赵近芳-大学物理学答案--全
大学物理学-课后习题答案-赵近芳-全

习题及解答(全)习题一1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即. 只是速度在径向上的分量.∵有(式中叫做单位矢),则 式中就是速度径向上的分量, ∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r =,然后根据=,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,r ∆r ∆t d d r t d d r t d d v t d d vr∆∆r r ∆12r r -=12r r r ϖϖ-=∆t d d r t d d r ==v t s d d t rd d r r ˆr =r ˆt ˆr ˆt r t d d d d d d r rr +=t rd d tr t d d d d 与r td d v tv a d d ϖϖ=t vd d a ττϖϖ(v =v t v t v t v d d d d d d ττϖϖϖ+=dt dvt t r d ˆd d ˆd τϖϖΘ与x x t y y t 22y x +v t rd d a 22d d t r v 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x a 222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x j y i x r ϖϖϖ+=故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
大学物理学习题全解赵近芳版

大学物理习题集第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=±.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d v k t v =-, 故 020d d v tv vk t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v =-,积分得11n v kt C n-=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t = 解得36t =.所以3242(13)t θ=+==3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为as -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201c o s c o s 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由v 图1.7端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V22l t V ===证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?A B ABv v + uv - uABvu uvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-, 所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1 M这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此1212F F F k k k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v g h C =+,当h = 0时,v = 0,所以C = 0,因此速率为v2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212km v C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2n x mv k x =-⎰.(1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mg x tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m mR t μ=-=, 即 : 2d d k v t Rv μ=-. 积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -m ωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆=. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1).棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章答案(赵近芳)————————————————————————————————作者:————————————————————————————————日期:习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV方向与cbadc 相反,即顺时针方向.题11.5图11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tBR R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H11题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示(1)通过横截面的磁通为⎰==b a ab NIh r h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ ab hN I L ln π220μψ== (2)∵ 221LI W m = ∴ a b h I N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===RR m I R rr I r r w W 00204320π16π4d d 2μμπ。
大学物理(赵近芳)练习册答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.1. D ;2. -g /2 , ()g 3/322v3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)4. 17.3 m/s, 20 m/s .5. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)6. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 21.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。
大学物理第4版主编赵近芳课后答案

习题88.1 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题8.1图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题8.1图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但 Q acb = 0,∴ Q b 2a <0 放热 ; b 2a 压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的. [ ](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. (C) 气体能够自由膨胀,但不能自动收缩. (D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量. [答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
大学物理学第四版课后习题答案(赵近芳)[上册]
![大学物理学第四版课后习题答案(赵近芳)[上册]](https://img.taocdn.com/s3/m/25c935eb84254b35effd3404.png)
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
赵近芳-大学物理学答案--全

大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理学第四版课后习题答案全解 赵近芳 上册

1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。 给出这个匀变速直线运动在 t=3s 时的速度和加速度,并说明该时刻运动是加速的还
是减速的。(x 单位为 m,t 单位为 s) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间
的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为
v dx 4t 8 dt
a
d2x dt 2
4
t=3s 时的速度和加速度分别为 v=20m/s,a=4m/s2。因加速度为正所以是加速的。
1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。
出r=
x2 y2
,然后根据 v
=
dr dt
及
a
=
d2r dt 2
而求得结果;又有人先计算速度和加速度的
分量,再合成求得结果,即
v=
dx 2 dy 2 , a = dt dt
d2x dt 2
2
d2 dt
y
2
2
你认为两种方法哪一种
正确?为什么?两者差别何在?
解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有
两边积分得
1 v2 2x 2x3 c 2
由题知, x 0 时, v0 10 ,∴ c 50
∴
v 2 x3 x 25 m s1
1.10 已知一质点作直线运动,其加速度为 a =4+3 t m s2 ,开始运动时,x =5 m,v =0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是得 ①
又设 的速度为 , 的速度为 ,则有
②
③
联立①、③解得
④
将④代入②,并整理得
于是有
将其代入④式,有
又,题述爆炸后,两弹片仍沿原方向飞行,故只能取
证毕.
2-12设 .(1)当一质点从原点运动到 时,求 所作的功.(2)如果质点到 处时需0.6s,试求平均功率.(3)如果质点的质量为1kg,试求动能的变化.
题2-13图
第一锤外力的功为
①
式中 是铁锤作用于钉上的力, 是木板作用于钉上的力,在 时, .
设第二锤外力的功为 ,则同理,有
②
由题意,有
③
即
所以,
于是钉子第二次能进入的深度为
2-14设已知一质点(质量为 )在其保守力场中位矢为 点的势能为 ,试求质点所受保守力的大小和方向.
解:
方向与位矢 的方向相反,即指向力心.
= 及 =
你认为两种方法哪一种正确?为什么?两者差别何在?
解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 ,
故它们的模即为
而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作
其二,可能是将 误作速度与加速度的模。在1-1题中已说明 不是速度的模,而只是速度在径向上的分量,同样, 也不是加速度的模,它只是加速度在径向分量中的一部分 。或者概括性地说,前一种方法只考虑了位矢 在径向(即量值)方面随时间的变化率,而没有考虑位矢 及速度 的方向随间的变化率对速度、加速度的贡献。
大学物理学(北邮第三版)
赵近芳等编著
习题及解答(全)
习题一
1-1| |与 有无不同? 和 有无不同? 和 有无不同?其不同在哪里?试举例说明.
解:(1) 是位移的模, 是位矢的模的增量,即 , ;
(2) 是速度的模,即 .
只是速度在径向上的分量.
∵有 (式中 叫做单位矢),则
式中 就是速度径向上的分量,
由矢量图知,动量增量大小为 ,方向竖直向下.
2-7一质量为 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?
解:由题知,小球落地时间为 .因小球为平抛运动,故小球落地的瞬时向下的速度大小为 ,小球上跳速度的大小亦为 .设向上为 轴正向,则动量的增量
=( )[1- ];(3)停止运动前经过的距离为 ;(4)证明当 时速度减至 的 ,式中m为质点的质量.
答: (1)∵
分离变量,得
即
∴
(2)
(3)质点停止运动时速度为零,即t→∞,
故有
(4)当t= 时,其速度为
即速度减至 的 .
2-5升降机内有两物体,质量分别为 , ,且 =2 .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速 = g上升时,求:(1) 和 相对升降机的加速度.(2)在地面上观察 , 的加速度各为多少?
1-3一质点在 平面上运动,运动方程为
=3 +5, = 2+3 -4.
式中 以s计, , 以m计.(1)以时间 为变量,写出质点位置矢量的表示式;(2)求出 =1 s时刻和 =2s时刻的位置矢量,计算这1秒内质点的位移;(3)计算 =0 s时刻到 =4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算 =4 s时质点的速度;(5)计算 =0s到 =4s内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算 =4s时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).
2-15一根劲度系数为 的轻弹簧 的下端,挂一根劲度系数为 的轻弹簧 , 的下端
沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?
解:(1)大船看小艇,则有 ,依题意作速度矢量图如题1-13图(a)
题1-13图
由图可知
方向北偏西
(2)小船看大船,则有 ,依题意作出速度矢量图如题1-13图(b),同上法,得
方向南偏东
1-14当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m的甲板上,篷高4 m但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m,如雨滴的速度大小为8 m·s-1,求轮船的速率.
将上式对时间 求导,得
题1-4图
根据速度的定义,并注意到 , 是随 减少的,
∴
即
或
将 再对 求导,即得船的加速度
1-5质点沿 轴运动,其加速度和位置的关系为 =2+6 , 的单位为 , 的单位为m.质点在 =0处,速度为10 ,试求质点在任何坐标处的速度值.
解:∵
分离变量:
两边积分得
由题知, 时, ,∴
1-9半径为 的轮子,以匀速 沿水平线向前滚动:(1)证明轮缘上任意点 的运动方程为 = , = ,式中 / 是轮子滚动的角速度,当 与水平线接触的瞬间开始计时.此时 所在的位置为原点,轮子前进方向为 轴正方向;(2)求 点速度和加速度的分量表示式.
解:依题意作出下图,由图可知
题1-9图
(1)
(2)
解:(1)
(2)将 , 代入上式即有
(3)∵
∴
(4)
则
(5)∵
(6)
这说明该点只有 方向的加速度,且为恒量。
1-4在离水面高h米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题1-4图所示.当人以 (m· )的速率收绳时,试求船运动的速度和加速度的大小.
图1-4
解:设人到船之间绳的长度为 ,此时绳与水面成 角,由图可知
方向竖直向上,
大小
碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.
2-8作用在质量为10 kg的物体上的力为 N,式中 的单位是s,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m·s-1的物体,回答这两个问题.
∴ 不同如题1-1图所示.
题1-1图
(3) 表示加速度的模,即 , 是加速度 在切向上的分量.
∵有 表轨道节线方向单位矢),所以
式中 就是加速度的切向分量.
( 的运算较复杂,超出教材规定,故不予讨论)
1-2设质点的运动方程为 = ( ), = ( ),在计算质点的速度和加速度时,有人先求出r= ,然后根据 = ,及 = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即
解:因绳不可伸长,故滑轮两பைடு நூலகம்绳子的加速度均为 ,其对于 则为牵连加速度,又知 对绳子的相对加速度为 ,故 对地加速度,由图(b)可知,为
①
又因绳的质量不计,所以圆柱体受到的摩擦力 在数值上等于绳的张力 ,由牛顿定律,有
②
③
联立①、②、③式,得
讨论(1)若 ,则 表示柱体与绳之间无相对滑动.
(2)若 ,则 ,表示柱体与绳之间无任何作用力,此时 , 均作自由落体运动.
∴
,左偏上.
2-6一质量为 的质点以与地的仰角 =30°的初速 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.
解:依题意作出示意图如题2-6图
题2-6图
在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,
而抛物线具有对 轴对称性,故末速度与 轴夹角亦为 ,则动量的增量为
求质点的动量及 =0到 时间内质点所受的合力的冲量和质点动量的改变量.
解:质点的动量为
将 和 分别代入上式,得
, ,
则动量的增量亦即质点所受外力的冲量为
2-10一颗子弹由枪口射出时速率为 ,当子弹在枪筒内被加速时,它所受的合力为F=( )N( 为常数),其中 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.
题2-1图
2-2一个质量为 的质点,在光滑的固定斜面(倾角为 )上以初速度 运动, 的方向与斜面底边的水平线 平行,如图所示,求这质点的运动轨道.
解:物体置于斜面上受到重力 ,斜面支持力 .建立坐标:取 方向为 轴,平行斜面与 轴垂直方向为 轴.如图2-2.
题2-2图
方向: ①
方向: ②
时
由①、②式消去 ,得
解:当 时,
则
1-12如题1-12图,物体 以相对 的速度 = 沿斜面滑动, 为纵坐标,开始时 在斜面顶端高为 处, 物体以 匀速向右运动,求 物滑到地面时的速度.
解:当滑至斜面底时, ,则 , 物运动过程中又受到 的牵连运动影响,因此, 对地的速度为
题1-12图
1-13一船以速率 =30km·h-1沿直线向东行驶,另一小艇在其前方以速率 =40km·h-1
解: (1)若物体原来静止,则
,沿 轴正向,
若物体原来具有 初速,则
于是
,
同理, ,
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.
(2)同上理,两种情况中的作用时间相同,即
亦即
解得 ,( 舍去)
2-9一质量为 的质点在 平面上运动,其位置矢量为
1-10以初速度 =20 抛出一小球,抛出方向与水平面成幔60°的夹角,
求:(1)球轨道最高点的曲率半径 ;(2)落地处的曲率半径 .
(提示:利用曲率半径与法向加速度之间的关系)
解:设小球所作抛物线轨道如题1-10图所示.
题1-10图