《实际问题与一元二次方程》教学反思.
一元二次方程组和实际问题教学反思

教学反思的误区
敷衍应付,脱离实践 止于现象,缺乏推敲 自我求证,自我辩护 重视学科,轻视情感
反思性教学理论认为: 教学实践是促进教师素质提高的核心因素。 只有经过反思,教师的有效经验才能上升到一定 的理论高度,才会对后续的教学行为产生积极的 影响。
什么是教学反思?
教学反思是教师以自己亲历的教学活动 和课堂情境为思考对象,对自己在教学中所 做出的行为以及由此所产生的结果进行审视、 分析、批判的过程。 余文森:反思是理论与实践的对话,理 想自我与实现自我心灵的沟通。不是一般意 义的“回顾”,而反省、思考、探索和解决 教育教学中的问题,具有研究性质。
2.反思性教学以追求教学实践合理性为动力。教学中教 师之所以要反思,主要是为了改进教学,这实质上是向更合 理的教学实践努力。许多反思性教学专家认为,反思性教学 兴起的主要原因之一是“人们通常假定,反思在本质上是教 学与师范教育的好的和合理的方面,而且教师越能反思,在 某种意义上越是好的教师”。(J.Calderhead et al.,1993)
波斯纳公式:教师成长=经验+反思
叶澜:一个教师写30年教案不一定有效果,但坚持
写3年教学反思一定能成为优秀教师。
舒尔曼(Shulman):反思型教师就是经常回顾、重
建、重现并能够对自己的行为表现和学生的行为表 现进行批判性的分析。
教学反思是一种积极的 对话、有益的思维和再学习 活动 。
两个美国科学家做过一个有趣的实验。他们 在两个玻璃瓶里各装进5只苍蝇和5只蜜蜂。然后 将玻璃瓶的底部对着有亮光的一方,而将开口朝 向暗的一方,过了几个小时之后,科学家发现,5 只苍蝇全都在玻璃瓶后端找到了出路,爬了出来, 而那5只蜜蜂则全部撞死了。蜜蜂为什么找不到出 口?观察发现它们一味地朝光源飞,被撞后不长 教训。而苍蝇为什么找到了出口呢?它们在被撞 后知道回头,知道另外想办法,甚至不惜向后看。
21.3实际问题与一元二次方程教案

21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
《实际问题与方程》教学反思15篇

《实际问题与方程》教学反思15篇《实际问题与方程》教学反思11.重视学生思维的发展,做到一题多解。
本例题是行程中相遇问题,为了能让学生一题多解,我先引导学生利用线段图帮助学生分析数量关系,找出等量关系式:速度和×相遇时间=总路程,然后根据等量关系式列出方程。
之后让学生想想你还能用其他方法解决问题吗?然后学生根据自己画的线段图找出了等量关系:小林行驶的路程+小云行驶的路程=总路程,从而列出方程。
在解题的过程中学生还会用总路程÷速度和=相遇时间以及用总路程-甲行驶的路程=乙行驶的路程等,及时的表扬给予学生莫大的鼓舞。
2.教材解读不够深入。
本例题是求时间点的问题,老师在引导学生解答问题的过程中不够精准,没有求出具体的时间点。
3.板书不够规范。
解方程应用题首先写解:设什么什么,后面应该写上单位。
4.课堂没有面向全体。
因为教师想完成教学内容,对于平时的学困生关注不够。
今后的努力方向:钻研教材,分析学情,采用更合适的教学手段调动学生学习的积极性。
不断的学习提升自身的业务素质。
对学困生多点辅导,让他们也能有所获。
《实际问题与方程》教学反思2这节课主要让学生理解并掌握如何利用一元一次方程解应用题,将实际问题转化为数学问题,找等量关系,设合理的未知数,解决实际应用!这节课的设置是由带学生参观动物园这一条主线,通过利用一元一次方程解决在参观过程中遇到的一些实际问题,如出发时的租车问题,到动物园要买票问题,以及到动物园以后遇到的一些问题等,都可以紧紧带着学生的思绪通过边游览边进行数学知识的学习,让学生深刻体会到数学与实际紧密性,从而增加学生学习数学的兴趣。
教学中要突出实际问题想数学问题的转化过程,关键是找等量关系,以及设未知数列方程,类比以前学过的列方程求解的知识,让学生自己通过探究、讨论找等量关系,以及设合适的未知数,进而列出一元一次方程对问题进行求解,通过学生展示探究结果,老师作简单总结点评,让学生体会数学的实用性。
《实际问题与一元二次方程》教学反思

《实际问题与一元二次方程》的教学反思
《实际问题与一元二次方程》是九年制义务教育新课程标准九年级第二十一章第三节的内容。
本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以对本节课并不陌生,这节课的主要讲两类实际问题。
通过学习本节课进一步学习解决实际问题的方法和解题过程,加强对一元二次方程的认识。
首先复习一元二次方程的的几种解答,然后回顾解决实际问题的基本步骤,紧接着探究以传染病为背景的实际问题,最后以填充空格的形式分析问题。
教师抛出关键问题,学生分辨第三次传染人数与前三次共染病的人数的区别和联系。
探究一是以上升为基调,探究二则是以下降为基准,学生充分了解升降问题都可以用一元二次方程来解决。
计算在本节课并不是重点,但是对于实际问题来讲答案一般只有一个,那么舍去一个根又是另一个难点。
通过观察学生的计算过程,我发现学生在列出方程后就降低了严谨程度,计算结果错误百出。
计算能力下降,学生的获得感会受挫,况且计算能力算是基本问题,所以今后要加强解方程的训练。
实际问题与一元二次方程教学设计(3)

课题:21.3实际问题与一元二次方程(3)科目:数学教学对象:九年级学生课时:一个课时一、教学内容分析生活中不少实际问题的解决都要用到方程的知识,在学习本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以本节课对学生来说并不陌生。
本节内容是运用一元二次方程分析解决生活中的实际问题:面积与面积之间的关系建立一元二次方程的数学模型解决几何图形问题。
通过本节课的学习,可以对一元二次方程的解法加以巩固,问题的解更多要考虑问题的实际意义,同时本节课的学习又是后面继续学习列方程解决实际问题、用二次函数解决实际问题的基础,因此,它具有承上启下的作用。
二、教学目标一、知识技能1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
二、过程与方法1、通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识;2、经历将实际问题抽象数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
三、情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
三、学习者特征分析我教两个班,一共有121人,有一班女生居多,成绩是全校最好的班,纪律较好;另一班纪律较差,成绩也较差,男生居多。
总体来看大部分学生愿意动脑筋,对数学课还比较喜欢,学习热情也较高,课堂气氛比较活跃,但有极少部分学生较懒,学习习惯差,不愿思考问题。
四、教学策略选择与设计采用自主学习,合作探究交流的方式。
五、教学重点及难点重点:据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题。
难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型。
边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一,可知正中央矩形的面积是封面面积的四分之三,从而得方程。
实际问题与一元二次方程教学反思(共5篇)

实际问题与一元二次方程教学反思(共5篇)第一篇:实际问题与一元二次方程教学反思实际问题与一元二次方程教学反思曾文祥本节课主要是培养学生运用已学过的一元二次方程知识来解决常见的实际问题。
首先,教师让学生回顾一下列方程解应用题的一般步骤:一。
审清题意,设未知数;二。
找等量关系式;三。
列方程;四。
解方程并检验;五。
解答。
接下来教师设计一种情境:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?先让学生设未知数:设每轮传染中平均一个人传染了X 个人。
再找出等量关系式:第一人+第一轮被传染人数+第二轮被传染人数=总传染人数。
然后让学生自主列出一元二次方程:1+X+X (1+X)=121.那么接下来解方程就可以让学生上台演板完成。
最后解答。
教师需要对学生强调的是:如何通过理解题意来寻找题目中隐含的等量关系式,这是列方程解应用题的关键。
另外教师在布置练习的时候也注意引导学生根据题意去发现问题,分析问题最终解决问题。
总的来说,这节课的中心任务是学会运用一元二次方程去解决常见的实际问题,这一目的已经初步达到,那么下节课时将进一步强化这一种思维方式,提高学生解决问题的能力。
第二篇:实际问题与一元二次方程实际问题与一元二次方程(一)-------传播问题和比赛问题列方程解应用题的一般步骤:(1)__________(2)__________(3)__________(4)__________(5)__________(6)__________。
1、有一人患了流感,经过两轮传染后共有点121人患了流感,(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,三轮传染后有多少人患流感?2、有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数是_________,如果不及时控制,第三轮将又有_________人被传染?3、某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出_________个分支?4、某生物实验室需培养一群有益菌。
实际问题与一元二次方程

四、教学过程分析
(二)、合作交流,探究应用
变式应用一
设计意图:引导学
生进行反馈辨析,
进一步加强探究一 1、参加一场篮球比赛的 每两队之间都要的进模行型一功次能比。赛整,合总 共比赛45场,则共有多少个球队参加比赛了?教学资源,重组
设2、共过有年x了个,球生队物,兴可趣列小方组程的为学_生__,__互__发_教的_短材外信,延问拓。好宽以,了填共教空发材的送短
2
四、教学过程分析
(二)、合作交流,探究应用
在老师所教的班级中,每两个学生都设中握设计手计意一了图次三:,个在全问这班题个学,探生来究 一共握手780次,那么谁能计算出老师降所低教探的究一班的级难共度有,多分
少名学生?(设老师所教班级有x个散人难)点,为问题的顺利
思考:
解决作了铺垫。
1、则每个人与
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大.但是,
年平均下降额(元)不等同于年平均下降率(百分数)
四、教学过程分析
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成 本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2 元,依题 意得
识危害到性传你。染能1体病3会的31 数学知快识速应用
的价值写,出提高
控制传染源,切断传播途径,保护易学的感生兴人学趣群吗习。?数学
四、教学过程分析
(二)、合作交流,探究应用 变式应用二
两个同学经培训后会做某项物理实验,回校后,第一节课, 每人教会了若干同学,第二节课后,会做 的同学每人教会 了同样多的同学,这样全班共有32名同学会做这项实验,则 每次会做的同学教会了几个同学?(只列方程即可)
21.3实际问题与一元二次方程(2)增长率(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“增长率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)加强一元二次方程求解方法的训练,特别是针对增长率问题的求解,提高学生的运算能力。
(3)在分析实际问题过程中,教师应引导学生关注关键信息,培养学生的数学建模素养,避免建立错误的方程。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元二次方程(2)增长率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过商品价格增长或人口增长的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索增长率的奥秘。
三、教学难点与重点
1.教学重点
(1)理解增长率的定义及其在实际问题中的应用,能够根据问题情景建立一元二次方程。
举例:某商品原价为x元,经过两次提价后,价格变为1.2x元。重点在于让学生掌握如何将提价过程转化为数学方程,即(1+p)(2)掌握一元二次方程求解方法,特别是求解增长率相关问题时,如何将实际问题转化为方程求解。
2.教学难点
(1)在实际问题中,学生难以理解增长率的概念,特别是如何将其转化为数学方程。
举例:在商品提价问题中,学生可能会对多次提价、连续提价等情景产生混淆,难以准确列出方程。
(2)对于一元二次方程求解方法,特别是涉及到增长率问题时,学生可能会在求解过程中出现错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实际问题与一元二次方程》教学反思2018-08-28
落实数学核心素养“数学抽象”的实践教学案例
《实际问题与一元二次方程》教学反思
宫晓军
随着2014年核心素养的提出,作为一直奋战在一线的一名教师,对自己的课堂应该提出一个更高的要求,应该把培养孩子的们的数学核心素养作为一节课的`目标。
通过本节课的教学,总体感觉达到了自己预期的一个教学目标,但还有很多不足之处,现从收获和不足两个方面加以说明。
本节课的收获
1整节课的整体设计能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。
2总体上较好的达到了教学的目标,课后通过作业和练习做了一个统计,孩子对知识的理解达到78%,作业的正确率达到65%。
3本节课例题的设置比较贴合实际、例题由易到难,孩子容易接受和理解。
4本节课的教学方法主要以提问―讨论―总结的形式进行,更利于孩子的发挥。
5本节课在课堂的设置上更注重孩子“数学抽象”能力的培养,并在能力培养的过程中注重方法,以实例为载体,循序渐进让孩子逐步接受,自然生成结论,这样培养能力的过程孩子更易接受,理解更深刻。
本节课的不足
1、在课堂时间的把控上做得还是不够好,由于孩子的能力层次不齐,所以在分组讨论过程中为了让更多的孩子能够给掌握讨论的结论,给孩子们讨论留的时间多了一些,最后在做课堂总结的时候做得很草率,甚至最后拖堂,最后利用数学的自习课给孩子做了补充,。
2、在第2道例题的讲解过程中,没有板书的一个落实,让很多孩子在例3练习时书写过程出了很多问题。
3、在给孩子设置的问题很单一,没有涉及更多的问题的变化,当然这是我预期就想到的,主要还是考虑到了多数孩子的接受能力。
以上就是我在本次实践案例中的收获以及感觉到的不足,如有不当之处,望能不吝赐教!。