神舟K110笔记本电脑主板电路图

合集下载

笔记本开机电路学习

笔记本开机电路学习
笔记本开机电路学习
1.工作机制
开机电路是主板中重要的单元电路,它的主要任务是看控制电源管理芯片,使其开启工作输出工作电压,为笔记本各个电路供电,进而使笔记本开始工作。
开机电路通过电源开关触发主板的开机电路,开机电路中的南桥芯片或是开机控制芯片对触发信号进行处理后,最终发出控制信号,控制信号触发电源供电电路开始工作,使电源供电电路向各级电路输出相应的工作电压,为其提供工作电压。
当关机时,按开关键的瞬间,开机键又被接地,3V电压经过开机键接地,此时开机键通过开机控制芯片的第32脚向开机控制芯片内部的触发电路发送一个由低到高的触发信号。此信号将开机控制芯片内部的触发电路触发,这时触发电路通过开你控制芯片的第18脚向南桥输出一个控制信号。接着南桥返回控制信号,此时开机控制芯片再向电源管理芯片发出关机控制信号。随后电源管理芯片停止向电源供电电路发送脉冲信号,电源供电路停止工作,笔记本关机。
开机原理图
) h* m! R3 G4 t( y
2 E. K4 k( j% y: ~ N6 ^3 T# J
在笔记本接入电池时或是适配器且没有按下开机键时,电池或电源适配器的电压经过电源供电电路转换电压后,为开机控制芯片,南桥芯片,电源管理芯片等提供待机电压。
当按下开机键的瞬间,开机键接地,3V的电压经过开机键接地。此时开机键的电压信号由低变高,产生一个开机触发信号。此开机触发信号经过二极管D7和开机控制芯片(KB926QF)的第32脚,被送到开机控制芯片内部的触发电路。经过触发电路的检测后,由开机控制芯片的第18脚(PBTN OUT#)输出一个控制信号到南桥(INH8M)的C2脚,(PBTN#)。接着南桥的芯片的AG23脚(SLP_S3#),AD18脚(SLP_S5#)向开机控制芯片的第6,14脚输出控制信号,开机控制芯片接受到控制信号后,从第121脚的输出高电平控制信号,控制电源供电电路工作,为笔记本电路提供正常的工作电压。

笔记本主板的电路图 共34页共36页

笔记本主板的电路图 共34页共36页
笔记本过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

通用笔记本电路维修图1

通用笔记本电路维修图1

通用笔记本电路维修图1系统板供电电路3.3.1 整机系统供电方框图:如图3-20所示图3-20 整机系统供电方框图3.3.2 保护隔离电路1.典型MAX1632公版电路:如图3-21所示图3-21 MAX1632公版电路图2.三点定位修保护电路:如图3-22所示图3-22 典型保护隔离电路(1) MAX1632工作过程如图3-21/2所示,插上电源适配器,16V电压来到了第③点分几路,一路来到Q1的漏极,二路通过10Ω电阻来到22脚,三路来到Q3的漏极,这时芯片不工作,当23脚接到高电平(3.3V-5V)或直接通过电阻连于电源时,芯片开始待机,待机时将产生如下电压21脚VL5V, 9脚为基准电压2.5V,VL5V电压分成几路分别到给芯片自身及其它芯片作为待机电压,一路给1.8V/2.5V产生电路作为其待机电压,二路给CPU核心电压产生电路作为其待机电压,三路给了充电电路,四路通过D1、D2给了芯片BST端,作为内部高端驱动器的电源,五路经内部给了低端驱动器作为工作电源,这时机器处于一触即发的准备工作状态,待机状态各引脚的待机电压如下:16V;当(7)(28)接收到3.3V或5V高电平且保持不变时,芯片VL5V开始正常工作,内部 V 的四个驱动器输出方波脉冲去SHDN 大于或等于3.3V推动外部所接的4个场效应管导通工作,这时4个BST 4.7V 场效应管相当4只可变电阻进行分压,输出3.3V 、5V、DL5V电压,当输出电压或负载电流发生变化,其变化会通REF 2.5V 经CSH、CSL、FB引脚反馈给芯片内部,内部自动调整方波幅度及脉宽大小,最终达到3.3V、5V电压的稳压输出,当负载过压或过流时,其反馈会让芯片自动切断输出,最终达到保护负载及电源本身的目的。

(2)MAX1632正常工作时部分引脚电压:(3) MAX1632的好坏判断:如图3-23所示图3-23 MAX1632好坏判断流程图(4)MAX1632阻值法测好坏:(注非在线测量)如图3-24所示TPS2052图3-24 MAX1632阻值测量示意图(5) MAX1632检修流程图:如图3-25所示图3-25 MAX1632检修流程图3. LTC 1628G/LTC1628引脚定义:如图3-26所示Run/SS1 Run/SS2:软启动运行控制输入和短路,检测定时器的多用引脚,过流停机保护也通过这些引脚实现。

计算机主板图解 ppt课件

计算机主板图解  ppt课件

PPT课件
15
机箱前置面板接头
Power LED HD LED Power SW Reset Speaker
PPT课件
16
外部接口
PPT课件
17
主板上的其它主要芯片
声卡芯片
PPT课件
18
主板上的其它主要芯片
网卡芯片
PPT课件
19
精品主板赏析
PPT课件
20
精品主板赏析
PPT课件
PPT课件
11
PCI-E显卡
PPT课件
12
ATA接口
IDE接口(PATA)
SATA接口
PPT课件
13
电源插口及主板供电部分
PPT课件
14
BIOS
BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输 出系统是一块装入了启 动和自检程序的 EPROM或EEPROM集 成块。实际上它是被固 化在计算机ROM(只读 存储器)芯片上的一组 程序,为计算机提供最 低级的、最直接的硬件 控制与支持
21
PPT课件

8
AGP插槽
AGP图形加速端口是
专供3D加速卡(3D显
卡)使用的接口。它直
接与主板的北桥芯片
相连,且该接口让视
频处理器与系统主内
存直接相连,避免经
过窄带宽的PCI总线
而形成系统瓶颈,增
加3D图形数据传输速
度 PPT课件
9
AGP显卡
PPT课件
10
PCI-E插槽
PCI-E是新一代主板的 标准接口,它提供最高 8G的传输速度,提供 1X、2X、4X、8X、 16X的各种规格,每种 规格均向下兼容

电脑主板图文详解

电脑主板图文详解

一、主板图解一块主板主要由线路板和它上面的各种元器件组成1.线路板PCB印制电路板是所有电脑板卡所不可或缺的东东。

它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。

一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。

而一些要求较高的主板的线路板可达到6-8层或更多。

主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(GlassEpoxy)或类似材质制成的PCB“基板”开始。

制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractivetransfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。

这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。

而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。

而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。

接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。

在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。

在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。

在开始电镀之前,必须先清掉孔内的杂物。

这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。

清除与电镀动作都会在化学过程中完成。

接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。

然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。

此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

最后,就是测试了。

测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。

计算机主板各供电电路图解

计算机主板各供电电路图解

计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。

这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。

1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。

(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。

因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。

CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。

主板的CPU供电电路框图如图1所示。

主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。

CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。

(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。

+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。

(完整版)主板供电电路图解说明

(完整版)主板供电电路图解说明

主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。

简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。

但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。

主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。

+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。

再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。

单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。

笔记本电脑CPU供电电路原理图

笔记本电脑CPU供电电路原理图

CPU供电电路原理图我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。

我们先简单介绍一下供电电路的原理,以便大家理解。

一般而言,有两种供电方式。

1.线性电源供电方式通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻串接在供电回路中。

上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。

虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。

2.开关电源供电方式我们平时用的主板基本都用这种方式,原理图如下。

其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的电压了。

上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。

强调这些元器件是为了后文辨认几相供电做准备。

由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。

多相供电的引入单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

上图就是一个两相供电的示意图,其实就是两个单相电路的并联,因此它可以提供双倍的电流。

三相供电当然就是三个单相电路并联而成的,因此可以提供三倍的电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档