驱动桥设计

合集下载

课程设计驱动桥设计

课程设计驱动桥设计

课程设计驱动桥设计一、教学目标本课程旨在让学生掌握驱动桥的设计原理和方法,理解其在工作过程中的作用和重要性。

知识目标包括:了解驱动桥的基本结构、工作原理和设计要求;掌握驱动桥的设计方法和步骤;了解驱动桥的设计标准和规范。

技能目标包括:能够运用所学知识进行驱动桥的设计;能够对驱动桥的设计方案进行评价和优化。

情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的兴趣和责任感。

二、教学内容本课程的教学内容主要包括驱动桥的基本原理、结构设计、传动设计、强度计算和实验等方面。

具体安排如下:1.驱动桥的基本原理:介绍驱动桥的工作原理、分类和性能要求。

2.结构设计:讲解驱动桥的主要组成部分,包括齿轮、轴承、轴等的结构设计和选材。

3.传动设计:介绍驱动桥的传动系统设计,包括齿轮传动、蜗轮传动等的设计方法和计算。

4.强度计算:讲解驱动桥的强度计算方法,包括接触强度、弯曲强度、齿面硬度等。

5.实验:进行驱动桥的设计实验,验证设计方案的可行性和性能。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。

包括:1.讲授法:讲解驱动桥的基本原理、设计方法和步骤。

2.讨论法:学生进行驱动桥设计方案的讨论和评价。

3.案例分析法:分析典型的驱动桥设计案例,引导学生运用所学知识解决问题。

4.实验法:进行驱动桥的设计实验,培养学生的实践能力和创新精神。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择合适的教材,提供学生系统学习的基础知识。

2.参考书:提供相关的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作课件、视频等多媒体资料,生动展示驱动桥的设计原理和实例。

4.实验设备:准备实验所需的设备,为学生提供实践操作的机会。

五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

具体安排如下:1.平时表现:通过课堂参与、提问、小组讨论等方式评估学生的学习态度和积极性。

毕业设计驱动桥设计计算说明书

毕业设计驱动桥设计计算说明书

1 绪论1.1 课题背景及目的随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺都在日益完善。

驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织专业化目标前进。

应采用能以几种典型的零部件,以不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱动的许多变形汽车上。

本设计要求根据CS1028皮卡车在一定的程度上既有轿车的舒适性又有货车的载货性能,使车辆既可载人又可载货,行驶范围广的特点,要求驱动桥在保证日常使用基本要求的同时极力强调其对恶劣路况的适应力。

驱动桥是汽车最重要的系统之一,是为汽车传输和分配动力所设计的。

通过本课题设计,使我们对所学过的基础理论和专业知识进行一次全面的,系统的回顾和总结,提高我们独立思考能力和团结协作的工作作风。

1.2 研究现状和发展趋势随着汽车向采用大功率发动机和轻量化方向发展以及路面条件的改善,近年来主减速比有减小的趋势,以满足高速行驶的要求。

[1]为减小驱动轮的外廓尺寸,目前主减速器中基本不用直齿圆锥齿轮。

实践和理论分析证明,螺旋锥齿轮不发生根切的最小齿数比直齿齿轮的最小齿数少。

显然采用螺旋锥齿轮在同样传动比下,主减速器的结构就比较紧凑。

此外,它还具有运转平稳、噪声较小等优点。

因而在汽车上曾获得广泛的应用。

近年来,准双曲面齿轮在广泛应用到轿车的基础上,愈来愈多的在中型、重型货车上得到采用。

[3]在现代汽车发展中,对主减速器的要求除了扭矩传输能力、机械效率和重量指标外,它的噪声性能已成为关键性的指标。

噪声源主要来自主、被动齿轮。

噪声的强弱基本上取决于齿轮的加工方法。

区别于常规的加工方法,采用磨齿工艺,采用适当的磨削方法可以消除在热处理中产生的变形。

因此,与常规加工方法相比,磨齿工艺可获得很高的精度和很好的重复性。

驱动桥设计知识点

驱动桥设计知识点

驱动桥设计知识点一、引言驱动桥作为汽车动力系统中的重要组成部分,承担着将发动机的动力传递到汽车的驱动轮上的重要任务。

在驱动桥的设计中,需要考虑到各种因素,如驱动方式、扭矩分配、差速器的作用等。

本文将介绍驱动桥设计的几个关键知识点。

二、驱动方式1. 前驱动桥前驱动桥是指驱动力传递到车辆前轮的设计方式。

它具有结构简单、空间利用率高等优点,常用于小型、紧凑型汽车。

前驱动桥的设计需要考虑到动力输出的效率、车辆转向的稳定性等因素。

2. 后驱动桥后驱动桥是指驱动力传递到车辆后轮的设计方式。

相比于前驱动桥,后驱动桥具有更好的操控性能和牵引力,适用于大型、高性能汽车。

后驱动桥的设计需要注意驱动力和刹车力的分配,以保证车辆的平稳行驶。

3. 四驱动桥四驱动桥是指同时将动力传递到四个车轮的设计方式。

四驱动桥通常应用于越野车和SUV等需要在复杂路况下保持优良牵引力的车辆。

在四驱动桥的设计中,需要考虑到前后桥之间的扭矩分配以及前后轴之间的差速器的作用。

三、扭矩分配在驱动桥的设计中,扭矩分配是一个关键的问题。

合理的扭矩分配可以使车辆在加速、转向和刹车时保持稳定。

一般情况下,驱动桥会根据车辆的重心、车轮的抓地力以及车辆的操控需求来进行扭矩的分配。

四、差速器差速器是驱动桥中的重要组成部分,它起到了将扭矩分配到两个驱动轮上的作用。

差速器可以通过不同的齿轮传动来实现扭矩的分配,同时还可以允许车轮在行驶过程中的差速旋转,提高车辆的操控性能和通过性能。

五、总结驱动桥作为汽车动力系统中的重要组成部分,在车辆的性能和稳定性方面起着至关重要的作用。

驱动桥的设计需要考虑到驱动方式、扭矩分配以及差速器的作用等多个因素。

通过合理的设计和创新,可以为汽车提供更好的操控性能和驾驶体验。

本文介绍了驱动桥设计的几个关键知识点,希望能为读者对驱动桥设计提供一定的了解和参考。

汽车技术的不断发展和创新将进一步推动驱动桥设计的进步,提升汽车的性能和安全性。

驱动桥的设计开题报告

驱动桥的设计开题报告

驱动桥的设计开题报告驱动桥的设计开题报告摘要:驱动桥是机械传动系统中的重要组成部分,它通过传递动力和扭矩,将发动机的动力转化为车轮的驱动力。

本文旨在探讨驱动桥的设计原理、结构以及优化方法,以提高车辆的性能和驾驶体验。

1. 引言驱动桥作为汽车传动系统的核心组件之一,在车辆的动力传递和操控性能方面起着至关重要的作用。

随着汽车工业的发展,人们对驱动桥的要求也越来越高。

因此,设计一种高效可靠的驱动桥成为了研究的热点。

2. 驱动桥的基本原理驱动桥的基本原理是将发动机的动力通过传动轴传递给车轮,实现车辆的前进。

常见的驱动桥有前驱动桥、后驱动桥和全驱动桥。

前驱动桥主要用于前置发动机的前驱车辆,后驱动桥主要用于后置发动机的后驱车辆,而全驱动桥则将动力均匀地传递给四个车轮。

3. 驱动桥的结构驱动桥的结构包括驱动轴、差速器、齿轮传动系统等。

驱动轴负责传递动力和扭矩,差速器用于分配动力给左右车轮,并允许车轮在转弯时以不同速度旋转。

齿轮传动系统则通过齿轮的啮合传递动力。

4. 驱动桥的优化方法为了提高驱动桥的性能和驾驶体验,可以采取多种优化方法。

首先,可以通过优化齿轮传动系统的设计,减小传动损失,提高传动效率。

其次,可以采用轻量化的设计,降低车辆的整体重量,提高燃油经济性和操控性能。

此外,还可以通过改进差速器的设计,提高车辆的操控稳定性和抓地力。

5. 驱动桥的挑战与展望虽然驱动桥在汽车工业中起着重要作用,但也面临一些挑战。

例如,随着电动汽车的兴起,传统的驱动桥需要进行改进以适应电动汽车的特殊需求。

此外,环保和能源效率的要求也对驱动桥的设计提出了新的挑战。

未来,我们可以通过采用新材料、新技术和智能化控制系统等手段,进一步提升驱动桥的性能和可靠性。

结论:驱动桥作为汽车传动系统的重要组成部分,对车辆的性能和驾驶体验具有重要影响。

本文从驱动桥的设计原理、结构、优化方法以及挑战与展望等方面进行了探讨。

通过深入研究和不断创新,我们可以设计出更加高效可靠的驱动桥,推动汽车工业的发展。

汽车驱动桥的设计

汽车驱动桥的设计

汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。

本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。

一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。

差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。

后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。

二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。

根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。

其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。

三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。

当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。

同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。

四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。

其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。

总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。

同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。

驱动桥课程设计

驱动桥课程设计

驱动桥课程设计一、课程目标知识目标:1. 理解驱动桥的基本结构及其工作原理;2. 掌握驱动桥在汽车传动系统中的作用;3. 学习驱动桥的类型及各类型的优缺点;4. 了解驱动桥的保养与维护知识。

技能目标:1. 能够描述驱动桥的组成部分及其相互关系;2. 能够运用相关知识,分析驱动桥在实际应用中的问题;3. 学会使用工具和设备进行驱动桥的拆装和检查;4. 能够设计简单的驱动桥保养计划。

情感态度价值观目标:1. 培养学生对汽车工程技术的兴趣,激发学习热情;2. 培养学生的团队协作意识,学会在小组中分享和交流;3. 增强学生的环保意识,了解汽车维护对环境保护的重要性;4. 培养学生的安全意识,遵守实验操作规程,确保人身和设备安全。

课程性质:本课程属于汽车运用与维修技术领域,旨在让学生了解驱动桥的结构、原理及应用。

学生特点:学生为高中二年级学生,具有一定的物理基础和汽车知识,对实际操作感兴趣。

教学要求:结合学生特点,注重理论与实践相结合,通过实物演示、实验操作等方法,提高学生的实践能力和解决问题的能力。

同时,注重培养学生的安全意识、环保意识和团队协作能力。

在教学过程中,将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 驱动桥的基本概念与结构- 理解驱动桥的定义及其在汽车传动系统中的作用;- 学习驱动桥的主要组成部分:主动齿轮、从动齿轮、差速器、半轴等;- 分析各部件的相互关系及协同工作原理。

2. 驱动桥的类型及特点- 介绍常见驱动桥类型:开放式、封闭式、半开放式驱动桥;- 阐述各类型驱动桥的优缺点及适用场景;- 分析驱动桥技术的发展趋势。

3. 驱动桥的工作原理与性能参数- 掌握驱动桥的工作原理,理解差速器的功能;- 学习驱动桥的性能参数,如传动比、效率等;- 了解驱动桥对汽车性能的影响。

4. 驱动桥的拆装与检查- 学习驱动桥拆装工具的使用方法;- 掌握驱动桥拆装步骤及注意事项;- 学会检查驱动桥各部件磨损、损坏情况。

第五章_驱动桥设计

第五章_驱动桥设计

一 主减速器结构方案分析
3.圆柱齿轮传动
一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动 桥和双级主减速器贯通式驱动桥。
4.蜗杆传动
蜗杆传动与锥齿轮传动相比有如下优点: 1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比
(可大于7)。 2)在任何转速下使用均能工作得非常平稳且无噪声。 3)便于汽车的总布置及贯通式多桥驱动的布置。 4)能传递大的载荷,使用寿命长。 5)结构简单,拆装方便,调整容易。
双曲面齿轮传动也存在如下缺点:
① 沿齿长的纵向滑动会使摩擦损失增加,降低传动效 率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮 副的传动效率约为99%。
② 齿面间大的压力和摩擦功,可能导致油膜破坏和齿 面烧结咬死,即抗胶合能力较低。
③ 双曲面主动齿轮具有较大的轴向力,使其轴承负荷 增大。
④ 双曲面齿轮传动必须采用可改善油膜强度和防刮伤 添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑 油即可。
103
2)轮齿弯曲强度
锥齿轮轮齿的齿根弯曲应力为
W
2T
k
v
m s
k0 D
ks b
km JW
103
ko --为过载系数,一般取1;
ks --为尺寸系数,它反映了材料性质的不均匀性,
与齿轮尺寸及热处理等因素有关,当m.>=1.6mm
时,
,当m<1.6mm时,ks==0.5;
2)轮齿弯曲强度
km --为齿面载荷分配系数, 跨置式结构:km=1.0~1.1, 悬臂式结构:km=1.10~1.25;
kv --为质量系数,当轮齿接触良好,齿距 及径向跳动精度高时,kv =1.0
b--为所计算的齿轮齿面宽(mm); D--为所讨论齿轮大端分度圆直径(mm); Jw --为所计算齿轮的轮齿弯曲应力综合系数, 取法见参考文献[10]。

第五章汽车驱动桥设计

第五章汽车驱动桥设计

样。
2.按驱动轮打滑转矩确定从动锥齿轮计算转矩Tcs
后桥动力传递 1 5 2
TCS
G 2 m rr
' 2
i m m
(5-5)
3
4
6
7
将此式与P126表4-1的式比较,
Tss1
G 2 m 2 rr i0 im m
8 9 前桥动力传递
在分母上少了一个i0,是因为从驱动轮传来的扭矩没有经过主减速器, 而直接施加于从动锥齿轮上。
O′
A′ A′
r2 r1
(4)双曲面齿轮传动比 令:r1 ,r2:主、从动齿轮的平均分度圆半径 F1、F2分别为主、从动锥齿轮的圆周 力 在A点(图5-5)啮合的法向力相等:
O′
A′ A′
F2 COS 2

F1 F2

F1 COS 1
(5-1)
COS 1 CO没有公约数,否则总是固 定的齿啮合,不利 于磨损。
(2)为得理想的齿面重合度和高的轮齿 弯曲强度,主、从动齿轮齿数和不少于40
为了使齿轮传动连续,必须保证 前一对轮齿尚未脱离啮合时,后一对 轮齿就应进入啮合。为了满足连续传 动要求,前一对轮齿齿廓到达啮合终 点B1时,尚未脱离啮合,后一对轮 齿至少必须开始在B2点啮合,此时线段B1B2恰好等于基圆齿距Pb 。 所以,连续传动的条件: B1B2 ≥Pb 用重合度ε表示,连续传动条件为: ε=B1B2/Pb≥1 ε表示了同时参与 啮合齿轮的对数, ε越大,同时参与啮合齿轮的对数越多,传动越平稳。 而齿轮齿和数大,则ε大。同时参与啮合的齿数多,则降低单齿的啮合 力。
第五章、驱动桥设计 本章主要学习 1.驱动桥结构方案分析 2.主减速器设计 3.车轮传动装置设计 4.驱动桥壳设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.4 差速器的设计汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。

例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左右车轮因滚动半径不同而使左右车轮行程不等。

如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。

这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性恶化。

为了防止这些现象的发生,汽车左右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。

差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。

差速器按其结构特征不同,分为齿轮式、凸轮式、、蜗轮式和牙嵌自由轮式等多种形式。

5.4.1 差速器结构形式的选择从经济性和平稳性考虑,后桥选用结构简单、紧凑、工作平稳,制造方便,用于公路汽车也很可靠地普通对称式圆锥行星齿轮差速器。

5.4.2 差速器齿轮主要参数选择1.行星齿轮数目的选择行星齿轮数目定为n=42.行星齿轮球面半径b R (mm )的确定圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径b R ,它就是行星齿轮的安装尺寸,实际上代替了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。

球面半径可根据经验公式来确定: 3d b b T K R =式中:b K --------行星齿轮球面半径系数,b K =2.5~3.0,对于有四个行星齿轮的轿车和公路载货汽车取最小值,d T -----------计算转矩,Nm所以:7.2=b R 6.967.458263=mm, 3.节锥距的确定mm A 7.940=mm R b 6.96=4.行星齿轮齿数1Z 和半轴齿轮齿数2Z 的选择为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮尽量少,但一般不小于10,半轴齿轮齿数采用14~25,后桥半轴齿轮与行星齿轮的齿数比多在1.5~2.0范围内。

在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数之和,必须能被行星齿轮的数目n 所整除,否则将不能安装。

取1Z =10,2Z =166.112=z z在1.5~2.0范围内5.差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定先初步求出行星齿轮和半轴齿轮的节锥角21γγ,)/arctan(),/arctan(122211Z Z Z Z ==γγ式中:1Z ,2Z -----行星齿轮和半轴齿轮齿数故020158)10/16arctan(,32)16/10arctan(====γγ再根据下式求出圆锥齿轮的模数:1058sin 167.942sin 2sin 20220110=⨯===γγZ A Z A m 圆整m=10所以节圆直径:mm d mm d 1601610,100101021=⨯==⨯=6.压力角α汽车差速齿轮大都采用压力角为05.22、齿高系数为0.8的齿形。

某些质量较大的商用汽车的差速器采用05.22压力角,故压力角取为05.22。

7.行星齿轮安装孔直径d 及其支承长度L 的确定 行星齿轮轴直径[]dc nr T σ1.110d 30⨯= 式中:0T ----为差速器壳传递的转矩(Nm )n-------行星齿轮数d r ------行星齿轮支承面中点到锥顶的距离(mm )[]c σ------为行星齿轮支承面允许挤压应力,取69MPa0T =45826.7Nm, mm r d 64= 所以d=,8.401.164498107.458263mm =⨯⨯⨯⨯ 所以:L=1.1×40.8=44.9mm5.4.3 差速器齿轮强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合传动状态,只有当汽车转弯或左,右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。

因此,对于差速器齿轮,主要应进行弯曲强度计算。

轮齿弯曲应力为:322102⨯=Jnd mb K K K T v m s c w σ式中:c T ------差速器一个行星齿轮给予一个半轴齿轮的转矩,Nm, c T =0.60T2Z -------半轴齿轮齿数n--------差速器行星齿轮数J-------汽车差速器轮齿弯曲应力用的综合系数,J=0.255当[]m N T T T cs ce .7.45826,0==时,m N T c ⋅=⨯=274967.458266.0 则:MPa w 340104257.01607.77101179.02749623=⨯⨯⨯⨯⨯⨯⨯⨯⨯=σ 所以;[]MPa w w980=<σσ 当cf T T =0时,T0=70410.7N.m m N T c⋅=⨯=4.422467.704106.0 MPa w 5.167104257.01607.77101179.04.4224623=⨯⨯⨯⨯⨯⨯⨯⨯⨯=σ []MPa w w 210=<σσ所以,符合要求。

5.5 半轴的设计5.5.1半轴的形式的选择半轴根据其车轮端的支承方式不同,可分为半浮式、3/4浮式和全浮式三种形式。

半浮式半轴的结构特点是,半轴外端的支承轴承位于半轴套管外端的内孔中,车轮装在半轴上。

半浮式半轴除传递转矩外,其外端还承受由路面对车轮的反力所引起的全部力和力矩。

半浮式半轴结构简单,所承受载荷较大,只用于乘用车和总质量较小的商用车上。

3/4浮式半轴的结构特点是,半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支承于车轮轮毂,而半轴则以其端部凸缘与轮毂用螺钉连接。

该形式半轴的受载情况与半浮式相似,只有载荷有所减轻,一般仅用在乘用车和总质量较小的商用车上。

全浮式半轴的结构特点是,半轴外端的凸缘用螺钉与轮毂相连,而轮毂又借用两个圆锥滚子轴承支承在驱动桥壳的半轴套管上。

理论上来说,半轴只承受转矩,作用于驱动轮上的其它反力和弯矩全部由桥壳来承受。

但由于桥壳变形、轮毂与差速器半轴齿轮不同心、半轴法兰平面相对其轴线不垂直等因素,会引起半轴的弯曲变形,由此引起的弯曲应力一般为5~70MPa 。

全浮式半轴主要用于轻型以上的各类汽车上。

(如图5.4所示)图5.4半轴结构形式简图及受力情况a) 半浮式 b) 3/4浮式 c) 全浮式此由于是长途汽车,采用全浮式结构。

设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。

计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况:①纵向力2X (驱动力或制动力)最大时,其最大值为ϕ2Z ,附着系数ϕ在计算时取0.8,没有侧向力作用;②侧向力2Y 最大时,其最大值为ϕ2Z 1(发生于汽车侧滑时),侧滑时轮胎与地面的侧向附着系数1ϕ在计算时取1.0,没有纵向力作用;③垂向力最大时(发生在汽车以可能的高速通过不平路面时),其值为()d w k g Z -2,其中w g 为车轮对地面的垂直载荷,d k 为动载荷系数,这时不考虑纵向力和侧向力的作用。

由于车轮承受的纵向力2X ,侧向力2Y 值的大小受车轮与地面最大附着力的限制,即有 22222Y X Z +=ϕ故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。

5.5.2 全浮式半轴计算载荷的确定全浮式半轴只承受转矩,其计算转矩可有r R r L r X r X T ⋅==⋅22求得,其中L X 2,R X 2的计算,可根据以下方法计算,并取两者中的较小者。

若按最大附着力计算,即 ϕ22'22G m X X R L == (4-1) 式中:ϕ——轮胎与地面的附着系数取0.8;'m ——汽车加速或减速时的质量转移系数,可取1.2~1.4在此取1.3。

根据上式8.0213000003.122⨯⨯==R L X X =676000 N 若按发动机最大转矩计算,即r e R L r i T X X /max 22ηξ== (4-2) 式中:ξ——差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6; max e T ——发动机最大转矩,N ·m ;η——汽车传动效率,计算时可取1或取0.9;i ——传动系最低挡传动比;r r ——轮胎的滚动半径,m 。

上参数见式(2-1)下的说明。

根据上式505.09.083.814386.022⨯⨯⨯==R L X X =13577.6 N 在此==R L X X 2213577.6N T =6856.7N ·m5.5.3 全浮式半轴的杆部直径的初选全浮式半轴杆部直径的初选可按下式进行[]333)18.2~05.2(196.010T T d =⨯=τ (4-3) 根据上式()37.685618.2~05.2=d =(38.95~41.42)mm根据强度要求在此d 取40.2mm 。

5.5.4 全浮式半轴的强度计算 首先是验算其扭转应力τ:316dTπτ= MPa (4-4) 式中:T ——半轴的计算转矩,N ·m 在此取17946.1N ·m ; d ——半轴杆部的直径,mm 。

根据上式τ=32.401614.37.6856⨯=538 MPa< []τ=(490~588) MPa 所以满足强度要求。

5.5.5 半轴花键的强度计算在计算半轴在承受最大转矩时还应该校核其花键的剪切应力和挤压应力。

半轴花键的剪切应力s τ为φτb zL d D T p A B s ⎪⎭⎫ ⎝⎛+⨯=4103MPa (4-5) 半轴花键的挤压应力c σ为φσp A B A B c zL d D d D T ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯=24103MPa (4-6)式中:T ——半轴承受的最大转矩,N ·m ,在此取6856.7N ·m; B D ——半轴花键的外径,mm ,在此取46.2mm;A d ——相配花键孔内径,mm ,在此取40.5mm;z ——花键齿数;在此取24p L ——花键工作长度,mm ,在此取120mm;b ——花键齿宽,mm ,在此取3.925mm;φ——载荷分布的不均匀系数,计算时取0.75。

根据上式可计算得s τ=75.0925.31202445.402.46107.68563⨯⨯⨯⨯⎪⎭⎫ ⎝⎛+⨯=37.3 MPa c σ=75.01202425.402.4645.402.46107.68563⨯⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯=51.4 MPa 根据要求当传递的转矩最大时,半轴花键的切应力[s τ]不应超过71.05 MPa ,挤压应力[c σ]不应超过196 MPa ,以上计算均满足要求。

相关文档
最新文档