的应用。
四、教学过程1. 引入新课:通过实例介绍离散型随机变量的概念,引导学生思考其分布规律。
2. 讲解离散型随机变量的定义及其性质,让学生理解并掌握基本概念。
3. 讲解分布列的概念及其计算方法,让学生能够自行求解离散型随机变量的分布列。
4. 通过例题讲解常用离散型随机变量的分布列及其应用,让学生能够解决实际问题。
5. 课堂练习:让学生运用所学知识解决实际问题,巩固课堂所学。
五、教学评价1. 课堂问答:检查学生对离散型随机变量及其分布列的基本概念的理解。
2. 课堂练习:评估学生运用分布列解决实际问题的能力。
3. 课后作业:巩固学生对离散型随机变量分布列的知识,提高学生的数学应用能力。
六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考离散型随机变量的分布规律。
2. 互动教学:在讲解过程中,鼓励学生积极参与,提问解答,增强课堂的互动性。
3. 分层教学:针对学生的不同层次,给予适当的引导和辅导,使所有学生都能跟上教学进度。
4. 实践操作:通过大量的例题和练习,让学生在实践中掌握离散型随机变量的分布列的计算方法及其应用。
七、教学资源1. PPT课件:制作精美的PPT课件,直观展示离散型随机变量的分布列的性质和计算方法。
2. 教学案例:收集与离散型随机变量分布列相关的实际案例,用于引导学生思考和巩固所学知识。
离散型随机变量其分布列教案

离散型随机变量其分布列教案一、教学目标1.知识与技能:掌握离散型随机变量的概念;了解离散型随机变量的分布列的概念与相关性质;能够根据问题给出离散型随机变量的分布列。
2.过程与方法:通过讲解、示例分析和实际问题解答等方式培养学生的分析问题和解决问题的能力;通过课堂练习、小组合作等方式培养学生的合作精神和团队意识。
3.情感、态度和价值观:培养学生对离散型随机变量的兴趣;培养学生的逻辑思维和分析问题的能力;培养学生的合作意识和团队合作能力。
二、教学重点与难点1.教学重点2.教学难点三、教学过程1.导入新知识引入离散型随机变量的概念,与连续型随机变量进行对比,引出离散型随机变量的分布列的概念,并讲解分布列的性质。
2.学习新知识2.1引入概念解释离散型随机变量的概念,并给出几个常见的离散型随机变量的例子,如二项分布、泊松分布等。
2.2分布列的概念详细讲解分布列的概念,即离散型随机变量的取值及其对应的概率,并通过示例进行说明。
2.3分布列的性质讲解分布列的性质,包括非负性、和为1等。
3.巩固与拓展通过例题进行分布列的计算练习,同时讲解分布列的期望值和方差的计算方法。
4.拓展应用结合实际问题,如掷硬币、扔骰子等,引导学生找出问题中的离散型随机变量,并计算其分布列。
四、教学设置1.教具准备黑板、彩笔、教案、习题册等。
2.师生活动教师以讲解为主,学生以听讲、思考、举手发言为主。
3.学生活动主要是听讲、思考、讨论、合作等。
五、教学反思离散型随机变量的分布列是基础内容,是理解和应用概率论中的重要概念。
通过本节课的学习,学生对离散型随机变量的概念和分布列的性质有了初步的了解,并能够通过例题进行分布列的计算。
教学过程中需要注意让学生进行思考和灵活运用,培养学生的分析问题和解决问题的能力,同时注重实际问题的应用,提高学生的理论与实践结合的能力。
离散型随机变量及其分布列教案

【例1】(1)设X是一个离散型随机变量,其分布列为:
X
-1
0
1
P
1-2q
q2
则q等于______
(2)设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=__.
(3)设随机变量ξ的分布列为P(ξ=k)= (k=1,2,3),c为常数,则P(0.5<ξ<2.5)=__________.
X
0
1
P
则P(X=1)=__________.
3.50张彩票中只有2张中奖票,今从中任取n张,为了使这n张彩票里至少有一张中奖的概率大于0.5,n至少为多少
4.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力,求X的分布列.
4.鲁川在鱼缸中养了3条白色、2条红色和n条黑色金鱼,现从中任取2条金鱼进行观察,每取得1条白色金鱼得1分,每取得1条红色金鱼得2分,每取得1条黑色金鱼得0分,用X表示所得的分数,已知得0分的概率为 ,
(1)求鱼缸中黑色金鱼的条数n;(2)求X的概率分布.
2.离散型随机变量:所有取值可以________的随机变量,称为离散型随机变量.随机变量通常用大写字母X,Y,Z等表示,也可以用希腊字母ξ,η等表示.
3.一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式表示如下:
离散型随机变量及其分布教案

离散型随机变量及其分布教案一、引言随机变量是概率论中的重要概念,它描述了随机试验中的各种可能结果与相应的概率分布之间的关系。
离散型随机变量是指在一定范围内取有限个或可列无限个离散值的随机变量。
本教案将介绍离散型随机变量及其分布。
二、离散型随机变量的概念离散型随机变量可以理解为能够取到离散值的随机变量。
例如,抛掷一个骰子出现的点数就是一个离散型随机变量,因为它只能取到1、2、3、4、5、6这几个离散值之一。
三、离散型随机变量的分布律离散型随机变量可以通过分布律来描述其各个取值的概率。
1. 定义离散型随机变量的分布律是指在给定取值情况下的概率分布。
对于离散型随机变量X,其分布律可以表示为P(X=x),其中x表示X的某个取值。
2. 性质离散型随机变量的分布律必须满足以下两个性质:(1)非负性:对于任意的x,P(X=x)≥0;(2)归一性:所有可能的取值情况的概率之和等于1,即∑P(X=x)=1。
四、常见离散型随机变量及其分布1. 伯努利分布伯努利分布是最简单的离散型随机变量分布之一,它描述了一个随机试验只有两个可能结果的情况。
例如,投掷硬币的结果只能是正面或反面。
2. 二项分布二项分布是描述n个独立的伯努利试验中成功次数的离散型随机变量的分布。
例如,投掷一枚硬币n次,正面朝上的次数就是一个满足二项分布的离散型随机变量。
3. 泊松分布泊松分布是描述在给定时间段或空间范围内某事件发生次数的离散型随机变量的分布。
例如,单位时间内到达某一地点的车辆数量就可以用泊松分布来描述。
4. 几何分布几何分布是描述在一系列独立的伯努利试验中,首次获得成功所需要的试验次数的离散型随机变量的分布。
例如,第一次抛掷正面朝上的硬币所需要的抛掷次数就可以用几何分布来描述。
五、总结离散型随机变量及其分布是概率论中的重要概念,通过分布律可以准确描述随机变量的取值情况和相应的概率分布。
常见的离散型随机变量包括伯努利分布、二项分布、泊松分布和几何分布,它们在实际问题中具有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型随机变量及其分布列第一课时
2.1.1离散型随机变量
教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量.
2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想
描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识.
3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识
数学的科学价值和应用价值.
教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.
教学方法:启发讲授式与问题探究式.
教学手段:多媒体
教学过程:
一、创设情境,引出随机变量
提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示?
启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系.
在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果.
再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗?
让学生思考得出结论:投进零个球——— 0分
投进一个球——— 1分
投进两个球——— 2分
投进三个球——— 3分
得分结果可以用数字0、1、2、3表示.
二、探究发现
1、随机变量
问题1.1:任何随机试验的所有结果都可以用数字表示吗?
引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量.
问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念?
引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.
随机变量常用字母X、Y、ξ、η来表示.
问题1.3:随机变量与函数有类似的地方吗?
引导学生回顾函数的理解:
函数
实数实数
在引导学生类比函数的概念,提出对随机变量的理解:
随机试验的结果 实数
师生讨论交流归纳出结论:随机变量和函数都是一种映射,函数把实数映为实数,随机变量把随机试验的结果映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.
我们把随机变量的取值范围叫做随机变量的值域.
因此掷一枚硬币的试验中,随机变量的值域可以为{0,1}或{1,2}
2、 离散型随机变量
问题2.1:用随机变量表示下列试验,写出它们的值域:
(1) 据统计资料显示,某城市的最大日降雨量是150毫升/平方米,该城市的日降雨
量ξ是随机变量.
(2) 在100张体育彩票中,有5张三等奖,现从中任取10张,抽得三等奖的张数η
是随机变量.
解答:(1){}1500≤≤ξξ;(2){}5,4,3,2,1,0
问题2.2:从连续性的角度看上述两个问题中的值域有什么不同?
让学生思考得出结论:有的随机变量的取值可以一一列出,但有的却不能.
教师引导学生归纳出离散型随机变量的概念:所有取值可以一一列出的随机变量,称为离散型随机变量.
问题2.3:区分下列随机试验中的随机变量哪些是离散型随机变量?哪些不是?
(1) 电话用户在某一段时间内对电话站的呼唤次数;
(2) 射击时击中点与目标中心的偏差;
(3) 某网页在24小时内被浏览的次数;
(4) 电灯泡的寿命.
再让学生自己举出一些离散型随机变量的例子,加深对概念的理解.
三、 随机变量在实际问题中的应用
1、 用随机变量表示随机事件
问题:写出下列随机变量可能的取值,并说明随机变量所取的值表示的随
机试验的结果.
(1) 在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X 是随
机变量.
(2) 一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数ξ
是一个随机变量.
解答:(1)随机变量X 可能的取值为:0,1,2,3,4.
{}0=X ,表示抽出0件次品;
{}1=X ,表示抽出1件次品;
{}2=X ,表示抽出2件次品;
{}3=X ,表示抽出3件次品;
(2)随机变量ξ可能的取值为:0,1,2,3.
{}0=ξ,表示取出0个白球3个黑球;
{}1=ξ,表示取出1个白球2个黑球;
{}2=ξ,表示取出2个白球1个黑球;
随机变量
{}3=ξ,表示取出3个白球0个黑球;
问题:抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差
为ξ,试问:{}4>ξ表示的试验结果是什么?
答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“{}4>ξ”表示第一枚为6点,第二枚为1点.
让学生进一步了解随机变量的作用,以及用随机变量表示随机试验的方法.
2、 定义随机变量的原则
问题: 如果规定寿命在1500小时以上的灯泡为一等品;寿命在1000小时到1500小时之间的为二等品;寿命为1000小时以下的为不合格.
(1)如果我们关心灯泡是否为合格品,应该如何定义随机变量?
(2)如果我们关心灯泡是否为一等品或二等品,应该如何定义随机量?
(3)如果我们关心灯泡的使用寿命,应该如何定义随机变量?
让学生思考,教师引导得出答案:
(1)随机变量⎩
⎨⎧=否则灯泡为不合格品.1.0X ; (2)随机变量⎪⎩
⎪⎨⎧=否则灯泡为二等品灯泡为一等品.3.2.1Y ;
(3)定义随机变量Z 为灯泡的使用寿命.
问题:定义随机变量的规律是什么?
引导学生体会根据实际问题定义随机变量的一般原则,让学生讨论并归纳出:
所定义的随机变量值应该有实际意义,所定义的随机变量取值应该和所感兴趣的结果个数形成一对一的关系.
四、 课堂小结
(1)随机变过量的定义,离散型随机变过量的定义;
(2)定义随机变量的原则:所定义的随机变量值应该有实际意义,所定义的随机变量取值应该和所感兴趣的结果个数形成一对一的关系.
五、 布置作业
课本:习题2.1 A 组1、2、3
思考题:某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车
费.若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.
(1)求租车费η关于行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因
故停车累计最多几分钟?
参考答案:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2
(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.
所以,出租车在途中因故停车累计最多15分钟.
教学设计:
随机变量在概率统计研究中起着极其重要的作用,它通过实数空间来刻画随机现象,从而使更多的数学工具有了用武之地.随机变量是连接随机现象和实数空间的一座桥梁,它使我们得以在实数空间上研究随机现象.离散型随机变量是最简单的随机变量,本节课通过离散型随机变量展示了用实数空间刻画随机现象的方法.
本节课首先从学生熟悉的掷骰子、掷硬币、篮球运动员罚球为例,引入随机变量的概念,引导学生分析问题的特点,通过几个问题的讨论,了解随机变量的概念实际上也可以看作是函数概念的推广,从而进一步归纳出随机变量的概念,使学生体会概念形成的过程.随机变量的概念得出后,通过三组问题让学生理解、辨析离散型随机变量.
最后通过简单的练习,让学生体会随机变量在实际问题中的应用,培养应用的意识.在教学方法方面,为了充分调动学生学习的积极性,在教学中主要采用启发式教学法;采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”进行教学,把启发、诱导贯穿教学始终,通过真实、熟悉的情景,激发学生的学习兴趣,尽力唤起学生的求知欲望,促使他们积极参与学习活动全过程,在老师的指导下主动地开展学习活动.。