运筹学概述一、运筹学的定义 运筹学(Operational Research...
运筹学概念

⏹运筹学:Operational Research,是一门应用科学。
从实际出发解决实际问题的方法。
⏹建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步,验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用⏹线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。
⏹线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。
⏹线性规划模型包括三个部分:目标函数;决策变量;约束条件。
⏹满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称为可行域。
⏹把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数称为最优目标函数值,简称最优值。
⏹图解法只适合于二维线性规划问题⏹松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力)⏹剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件⏹如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点)⏹唯一最优解:只在其一个顶点达到⏹无穷多个最优解:在其两个顶点的连线上达到⏹无界解:可行域无界。
缺少必要的约束⏹无可行解(无解):可行域为空集。
约束条件自相矛盾导致的建模错误⏹灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、bj变化时,对最优解产生什么影响。
或者是这些参数在什么范围内发生变化,最优解不变。
⏹对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称之为这个约束条件的对偶价格。
⏹对偶价格可以理解为对目标函数的贡献。
如果对偶价格大于零,则其最优目标函数值得到改进。
即求最大值时,变得更大;求最小值时,变得更小。
⏹如果对偶价格小于零,则其最优目标函数值变坏。
运筹学

1960年,康托洛微奇再次发表 《最佳资源利用的经济计 算》一书后,才受到国内外的一致重视,为此,康托洛微奇获得 了诺贝尔奖。线性规划的提出很快受到经济学者的重视,如二战 中从事运输模型研究的美国经济学家库普曼斯(T.C.Koopmans) 很快看到了线性规划在经济中应用的意义,并呼吁年轻的经济学 家要关注线性规划,其中阿罗、萨谬尔斯、西蒙、多夫曼和胡尔 威茨等。
一般的构模方法和思路有以下五种: 直接分析法 类比法 数据分析法 实验分析法 想定(构想)法
运筹学模型的形式
模型的一般数学形式可用下列表达式描述: 目标的评价准则 U = f (xi , yi , ξk ) 约束条件 g(xi , yi , ξk )≥0 其中:xi为可控变量; yi,为已知参数;ξk为随机因素。 目标的评价准则一般要求达到最佳(最小或最大)、适中、 满意等。准则可以是单一的,也可以是多个的。约束条件可 以没有也可有多个。当g是等式时,即为平衡条件。当模型 中无随机因素时,称它为确定性模型,否则为随机模型。
引例一:
有甲、乙两种产品,都要在车间A和车间B加工,资料如下:
产品 甲 乙 车间可用工时 在A加工时数 2 1 10 在B加工时数 1 1 8 单位产品利润 6 4 市场限制 无 ≤7
问:如何组织生产才能使利润最大?
建立数学模型,即将问题用数学语言描述,利用初等代数列出 解应用题的方程式或方程组,就是建立简单数学模型的过程。 建立线性规划问题数学 模型步骤: 第一步:确定决策变量
各个领域内都有广泛应用。与此同时,运筹学有了飞 快的发展,并形成了运筹学的许多分支,如数学规划(线性规 划、非线性规划、整数规划、目标规划、动态规划、随机规划、 模糊规划等)、图论与网络、排队论(随机服务系统理论)、 存贮论、对策论、决策论、维修更新理论、搜索论、可靠性和 质量管理理论等。 为运筹学发展做出贡献的早期研究工作,可追溯到1914年。 军事运筹学中兰彻斯特(Lanchester)战斗方程是1914年提出的 ,丹麦工程师爱尔朗(Erlang)1917年就提出了排队论的一些著 名公式,存贮论的最优批量公式是20世纪20年代提出的。在商业 方面,列温逊在30年代以运用运筹学的思想分析商业广告、顾客 心理。
运筹学

Page 7
与此同时,运筹数学有了飞快的发展,并形成了运筹的 许多分支。如数学规划(线性规划、非线性规划、整数 规划、目标规划、动态规划、随机规划等)、图论与网 络、排队论(随机服务系统理论)、存储论、对策论、 决策论、维修更新理论、搜索论、可靠性和质量管理等。
注:兰德公司是美国最重要的以军事为主的综合性战略 研究机构。它先以研究军事尖端科学技术和重大军事战 略而著称于世,继而又扩展到内外政策各方面,逐渐发 展成为一个研究政治、军事、经济科技、社会等各方面 的综合性思想库,被誉为现代智囊的“大脑集中营”、 “超级军事学院”,以及世界智囊团的开创者和代言人。 它可以说是当今美国乃至世界最负盛名的决策咨询机构。
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
优化配置上千个国内航线航班来实现利润 每年节约成本1亿美元 最大化
线性规划
(Linear Programming)
本章主要内容:
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
Page 10
第一定义强调以量化为基础,必然要用数学。但任何决策都 包含定量和定性两方面,而定性方面又不能简单地用数学表 示,如政治、社会等因素,只有综合多种因素的决策才是全 面的。 第二定义表明运筹学具有与多学科交叉的特点,如综合运用 经济学、心理学、物理学、化学中的一些方法。 第三定义说明,运筹学是强调最优决策,“最”是过分理想 了,在实际生活中往往用次优、满意等概念代替最优。
__运筹学概述

第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学概述

天津外国语大学国际商学院本科生课程论文课程名称:运筹学论文题目:运筹学概述姓名:卢楠学号:1307144036专业:财务管理年级:2013级班级:13711任课教师:张琼2016 年 3月内容摘要运筹学是20世纪三四十年代发展起来的一门新兴交叉学科,它主要研究如何应用数学和计算的理论与方法对社会系统和工程系统做出最优或满意的决策。
本文概述了运筹学的研究对象、特点、定义、主要内容和方法,简述了运筹学的发展历程以及运筹学的应用,展望了运筹学未来发展的方向。
关键词:运筹学;概述目录一、引言 (1)二、运筹学的发展 (1)三、运筹学的研究对象、定义和特点 (2)(一)运筹学定义 (2)(二)运筹学研究对象 (3)(三)运筹学特点 (3)四、运筹学的主要内容和研究方法 (3)五、运筹学的应用 (3)六、结语 (4)参考文献: (5)运筹学概述一、引言运筹学是20世纪三四十年代发展起来的一门新兴交叉学科。
它主要研究人类对各种资源的运用及筹划活动,以期通过了解和发展这种运用及筹划活动的基本规律,发挥有限资源的最大效益,达到总体最优的目标。
从问题的形成开始,到构造模型、提出解案、进行检验、建立控制,直至付诸实施为止的所有环节构成了运筹学研究的全过程。
运筹学研究对象的客观普遍性,以及强调研究过程完整性的重要特点,决定了运筹学应用的广泛性,它的应用范围遍及工农业生产、经济管理、工程技术、国防安全、自然科学等各个方面和领域。
二、运筹学的发展朴素的运筹思想在中国古代历史发展中源远流长。
公元前6世纪的著作《孙子兵法》是我国古代军事运筹思想最早的典籍,研究如何筹划兵力以争取全局胜利。
同一时期,我国创造的轮作制、间作制与绿肥制等先进的耕作技术暗含了现代运筹学中二阶段决策问题的雏形。
总之,统筹、多阶段决策、多目标优化、合理运输、选址问题、都市规划、资源综合利用等运筹思想方法屡见不鲜,但很少有人从数学的角度将这些运筹思想和方法进行提升。
运筹学简介

2、
写出下面问题对Байду номын сангаас的线性规划模型并化成标准型。
靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500 万立方米,在两个工厂之间有一条流量为每天200万立方的支流。第一 化工厂每天排放含有某种有害物质的工业污水2万立方米,第二化工厂 每天排放含有某种有害物质的工业污水1.4万立方米。从第一化工厂排 出的工业污水流到第二化工厂以前,有20%可以净化。根据环保要求, 河流中工业污水的含量应不大于0.2%。这两个工厂都需各自处理一部 分工业污水。第一化工厂处理工业污水的成本是1000元/万立方米,第 二化工厂处理工业污水的成本是800元/万立方米。 现在问满足环保要求的条件下,每厂各应处理多少工业污水,使 这两个工厂总的处理工业污水费用最小。
6、运筹学与计算机科学
•内存分配,不同排队规则对磁盘工作性能的影响; •计算机网络分组交换、操作系统中的作业调度,排队论; •满足某组需求的文件查找次序,整数规划; •管理信息系统,决策支持系统,规划论、决策论、对策论、 图与网络分析、存贮论;
7、主要参考书
• 运筹学基础及应用(第四版),胡运权主编,哈尔滨工业大学出 版社 • 运筹学(第三版),《运筹学》教材编写组编,清华大学出版社
∑(和 形式: ∑(和)形式 目标函数 max z=∑cj xj 约束条件 s.t. ∑aij xj =b i , i=1,…,m xj≥0 ,j=1,…,n 向量形式: 向量形式 目标函数 max z=∑cj xj 约束条件 s.t. ∑Pj xj =b xj≥0,j=1,…,n 矩阵形式: 矩阵形式 目标函数 max z=CX 约束条件 s.t. AX =b X≥0
解:设 xij为从产地运往销地的物资数量(i=1,2;j=1,2,3), 则有,目标函数: min z = 2 x11+x12+3 x13+2x21+ 2x22+4x23 约束条件: x11+x12+ x13 = 50 x21+ x22+x23 = 30 x11+ x21 =40 x12+ x22 =15 x13+ x23 =25 xij≥0 i=1,2;j=1,2,3
运筹学基础及应用(全套课件296P) ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论
运筹学概述

运筹学概述摘要:运筹学是包含多种学科的综合性学科,是最早形成的一门软科学。
它把科学的方法、技术和工具应用到包括一个系统管理在内的各种问题上,以便为那些掌管系统的人们提供最佳的解决问题的办法。
它用科学的方法研究与某一系统的最优管理有关的问题。
它能帮助决策人解决那些可以用定量方法和有关理论来处理的问题。
本文首先对运筹学做了简单介绍,并回顾了运筹学的产生和历史,同时介绍了运筹学研究对象、定义和特点,以及运筹学的内容和研究方法,深入探讨了运筹学自形成以后在国内外的发展情况,最后概述了运筹学在实际生活中应用。
关键词:运筹学,历史,特点,内容和方法,发展,应用,领域运筹学(Operational Research(英国)或者是Operations Research(美国),在台湾有时又被称作作业研究),是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。
一、运筹学的简介在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学模型的一个显著
特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
二、运筹学研究的特点
1、科学性
(1)它是在科学方法论的指导下通 过一系列规范化步骤进行的;
(2)它是广泛利用多种学科的科学 技术知识进行的研究。运筹学研究不 仅仅涉及数学,还要涉及经济科学、 系统科学、工程物理科学等其他学科。
2、实践性
运筹学以实际问题为分析对象, 通过鉴别问题的性质、系统的目标 以及系统内主要变量之间的关系, 利用数学方法达到对系统进行最优 化的目的。更为重要的是分析获得 的结果要能被实践检验,并被用来 指导实际系统的运行。
4、Queueing theory(排队论) 5、Game theory(博弈论,对策论) 6、Decision theory(决策论) 7、Storage theory(存储论)
五、运筹学的历史
1、朴素的运筹思想:
❖都江堰水利工程 战国时期(大约公元前250年)川西 太守李冰父子主持修建。其目标是: 利用岷江上游的水资源灌溉川西平 原。追求的效益还有防洪与航运。 其总体构思是系统思想的杰出运用。
3、系统性
运筹学用系统的观点来分析 一个组织(或系统),它着眼于整 个系统而不是一个局部,通过协调 各组成部分之间的关系和利害冲突, 使整个系统达到最优状态。
4、综合性
运筹学研究是一种综合性的 研究,它涉及问题的方方面面,应 用多学科的知识,因此,要由一个 各方面的专家组成的小组来完成。
三、运筹学模型
三、运筹学分析的主要步骤
运筹学分析的主要步骤包括: 发现和定义待研究的问题;构造 数学模型;寻找经过模型优化的 结果,并通过应用这些结果来改 善系统的运行效率。
真实系 统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析 与实施
运筹学分析的步骤
四、运筹学包含的分支
1、Mathematical programming(数学规划): Linear programming(线性规划), Nonlinear programming(非线性规划), Integer programming(整数规划), Objective programming(目标规划) Dynamic programming(动态规划), 2、Graph theory(图论) 3、Network analysis(网络分析)
运 筹 学 概述
一、运筹学的定义 运筹学(Operational Research)
直译为“运作研究” 由于运筹学研究的广泛性和复杂
性,人们至今没有形成一个统一的 定义。以下给出几种定义: 1、运筹学是一种科学决策的方法 2、运筹学是依据给定目标和条件从 众多方案中选择最优方案的最优化 技术。
3、运筹学是一门寻求在给定资源条 件下,如何设计和运行一个系统的 科学决策的方法 4、运筹学就是利用计划的方法和多 学科专家组成的队伍,把复杂的功 能关系表示成数学模型,其目的是 通过定量分析为决策和揭露新问题 提供数量依据。
研究的问题是:设计将雷达信
息传送到指挥系统和武器系统的最 佳方式;雷达与武器的最佳配置; 对探测、信息传递、作战指挥、战 斗机与武器的协调,作了系统的研 究,并获得成功。“Blackett马戏 团”在秘密报告中使用了 “ Operational Rese洋反潜战(1942年) 1942年,美国大西洋舰队反潜 战 官 员 W.D.BAKER 舰 长 请 求 成
都江堰水利工程
❖丁谓的皇宫修复工程 北宋年间,丁谓负责修复火毁的开
封皇宫。他的施工方案是:先将工程 皇宫前的一条大街挖成一条大沟,将 大沟与汴水相通。使用挖出的土就地 制砖,令与汴水相连形成的河道承担 繁重的运输任务;修复工程完成后, 实施大沟排水,并将原废墟物回填, 修复成原来的大街。丁谓将取材、生 产、运输及废墟物的处理用“一沟三 用”巧妙地解决了。
立反潜战运筹组,麻省理工学院 的 物 理 学 家 P.W.MORSE 被 请 来 担任计划与监督。
MORSE 出色的工作之一, 是协助英国打破了德国对英吉 利海峡的封锁。1941-1942年, 德国潜艇严密封锁了英吉利海 峡,企图切断英国的“生命 线”。海军几次反封锁,均不 成功。
应 英 国 要 求 , 美 国 派 MORSE 率领一个小组去协助。MORSE经 过多方实地考察,最后提出了两 条重要建议:
都江堰由三大工程及120多项配 套工程组成:
(1).“鱼嘴”岷江分水工程:将 岷江水有控制地引入内江。
(2).“飞沙堰”分洪排沙工程: 将泥沙排入外江。
(3).“宝瓶口”引水工程:除沙 后的江水引入水网干道。
它们巧妙结合,完整而严密, 相得益彰。两千多年来,这项 工程一直发挥着巨大的效益, 是我国最成功的水利工程。
❖田忌赛马 齐王要与大臣田忌赛马,双方各出 上、中、下马各一匹,对局三次, 每次胜负1000金。田忌在好友、著 名的军事谋略家孙膑的指导下,以 以下安排: 齐王 上 中 下 田忌 下 上 中 最终净胜一局,赢得1000金。
2、早期的军事运筹学 鲍德西(Bawdsey)雷达站的研
究(1935年) 1935 年 , 英 国 科 学 家 R.Watson-
Wart 发 明 了 雷 达 。 丘 吉 尔 命 令 在 英 国东海岸的Bawdsey建立了一个秘密
雷达站。当时,德国已拥有一支强大 的空军,起飞17分钟即到达英国本土。
在如此短的时间内,如何预警和拦截 成为一大难题。
1939年由曼彻斯特大学物理学 家、英国战斗机司令部顾问、战后 获得诺贝尔奖金的P.M.S.Blackett为 首,组织了一个小组,代号 “Blackett马戏团”。这个小组包括 三名心理学家、两名数学家、两名 应用数学家、一名天文物理学家、 一名普通物理学家、一名海军军官、 一名陆军军官、一名测量员。