2019-2020年年长沙中考数学试题及答案(高清版).

合集下载

2019长沙中考数学试卷

2019长沙中考数学试卷

1、已知直角三角形的两条直角边长度分别为3和4,则斜边长为?A. 5B. 6C. 7D. 8(答案)A2、下列四组数中,哪一组是勾股数?A. 3,4,5B. 6,7,8C. 5,12,13D. 9,10,11(答案)A和C都是,但按常规选择第一个正确答案,故选A。

3、某商店进行打折促销,原价为100元的商品打八折后售价为?A. 20元B. 50元C. 80元D. 100元(答案)C4、若一个圆的半径增加1,则它的面积增加?A. 1B. πC. 2πD. 无法确定,因为需要知道原始半径(答案)D5、解方程组 {x + y = 5, x - y = 1} 时,两式相加可得?A. 2x = 6B. 2y = 4C. x = 3, y = 2D. x = 2, y = 3(答案)A6、一个长方形的周长是20厘米,长是a厘米,则宽是?A. (20 - a)厘米B. (20 - 2a)厘米C. (10 - a)厘米D. 10 - a厘米(答案)C7、已知等腰三角形的底角为40°,则其顶角为?A. 40°B. 50°C. 100°D. 140°(答案)C8、下列哪个选项是方程 x2 - 4x + 4 = 0 的解?A. x = 0B. x = 1C. x = 2D. x = 3(答案)C9、若点A(a, b)在第二象限,则点B(-a, -b)在?A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)D10、一个正方体的表面积是24平方厘米,则它的一个面的面积是?A. 2平方厘米B. 3平方厘米C. 4平方厘米D. 6平方厘米(答案)C。

2020年湖南省长沙市中考数学试卷(有详细解析)

2020年湖南省长沙市中考数学试卷(有详细解析)

2020年湖南省长沙市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.(−2)3的值等于()A. −6B. 6C. 8D. −82.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A. 6.324×1011B. 6.324×1010C. 632.4×109D. 0.6324×10124.下列运算正确的是()A. √3+√2=√5B. x8÷x2=x6C. √3×√2=√5D. (a5)2=a75.2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A. v=106t B. v=106t C. v=1106t2 D. v=106t26.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米7.不等式组{x+1≥−1x2<1的解集在数轴上表示正确的是()A. B.C. D.8.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的不一定是红球C. 第一次摸出的球是红球的概率是13D. 两次摸出的球都是红球的概率是199.2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A. ②③B. ①③C. ①④D. ②④10.如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A. 60°B. 45°C. 30°D. 25°11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A. 400x−30=500xB. 400x=500x+30C. 400x=500x−30D. 400x+30=500x12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟二、填空题(本大题共4小题,共12.0分)13.长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校100次数7次及以上654321次及以下人数81231241564这次调查中的众数和中位数分别是______,______.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为______.15.已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为______.16.如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=______.(2)若PN2=PM⋅MN,则MQNQ=______.三、解答题(本大题共9小题,共72.0分)17.计算:|−3|−(√10−1)0+√2cos45°+(14)−1.18.先化简再求值:x+2x2−6x+9⋅x2−9x+2−xx−3,其中x=4.19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是______.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取______人;(2)m=______,n=______;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE−DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.24.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x(______);②y=m(m≠0)(______);x③y=3x−1(______).(2)若点A(1,m)与点B(n,−4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b−a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.25.如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB⏜上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧AB⏜从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12−S22=21时,求弦AC的长度.答案和解析1.D解:(−2)3=−8,2.B解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;3.A解:632400000000=6.324×1011,4.B解:A、√3与√2不是同类项,不能合并,计算错误,故本选项不符合题意.B、原式=x8−2=x6,计算正确,故本选项符合题意.C、原式=√3×2=√6,计算错误,故本选项不符合题意.D、原式=a5×2=a10,计算错误,故本选项不符合题意.5.A解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=106t,6.A解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)7.D解:由不等式组{x+1≥−1x2<1,得−2≤x<2,故该不等式组的解集在数轴表示为:8.A解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确;9.A解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;10.C解:∵AB平分∠CAD,∴∠CAD=2∠BAC=120°,又∵DF//HG,∴∠ACE=180°−∠DAC=180°−120°=60°,又∵∠ACB=90°,∴∠ECB=∠ACB−∠ACE=90°−60°=30°,11.B解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400x =500x+30.12.C解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,{9a+3b+c=0.8 16a+4b+c=0.9 25a+5b+c=0.6,解得{a=−0.2 b=1.5c=−1.9,所以函数关系式为:p=−0.2t2+1.5t−1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−b2a =− 1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.13.5 5解:这次调查中的众数是5,这次调查中的中位数是5+52=5,14.7解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x−2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3−(x−2)=x+5−x+ 2=7.15.3π解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.16.1 √5−12解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ⊥MN,∴∠PQN=∠MPN=90°,∵NE平分∠PNM,∴∠MNE=∠PNE,∴△PEN∽△QFN,∴PEQF =PNQN,即PEPN=QFQN①,∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,∴∠NPQ=∠PMQ,∵∠PQN=∠PQM=90°,∴△NPQ∽△PMQ,∴PNMP =NQPQ②,∴①×②得PEPM =QFPQ,∵QF=PQ−PF,∴PEPM =QFPQ=1−PFPQ,∴PFPQ +PEPM=1,故答案为:1;(2)∵∠PNQ=∠MNP,∠NQP=∠NPQ,∴△NPQ∽△NMP,∴PNMN =QNPN,∴PN2=QN⋅MN,∵PN 2=PM ⋅MN , ∴PM =QN , ∴MQ NQ=MQ PM,∵tan∠M =MQPM =PMMN , ∴MQ NQ =PM MN,∴MQ NQ=NQ MQ+NQ,∴NQ 2=MQ 2+MQ ⋅NQ ,即1=MQ 2NQ 2+MQ NQ,设MQNQ =x ,则x 2+x −1=0, 解得,x =√5−12,或x =−√5+12<0(舍去),∴MQ NQ=√5−12,17. 解:原式=3−1+√2×√22+4 =2+1+4 =7.18. 解:x+2x 2−6x+9⋅x 2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−xx−3=x+3x−3−xx−3 =3x−3,当x =4时,原式=34−3=3.19. ①解:(1)这种作已知角的平分线的方法的依据是①SSS . 故答案为:①(2)由基本作图方法可得:OM =ON ,OC =OC ,MC =NC , 则在△OMC 和△ONC 中, {OM =ON OC =OC MC =NC, ∴△OMC≌△ONC(SSS), ∴∠AOC =∠BOC ,即OC 为∠AOB 的平分线.20.200 86 27解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD//OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=√3,∴tan∠DAC=DCAD =√33,∴∠DAC=30°,∴AC=2DC=2√3,∵OE⊥AC,根据垂径定理,得AE=EC=12AC=√3,∵∠EAO =∠DAC =30°,∴OA =AE cos30∘=2, ∴⊙O 的半径为2. 22. 解:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资,依题意,得:{x +3y =282x +5y =50, 解得:{x =10y =6. 答:A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车才能一次性将这批生活物资运往目的地, 依题意,得:10×3+6m ≥62.4,解得:m ≥5.4,又∵m 为正整数,∴m 的最小值为6.答:至少还需联系6辆B 种型号货车才能一次性将这批生活物资运往目的地.23. (1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB +∠EFC =90°,∠EFC +∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2,∴CF =BC −BF =2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴2√32=2x ,∴x =2√33, ∴EC =2√33.(3)∵△ABF∽△FCE ,∴AF EF =ABCF ,∴tanα+tanβ=BF AB +EF AF =BF AB +CF AB =BF+CFAB =BCAB , 设AB =CD =a ,BC =AD =b ,DE =x ,∴AE =DE +2CE =x +2(a −x)=2a −x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a −x)2,∴a 2−ax =14b 2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴√x 2−(a−x)2=√b 2−a 2a−x ,∴a 2−ax =√b 2−a 2⋅√2ax −a 2,∴14b 2=√b 2−a 2⋅√a 2−12b 2,整理得,16a 4−24a 2b 2+9b 4=0,∴(4a 2−3b 2)2=0,∴b a =2√33, ∴tanα+tanβ=BC AB =2√33.24. √ √ ×解:(1)①y =2x 是“H 函数”.②y =m x (m ≠0)是“H 函数”.③y =3x −1不是“H 函数”.故答案为:√,√,×.(2)∵A ,B 是“H 点”,∴A ,B 关于原点对称,∴m =4,n =1,∴A(1,4),B(−1,−4),代入y =ax 2+bx +c(a ≠0)得{a +b +c =4a −b +c +−4, ∴{b =4a +c =0, ∵该函数的对称轴始终位于直线x =2的右侧, ∴−b 2a >2,∴−42a >2,∴−1<a <0,∵a +c =0,∴0<c <1,综上所述,−1<a <0,b =4,0<c <1.(3)∵y =ax 2+2bx +3c 是“H 函数”,∴设H(p,q)和(−p,−q),代入得到{ap 2+2bp +3c =q ap 2−2bp +3c =−q, 解得ap 2+3c =0,2bp =q ,∵p 2>0,∴a ,c 异号,∴ac <0,∵a +b +c =0,∴b =−a −c ,∵(2c +b −a)(2c +b +3a)<0,∴(2c −a −c −a)(2c −a −c +3a)<0,∴(c −2a)(c +2a)<0,∴c 2<4a 2,∴c 2a 2<4,∴−2<c a <2, 设t =c a ,则−2<t <0,设函数与x 轴交于(x 1,0),(x 2,0),∴x 1,x 2是方程ax 2+2bx +3c =0的两根,∴|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√(−2b a )2−4⋅3c a =√4(a+c)2a 2−12c a=√4[1+2c a +(c a )2−3c a ]=2√1+2t +t 2−3t=2√(t −12)2+34, ∵−2<t <0,∴2<|x 1−x 2|<2√7.25. 解:(1)如图1中,过点O 作OH ⊥AB 于H .∵OA =OB =4,OH ⊥AB ,∴AH =HB =12AB =2√3,∠AOH =∠BOH ,∴sin∠AOH =AH AO =√32, ∴∠AOH =60°,∴∠AOB =2∠AOH =120°.(2)如图2中,连接OC.∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=12OC=2,∴点P的运动路径的长=120⋅π⋅2180=4π3.(3)如图3中,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.∵AD=CD,CE=EB,∴DE//AB,AB=2DE,∴△CDE∽△CAB,∴S△CDES△CAB =(DEAB)2=14,∴S△ABC=4S2,∵S△ADO=S△ODC,S△OBE=S△OEC,∴S四边形ODCE =12S四边形OACB,∴S1+S2=12(4S2+4√3)=2S2+2√3,∴S1=S2+2√3,∵S12−S22=21,∴S22+4√3S2+12−S22=21,∴S2=3√34,∴S△ABC=3√3=12×AB×CK,∴CK=32,∵OH ⊥AB ,CK ⊥AB ,∴OH//CK ,∴△CKJ∽△OHJ ,∴CK OH=CJ OJ , ∴CJ OJ =322=34, ∴CJ =37×4=127,OJ =47×4=167, ∴JK =√CJ 2−CK 2=√(127)2−(32)2=3√1514,JH =√OJ 2−OH 2=√(167)2−22=2√157, ∴KH =√152,∴AK =AH =KH =2√3−√152,∴AC =√AK 2+CK 2=√(2√3−√152)2+(32)2=√18−6√5=√15−√3.。

2020年湖南长沙市中考数学试卷(含详细解析)

2020年湖南长沙市中考数学试卷(含详细解析)
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是 ;两次摸出的球都是红球的概率是
9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()
A. B. C. D.
6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()
A. 米B. 米C.21米D.42米
7.不等式组 的解集在数轴上表示正确的是()
A. B.
C. D.
8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()
第一步,A同学拿出三张扑克牌给B同学;
第二步,C同学拿出三张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,
请你确定,最终B同学手中剩余的扑克牌的张数为___________________.
15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.

湖南长沙中考数学及答案word精品文档9页

湖南长沙中考数学及答案word精品文档9页

2019年长沙市初中毕业水平考试试卷数 学注意事项:1、答题前,考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项,本题共10个小题,每小题3分,共30分)1.(2019湖南长沙,1,3分) | -2|等于( )A .2B . -2 12C .D .-12【答案】A2.(2019湖南长沙,2,3分)下列长度的三条线段,能组成三角形的是( )A . 1、1、2B . 3、4、5C . 1、4、6D . 2、3、7【答案】B3.(2019湖南长沙,3,3分)下列计算正确的是( )A . 3-1=-3B . a 2·a 3=a 6C .(x +1)2=x 2+1D .【答案】D4. (2019湖南长沙,4,3分)如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( )A .(2,2)B .(-4,2)C .(-1,5)D .(-1,-1)【答案】A5.(2019湖南长沙,5,3分)一个多边形的内角和是900°,则这个多边形的边数是( )A . 6B . 7C . 8D . 9【答案】B6.(2019湖南长沙,6,3分)若12x y ì=ïïíï=ïî是关于x ,y 的一元二次方程ax -3y =1的解,则a · P O 123 1 2 3-1 -2 -2-1(第4题) x y的值为( )A . -5B . -1C . 2D . 7【答案】D7. (2019湖南长沙,7,3分)如图,关于抛物线y =(x -1)2-2,下列说法错误的是( )A .顶点坐标是(1,-2)B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小【答案】D8. (2019湖南长沙,8,3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美”相对面上的汉字是( )A .我B .爱C .长D . 沙【答案】C9. (2019湖南长沙,9,3分)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的( )A .6%B .10%C .20%D .25%【答案】C10. (2019湖南长沙,10,3分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AD =2,爱 我美 丽 长沙(第7题)(第9题)A B C D E 人数等级3101215BC =4,则梯形的面积为( )A .3B .4C .6D .8【答案】A二、填空题(本题共8个小题,每小题3分,共24分)11. (2019湖南长沙,11,3分)分解因式:a 2-b 2=_______________.【答案】(a+b )(a-b )12. (2019湖南长沙,12,3分)反比例函数y =k x的图象经过点A (-2,3),则k 的值为________. 【答案】-613.(2019湖南长沙,13,3分)如图,CD 是△ABC 的外角∠ACE 的平分线,AB ∥CD , ∠ACE =100°,则∠A =_____°.【答案】5014. (2019湖南长沙,14,3分)化简:11x x x+-=____________. 【答案】115. (2019湖南长沙,15,3分)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是__________. 【答案】310016. (2019湖南长沙,16,3分)菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长是________ cm .【答案】2017. (2019湖南长沙,17,3分)已知a-3b =3,则8-a +3b 的值是________.【答案】518. (2019湖南长沙,18,3分)如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P =20°,则∠A =_____°.BC(第10题) A B CDE (第13题)【答案】35°三、解答题(本题共2个小题,每小题6分,共12分)19. (2019湖南长沙,19,6分)已知ab =20190,c=-(-2),求a-b+c 的值.【答案】解:a,b =20190=1,c=-(-2)=2,把a =3,b =1,c=2代入a-b+c 中,原式=3-1+2=0.20. (2019湖南长沙,20,6分)解不等式2(x -2)≤6-3x ,并写出它的正整数解.【答案】解:去括号,得2x -4≤6-3x .移项,得2x +3x ≤6+4.合并同类项,得5x ≤10.不等式两边同除以5,得x ≤2.它的正整数解为1,2.四、解答题(本题共2个小题,每小题8分,共16分)21.(2019湖南长沙,21,8分)“珍惜能源,从我做起,节约用电人人有责” .为了解某小区居民节约用电情况,物业公司随机抽取了今年某一天本小区10户居民的日用电量,数据如下:(1)求这组数据的极差和平均数;(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天节约了多少度电?【答案】解:(1)这组数据的最大值是5.6,最小值是3.4,因此这组数据的极差为:5.6-3.4=2.2(度). 这组数据的平均数为: 4.4 4.0 5.0 5.6 3.4 4.8 3.4 5.2 4.0 4.2441010+++++++++==x = 4.4(度). (2)200×(7.8-4.4)=680(度).即该小区200户居民这一天大约节约了680度电.22. (2019湖南长沙,22,6分)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB =40°,∠APD =65°.(1)求∠B 的大小;(2)已知圆心O 到BD 的距离为3,求AD 的长.(第18题) P【答案】解:(1)∵∠APD 是△APC 的外角,∴∠APD =∠CAP +∠C .∴∠C =∠APD -∠CAP =65°-40°=25°.又∵»»=AD AD ,∴∠B =∠C=25°. (2)过点O 作OE ⊥BD ,垂足为E ,则OE =3.由垂径定理可知BE =DE .∵OA =OB .∴线段OE 是△ABD 的中位线.∴AD =2OE =6.五、解答题(本题共2个小题,每小题9分,共18分)23. (2019湖南长沙,23,9分)某工程队承包了某段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【答案】解:(1)设乙班组平均每天掘进x 米,则甲班组平均每天掘进(x +0.6)米,根据题意,得 5x +5(x +0.6)=45.解此方程,得x =4.2.则x +0.6=4.8.答:,乙班组平均每天掘进4.2米.(2)改进施工技术后,甲班组平均每天掘进:4.8+0.2=5(米);乙班组平均每天掘进:4.2+0.3=4.5(米).改进施工技术后,剩余的工程所用时间为:(1755-45)÷(5+4.5)=180(天).按原来速度,剩余的工程所用时间为:(1755-45)÷(4.8+4.2)=342(天).少用天数为:342-180=162(天).答:能够比原来少用162天完成任务.24. (2019湖南长沙,24,9分)如图是一座人行天桥的引桥部分的示意图,上桥通道是由两段互相平行并且与地面成37°角的楼梯AD 、BE 和一段水平平台DE 构成.已知天桥高度BC =4.8米,引桥水平跨度AC =8米.(1)求水平平台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比. (参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)【答案】解:(1)延长线段BE ,与AC 相交于点F ,如图所示.∵AD ∥BF ,DE ∥AC ,∴四边形AFED 是平行四边形.∴DE =AF ,∠BFC =∠A =37°.在Rt △B C F 中,tan ∠BFC =BC CF ,∴CF =tan 37BC o =4.80.75=6.4(米). ∴DE =AF =AC -CF =8-6.4=1.6(米).答:水平平台DE 的长度为1.6米.(2)延长线段DE ,交BC 于点G .∵DG ∥AC ,∴∠BGM =∠C =90°.∴四边形MNCG 是矩形,∴CG =MN =3(米).∵BC =4.8米,所以BG =BC -CG =1.8(米).∵DG ∥AC ,∴△BEG ∽△BFC .而AD =EF ,故53AD BE =. 六、解答题(本题共2个小题,每小题10分,共20分)25. (2019湖南长沙,25,10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x -1,令y =0,可得x =1,我们说1是函数y=x -1的零点.已知函数y =x 2-2mx -2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=,此时函数与x 轴的交点分别为A 、B (点A 在点B 左侧).点M 在直线y =x-10上,当MA +MB 最小时,求直线AM 的解析式.【答案】解:(1)当m =0时,y =x 2-6.令y =0,x 2-6=0,解得x或x=-.A D EBC MN 37°A D EBC MN 37°F G即m =0时,求该函数的零点为、-.(2)证明:令y =0,则x 2-2mx -2(m +3)=0.由于b 2-4ac =(-2m )2-4·1·[-2(m +3)]=4m 2+8m +24=4(m 2+2m +1-1)+24=4(m +1)2+20. 因为无论m 为何值,4(m +1)2≥0,所以4(m +1)2+20>0.即:无论m 取何值,一元二次方程x 2-2mx -2(m +3)=0一定有两个不相等的实数根,因此无论m 取何值,函数y =x 2-2mx -2(m +3)(m 为常数)总有两个零点.(3)设函数的两个零点分别为1x 和2x ,则1x 和2x 是一元二次方程x 2-2mx -2(m +3)=0的两个根,所以1x +2x =2m ,1x ·2x =-2(m +3). 则12121211x x x x x x ++=22(3)3m m m m ==-++. 又121114x x +=, 所以3m m +=14. 解此分式方程,得m =1,经检验,m =1是3m m +=14的根. 所以y =x 2-2x -8.此函数与x 轴的交点坐标为A (-2,0),B (4,0).设直线y=x-10与x 轴交与点C (10,0),与y 轴交于点D (0,-10),过点B 作直线y=x-10的垂线,垂足为点E ,延长BE 到点B ′,使BE=B ′E ,连接AB ′,交y=x-10于点M ,则此时MA +MB 最小.连接B ′C ,由轴对称性质可知:∠B ′CD=∠BCD=45°.∴∠B ′CA=90°∵点C (10,0),点A (-2,0),∴OC =10,B ′C = BC =OC -BC =6.∴B ′坐标为(10,-6).设直线AB ′的解析式为y=kx+b ,把B ′(10,-6),A (-2,0)代入上式:xE10620k b k b ì+=-ïïíï-+=ïî,解得22121k b ìïï=-ïíïï=-ïî. 故当MA +MB 最小时,直线AM 的解析式为y=-12x +1. 26. (2019湖南长沙,26,10分)如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一点,以线段AP 为一边,在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .(1)求点B 的坐标;(2)求证:当点P 在x 轴上运动(P 与Q 重合)时,∠ABQ 为定值;(3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P 点的坐标;若不存在,请说明理由.【答案】(1)过点B 作BC ⊥y 轴,垂足为点C .∵△AOB 是等边三角形,点A 坐标为(0,2),∴AB =BO =OA =2.在Rt △ABC 中,AC =12OA =1,BC. ∴点B1).(2)∵△APQ 、△AOB 是等边三角形,∴AO =AQ ,AO =AB ,∠P AQ =∠BAO =60°,∴∠P AO =∠BAQ .∴△P AO ≌△ABQ .∴∠ABQ =∠AOP =90°故当点P 在x 轴上运动(P 与Q 重合)时,∠ABQ 为定值.(3)存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形.∵∠AOB =60°,∠OBQ =∠ABQ -∠ABO =30°,∴AO 与BQ 不可能平行.①如果AB ∥OQ ,如图所示,则∠BOQ =∠ABO =60°,∠OQB =90°,∠OBQ =30°.x(第26题)=∵OB =OA=2,∴OQ =1,BQ由△P AO ≌△ABQ 可得OP =BQ.∴点P 的坐标为:(0).②如果AQ ∥OB ,如图所示,此时点A ,B ,P 在同一条直线上,且∠APO =30° 在Rt △AOP 中,OA =2.∴OP =P 的坐标为:(0).因此,存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形,点P 的坐标为(,0)或(0).(第26题)x(第26题)。

2019年湖南长沙中考数学试题(解析版)_最新修正版

2019年湖南长沙中考数学试题(解析版)_最新修正版

{来源}2019年湖南长沙中考数学试卷 {适用范围:3. 九年级}{标题}2019年湖南省长沙市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共12小题,每小题3分,合计36分. {题目}1.(2019年长沙T1)下列各数中,比﹣3小的数是( )A .﹣5B .﹣1C .0D .1{答案}A{解析}本题考查了有理数的大小比较,正数>0>负数,两个负数比较大小,绝对值大的反而小,由于135--->>,所以﹣5<﹣3<﹣1,因此本题选A .{分值}3{章节:[1-1-2-4]绝对值} {考点:有理数的大小比较} {类别:常考题} {难度:1-最简单}{题目}2.(2019年长沙T2)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150****0000确保安全供用电需求数据150****0000科学记数法表示为( )A .15×109B .1.5×109C .1.5×1010D .0.15×1011{答案}C{解析}本题考查了用科学记数法表示一个绝对值较大的数,科学记数法就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其具体步骤是:(1)确定a ,a 是整数位数只有一位的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).150****0000=1.5×1010,因此本题选C . {分值}3{章节: [1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年长沙T3)下列计算正确的是( )A .3a +2b =5abB .(a 3)2=a 6C .a 6÷a 3=a 2D .(a +b )2=a 2+b 2{答案}B{解析}本题考查了整式的运算,A 选项是整式的加法,其实质是合并同类项,3a 与2b 不是同类项,故不能相加;B 选项是幂的乘方,底数不变,指数相乘,故正确;C 选项是同底数幂的除法,底数不变,指数相减,故正确结果为a 4;D 选项是和的完全平方公式,展开口诀为:“首平方,尾平方,积的2倍夹中间”故正确结果为a 2+2ab +b 2.因此本题选B . {分值}3{章节: [1-14-2]乘法公式} {考点:整式加减} {考点:幂的乘方}{考点:同底数幂的除法}{考点:完全平方公式}{类别:常考题}{难度:1-最简单}{题目}4.(2019年长沙T4)下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°{答案}D{解析}本题考查了事件的分类,A、B、C选项都是随机事件;D选项是必然事件;因此本题选D.{分值}3{章节: [1-25-1-1]随机事件}{考点:事件的类型}{类别:常考题}{难度:1-最简单}{题目}5.(2019年长沙T5)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )A.80°B.90°C.100°D.110°{答案}C{解析}本题考查了考查了对顶角的定义,平行线的性质,由对顶角的定义可得∠AED=∠1=80°,又因为AB∥CD,所以由两直线平行同旁内角互补可得:∠2=180°-∠AED=100°,因此本题选C.{分值}3{章节:[1-5-3]平行线的性质}{考点:对顶角、邻补角}{考点:两直线平行同旁内角互补}{类别:常考题}{难度:1-最简单}{题目}6.(2019年长沙T6)某个几何体的三视图如图所示,该几何体是( ){答案}D{解析}本题考查了由三视图判断几何体,从正面看和侧面看都是三角形的只要D 选项,因此本题选D . {分值}3{章节: [1-29-2]三视图} {考点:由三视图判断几何体} {类别:常考题} {难度:1-最简单}{题目}7.(2019年长沙T7)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差{答案}B{解析}本题考查了中位数,中位数反映的是一组数据中等水平,要判断11名参赛同学中的小明是否进入前5名,只需比较自己的成绩与第6名的成绩即可.因此本题选B . {分值}3{章节: [1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}8.(2019年长沙T8)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π{答案}C{解析}本题考查了扇形的面积,由扇形的面积公式S =36061202⨯π=π12,因此本题选C .{分值}3{章节: [1-24-4]弧长和扇形面积} {考点:扇形的面积} {{类别:常考题} {难度:1-最简单}{题目}9.(2019年长沙T9)如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于21AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD的度数是( )A.20°B.30°C.45°D.60°{答案}B{解析}本题考查了垂直平分线的性质,等边对等角,三角形的外角,直角三角形两锐角互余,由垂直平分线的性质可知:AD=BD即由等边对等角得:∠DAB=∠B=30°,再由三角形的外角性质得∠ADC=∠DAB+∠B=60°,在Rt△ADC中,∠C=90°所以∠CAD=90°-∠ADC =90°-60°=30°,因此本题选B.{分值}3{章节:[1-13-2-1]等腰三角形}{考点:直角三角形两锐角互余}{考点:三角形的外角}{考点:垂直平分线的性质}{考点:等边对等角}{类别:常考题}{难度:2-简单}{题目}10.(2019年长沙T10)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60n mile 的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )A.303n mile B.60 n mile C.120 n mile D.(30+303)n mile{答案}D{解析}本题考查了与方位角有关的解直角三角形,如图,在Rt△ACD中,由题意可知:AC=60,∠ACD =30°,∠ADC =90°,所以AD =21AC =30,CD =ACcos30°=60×23=303,在Rt△BCD 中,由题意可知:∠BCD =45°,∠BDC =90°,所以BD =CD =303,所以AB =30+303,因此本题选D .{分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形-方位角} {类别:常考题}{难度:3-中等难度}{题目}11.(2019年长沙T11)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A .⎩⎨⎧-=+=15.05.4x y x yB .⎩⎨⎧-=+=125.4x y x yC .⎩⎨⎧+=-=15.05.4x y x yD .⎩⎨⎧-=-=125.4x y x y{答案}A{解析}本题考查了从实际问题中抽象二元一次方程组模型,根据题意发现等量关系是解题的关键,由“用一根绳子去量一根木头的长,绳子还剩余4.5尺”可列方程为y =x +4.5,由“将绳子对折再量木头,则木头还剩余1尺”可列方程为0.5y =x -1,因此本题选A . {分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:简单的列二元一次方程组应用题} {类别:数学文化}{类别:常考题} {难度:3-中等难度}{题目}12.(2019年长沙T12)如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( ) A .25B .45C .53D .10{答案}B{解析}本题考查了垂线的性质、正切、勾股定理,过点D 作DF ⊥AB 于点F ,由同角的余角相等得:∠BDF =∠A ,所以tan ∠BDF =tan ∠A =2即2=DFBF,∴55=BD DF 即DF =55BD ,∴CD +55BD =CD +DF ,由“垂线段最短”可知:当C 、D 、F 三点共线且CF ⊥AB 时,CD +DF 值最小,最小值即为CF 的长度.此时2=AFCF,设AF =x ,则CF =2x ,又因为AC =10,所以由勾股定理得x 2+4x 2=100,解得x =25,所以CF =45.{分值}3{章节:[1-28-3]锐角三角函数} {考点:垂线的性质} {考点:勾股定理} {考点:正切}{考点:几何选择压轴} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}13.(2019年长沙T13)式子5-x 在实数范围内有意义,则实数x 的取值范围是 .{答案}x≥5{解析}本题考查了二次根式有意义的条件,由二次根式有意义的条件可知:x -5≥0即x ≥5. {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {类别:常考题}{难度:1-最简单}{题目}14.(2019年长沙T14)分解因式:am 2-9a = .{答案}a (m -3)(m +3){解析}本题考查了提公因式法因式分解和平方差因式分解,对一个多项式因式分解时,先观察式子特点,如果有公因式先提取公因式后利用公式进行因式分解,特别要注意:因式分解一定要彻底,分解到每一个多项式都不能再分解为止. {分值}3{章节:[1-14-3]因式分解} {考点:因式分解-提公因式法} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}15.(2019年长沙T15)不等式组⎩⎨⎧≥+06301<-x x 的解集是 .{答案}﹣1≤x <2{解析}本题考查了一元一次不等式组的解法,先分别解每一个不等式,再取每个不等式解集的公共部分.不等式组解集的确定方法:①借助数轴;②利用口诀“同大取大,同小取小,大小小大中间取,大大小小无解集”.解不等式x +1≥0得x ≥﹣1,解不等式3x -6<0得x <2,所以不等式组的解集为﹣1≤x <2. {分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}16.(2019年长沙T16)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是 .{答案}0.4{解析}本题考查了用频率估计概率,当大量重复做某一试验时,某一事件发生的频率就会在某一数值附近摆动,这个数值就是概率.大量重复试验时,可以用频率估计概率. {分值}3{章节:[1-25-3]用频率估计概率} {考点:利用频率估计概率} {类别:常考题} {难度:2-简单}{题目}17.(2019年长沙T17)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50m ,则AB 的长是 m .{答案}100{解析}本题考查了三角形中位线的性质,三角形的中位线平行于第三边且等于第三边的一半,所以AB =2DE =100(m). {分值}3{章节:[1-27-1-2]相似三角形的性质} {考点:三角形中位线} {类别:常考题} {难度:2-简单}{题目}18.(2019年长沙T18)如图,函数y =xk(k 为常数,k>0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 是等边三角形,则k =2+3;④若MF =52MB ,则MD =2MA .其中正确的结论的序号是(只填序号){答案}①③④{解析}本题考查了,,因此本题选. {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:代数填空压轴} {类别:常考题} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共8个小题,合计66分.{题目}19.(2019年长沙T19)计算:︒-÷-⎪⎭⎫⎝⎛+--60cos 2362121{解析}本题考查了绝对值的意义、负指数的定义、二次根式的除法、特殊角的三角函数值.{答案}解: 原式=2+2-2-1=1 {分值}6{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题}{考点:绝对值的意义} {考点:负指数的定义}{考点:二次根式的除法法则} {考点:特殊角的三角函数值}{题目}20.(2019年长沙T20)先化简,再求值:a a a a a a a -++÷⎪⎭⎫ ⎝⎛---+22441113,其中a =3. {解析}本题考查了分式的混合运算,按照运算顺序依次计算,若有括号时,先算括号里的. {答案}解: 原式=()()22112+-⨯-+a a a a a =2+a a ,当a =3时,原式=233+=53. {分值}6{章节:[1-15-2-2]分式的加减} {难度:3-中等难度} {类别:易错题}{考点:因式分解-提公因式法} {考点:因式分解-完全平方式} {考点:约分} {考点:通分}{考点:两个分式的加减} {考点:分式的混合运算}{题目}21.(2019年长沙T21)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生,表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.{解析}本题考查了.{答案}解: (1)50;20;12;(2)(3)2000×(42%+40%)=1640(人),答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.{分值}8{章节:[1-10-1]统计调查}{难度:2-简单}{类别:常考题}{考点:频数与频率}{考点:统计表}{考点:条形统计图}{考点:用样本估计总体}{题目}22.(2019年长沙T22)如图,正方形ABCD,点E,F分别在边AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.{解析}本题考查了正方形的性质、全等三角形的判定SAS 、勾股定理、相似三角形的判定(两角相等)、相似三角形的性质.证明两条线段相等的问题,通常考虑这两条线段所在的三角形全等;求线段长度的问题,通常考虑由“相似(或勾股定理、锐角三角函数)”建立方程解之,体现了方程思想.{答案}解: (1)∵四边形ABCD 是正方形,DE =CF ,∴AB =AD =CD ,∠BAE =∠ADF =90°,AE =DF ,在△ABE 和△DAF 中,AB =AD ,∠BAE =∠ADF ,AE =DF ,∴△ABE ≌△DAF , ∴BE =AF .(2)∵AB =4,DE =1,∴AE =3,在Rt △BAE 中,由勾股定理得:BE =5,∵△ABE ≌△DAF ,∴∠EAG =∠EBA ,∵∠BAE =90°,∴∠EBA +∠AEB =90°,∴∠EAG +∠AEB =90°,即∠AGE =90°, 在△ABE 和△GAE 中,∠BAE =∠AGE =90°,∠BEA =∠AEG ,∴△ABE ∽△GAE , ∴BE AE AB AG =即534=AG , ∴AG =512. {分值}{章节:[1-18-2-3] 正方形}{难度:3-中等难度}{类别:思想方法}{类别:常考题}{考点:正方形的性质}{考点:全等三角形的判定SAS}{考点:勾股定理}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{题目}23.(2019年长沙T23)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?{解析}本题考查了一元二次方程的实际应用——增长率,增长率问题只要通过审题弄清楚基础量a ,最终量b ,变化次数,套公式a(1+x)n =b 即可解决.{答案}解:(1)设增长率为x由题意得:2(1+x)2=2.42解得:x 1=0.1=10%,x 2=﹣2.1(舍)答:增长率为10%(2)2.42×(1+10%)=2.662(万人)答:按照这个增长率,预计第四批公益课受益学生将达到2.662万人次{分值}{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}}{考点:一元二次方程的应用—增长率问题}{题目}24.(2019年长沙T24)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, 111111D C CD C B BC B A AB ==.求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求12s s 的值. {解析}本题考查了命题真假的判断、相似三角形的判定(两边夹角)、相似三角形的性质、平行线分线段成比例.判断两个四边形是否相似,紧扣定义,分别证明四个角都相等,四条边都成比例.{答案}解:(1)假;假;真;(2)如图,分别连接BD 、B 1D 1,∵∠BCD =∠B 1C 1D 1,1111D C CD C B BC =,∴△BCD ∽△B 1C 1D 1,∴∠CBD =∠C 1B 1D 1,∠CDB =∠C 1D 1B 1,1111D B BD C B BC =, 又∵∠ABC =∠A 1B 1C 1,1111C B BC B A AB =∴∠AB D =∠A 1B 1D 1,1111D B BD B A AB =, ∴1111D A AD B A AB =,∠A D B =∠A 1D 1B 1,∠D AB =∠D 1A 1B 1, ∴11111111D A AD D C CD C B BC B A AB ===,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,∠A D C =∠A 1D 1C 1,∠D AB =∠D 1A 1B 1,∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)∵四边形ABFE 与四边形EFCD 相似, ∴ABEF AE DE =, ∵EF =OE +OF ,∴AB OF OE AE DE +=, ∵EF ∥AB ∥CD , ∴AB OE AD DE =,ABOF AB OC AD DE ==, ∴ABOF AB OE AD DE AD DE +=+, ∴AE DF AD DE =2, ∵AD =DE +AE , ∴AEAE DE 12=+, ∴2AE =DE +AE ,即AE =DE , ∴121=S S {分值}{章节:[1-27-3]图形的相似}{难度:4-较高难度}{类别:易错题}{类别:新定义}{考点:平行线分线段成比例}{考点:相似三角形的判定(两边夹角)}{考点:相似三角形的性质}{考点:相似三角形的应用}{考点:相似多边形的性质}{题目}25.(2019年长沙T25)已知抛物线y =﹣2x 2+(b -2)x +(c -2020)(b ,c 为常数).(1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n(m<n),当m ≤x ≤n 时,恰好有122112+≤+≤+n n y m m ,求m ,n 的值.{解析}本题考查了抛物线与一元二次方程的关系、解一元二次方程.{答案}解:(1)由题可设:y =﹣2(x -1)2+1去括号得:y =﹣2x 2+4x -1∴⎩⎨⎧-=-=-1202042c b ,解得⎩⎨⎧==20196c b(2)设抛物线上关于原点对称且不重合的两点坐标分别为(x 0,y 0),(﹣x 0,﹣y 0),代入解析式可得:()()()()⎩⎨⎧-+---=--+-+-=20202220202202000200c x b x y c x b x y ,∴两式相加可得:﹣4x 02+2(c -2020)=0,∴c =2x 02+2020,∴c ≥2020(3) 由(1)可知抛物线y =﹣2x 2+4x -1=﹣2(x -1)2+1,∴y ≤1,∵0<m <n ,当m ≤x ≤n 时,恰好有122112+≤+≤+n ny m m , ∴m y n 11≤≤, ∴11≤m 即m ≥1,∴1≤m ≤n ,∵抛物线对称轴x =1,开口向下,∴当m ≤x ≤n 时,y 随x 增大而减小,∴当x =m 时,y max =﹣2m 2+4m -1,当x =n 时,y max =﹣2n 2+4n -1, 又∵m y n 11≤≤ ∴⎪⎩⎪⎨⎧=-+-=-+-②①m m m nn n 1142114222,将①整理得:2n 3-4n 2+n +1=0,∴变形得:(2n 3-2n 2)-(2n 2-n -1)=0,即2n 2(n -1)-(2n +1)(n -1)=0,∴(n -1)(2n 2-2n -1)=0,∵n >1,∴2n 2-2n -1=0,∴n 1=231-(舍去),n 2=231+,同理整理②得:(m -1)(2m 2-2m -1)=0,∵1≤m <n ,∴m 1=1,m 2=231-(舍去),m 3=231+(舍去), ∴综上所述:m =1,n =231+. {分值}{章节:[1-22-2]二次函数与一元二次方程}{难度:5-高难度}{类别:高度原创}{类别:常考题}{考点:二次函数y =a(x +h)2的图象}{考点:抛物线与一元二次方程的关系}{考点:灵活选用合适的方法解一元二次方程}{考点:其他二次函数综合题}{题目}26.(2019年长沙T26)如图,抛物线y =ax 2+6ax (a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t<0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C .(1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证CE =DE ,②如图2,连接AC ,BE ,BO ,当a =33,∠CAE =∠OBE 时,求OEOD 11-的值.{解析}本题考查了一元二次方程的解法、切线的判定、切割线定理、等角对等边,是一道二次函数与圆的综合性问题.{答案}解: (1)令ax 2+6ax =0,∴ax (x +6)=0,所以A(﹣6,0),(2)连接PC ,连接PB 延长交x 轴于点M ,∵⊙P 过O 、A 、B 三点,B 为顶点,∴PM ⊥OA ,∠PBC +∠BOM =90°,又∵PC =PB ,∴∠PCB =∠PBC ,∴CE 为切线,∴∠PCB +∠ECD =90°,又∵∠BDP =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE(3)解:设OE =m ,即E(m ,0)由切割定理:CE 2=OE·AE(m -t)2=m(m +6)推出m =tt 262+① ∵∠CAE =∠CBD ,已知∠CAE =∠OBE ,∠CBO =∠EBO , 由角平分线定理:OE DO BE BD =即()()mt m t -=++++27327322推出m =66--t t ② 由①②得t t 262+=66--t t 推出t 2+18t +36=0, ∴t 2=﹣18t ﹣36,∴616311112=+-=--=-t t m t OE OD {分值}{章节:[1-24-2-2]直线和圆的位置关系} {难度:5-高难度}{类别:高度原创}{类别:易错题}{考点:灵活选用合适的方法解一元二次方程} {考点:切线的判定}{考点:切割线定理}{考点:等角对等边}{考点:二次函数与圆的综合}。

湖南省长沙市2019年中考数学试卷及参考答案

湖南省长沙市2019年中考数学试卷及参考答案

2019年长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( )A.-2B.31C.0D.6 2.大家翘首以盼的长株潭城际铁路将于2019年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( )A .0.955×105 B. 9.55×105 C. 9.55×104 D . 9.5×1043.下列计算正确的是( )A .1052=⨯ B. x 8÷x 2=x 4 C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a 64.六边形的内角和是( )A .︒540 B. ︒720 C. ︒900 D . ︒3605.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6 B. 3 C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( )A .(-2,-1) B. (-1,0) C. (-1,-1) D . (-2,0)9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( )A .75, 80 B. 80,85 C. 80,90 D . 80,8011.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203mC .300 mD . 1602m 12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④ab c b a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________.15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π)16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.三、解答题19.计算:4sin60°-︱- 2︳-12+(-1)201920.先化简,再求值:b a a -(a b 11-)+b a 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2019年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。

2020年湖南长沙中考数学试卷(解析版)

2020年湖南长沙中考数学试卷(解析版)

2020年湖南长沙中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)A.B.C.D.1.的值等于( ).A. B.C. D.2.下列图形中,是轴对称图形但不是中心对称图形的是( ).A.B.C.D.3.为了将”新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,年月至月,全国累计办理出口退税元,其中数字用科学记数法表示为( ).4.下列运算正确的是( ).A.B.C.D.5.年月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:天)与完成运送任务所需时间(单位:天)之间的函数关系式是( ).A.B.C.D.6.从一艘船上测得海岸上高为米的灯塔顶部的仰角为时,船离灯塔的水平距离是( ).A.米B.米C.米D.米7.不等式组的解集在数轴上表示正确的是( ).A.B.RC.D.M8.一个不透明袋子中装有个红球,个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( ).A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是9.年月日,是人类第一个“国际数学日”.这个节日的昵称是“”.国际数学日之所以定在月日,是因为“”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( ).A.②③B.①③C.①④D.②④10.如图:一块直角三角板的角的顶点与直角顶点分别在两平行线、上,斜边平分,交直线于点,则的大小为( ).A.B.C.D.11.随着网络技术的发展,市场对产品的需求越来越大,为满足市场需求,某大型产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产万件产品,现在生产万件产品所需时间与更新技术前生产万件产品所需时间相同.设更新技术前每天生产万件产品,依题意得( ).A.B.C.D.12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”与加工煎炸时间(单位:分钟)近似满足的函数关系为:(,,,是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( ).A.分钟B.分钟C.分钟D.分钟二、填空题(本大题共4小题,每小题3分,共12分)13.长沙地铁号线、号试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了名市民,得到如下统计表:次数次及以上次及以下人数这次调查中的众数和中位数分别是 , .14.某数学老师在课外活动中做了一个有趣的游戏:首先发给、、三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,同学拿出二张扑克牌给同学;第二步,同学拿出三张扑克牌给同学;第三步,同学手中此时有多少张扑克牌,同学就拿出多少张扑克牌给同学.请你确定,最终同学手中剩余的扑克牌的张数为 .15.已知圆锥的母线长为,底面半径为,该圆锥的侧面展开图的面积为 .16.如图,点在以为直径的半圆上运动(点不与,重合),,平分,交于点,交于点.(1)(2).若,则.三、解答题(本大题共9小题,共72分)17.计算:.18.先化简再求值:,其中.(1)(2)19.人教版初中数学教科书八年级上册第页告诉我们一种作已知角的平分线的方法:已知:.求作:的平分线.作法:以点为圆心,适当长为半径画弧,交于点,交于点.分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点.画射线,射线即为所求(如图).请你根据提供的材料完成下面问题.这种作已知角的平分线的方法的依据是 (填序号)①②③④请你证明为的平分线.20.年月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)(2)(3)(4)某学校学生一周劳动次数的条形统计图某学校学生一周劳动次数的扇形统计图人数次及以上次次次及以下一周劳动次数次及以上次及以上次次这次调查活动共抽取 人. ,.请将条形统计图补充完整.若该校学生总人数为人,根据调查结果,请你估计该校一周劳动次及以上的学生人数.(1)(2)21.如图,为⊙的直径,为⊙上一点,与过点的直线互相垂直,垂足为,平分.求证:为⊙的切线.若,,求⊙的半径.(1)22.今年月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用、两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批型货车的辆数(单位:辆)型货车的辆数(单位:辆)累计运输物资的吨数(单位:吨)备注:第一批、第二批每辆货车均满载求、两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了吨生活物资,现已联系了辆种型号货车.试问至少还需联系多少辆种型号货车才能一次性将这批生活物资运往目的地?(1)(2)(3)23.在矩形中,为边上一点,把沿翻折,使点恰好落在边上的点.求证:.若,,求的长.若,记,,求的值.(1)(2)(3)24.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“√”,不是“函数”的打“”.1..( )2..( )3..( )若点与点是关于的“函数”的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值或取值范围.若关于的“函数”(,,是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.25.如图,半径为的⊙中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接、、.【答案】解析:,故选.解析:轴对称是平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.所以是轴对称图形的有,是中心对称图形的有,所以答案选择.解析:用科学记数法表示为,故选.(1)(2)(3)求的度数.当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度.分别记,的面积为,,当时,求弦的长度.D1.B2.A3.B4.在工程问题中,工作效率(速度)工作总量工作时间.故选.解析:船离灯塔的水平距离为(米).故选.灯塔顶部船米解析:该不等式组解得.故选.解析:第一次摸出的是红球,第二次摸出绿球的概率是,选项错误;第二次摸出红球的概率是,选项正确;每次摸出红球的概率都是,选项正确;两次摸出的都是红球的概率是,选项正确;故选.解析:圆周率是一个无限不循环小数,是一个无理数,①说法错误,②说法正确;圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,③说法正确,④说法错误;正确的为②③,故选.A 6.D 7.A 8.A 9.因为斜边平分,所以,则(两直线平行,同旁内角互补),又因为,所以.故选.解析:根据题意可得,即.答案选择.解析:将三个点,,代入函数关系式,有,解得,即函数解析式为,化为顶点式,即当时,有最大值.故选.解析:众数就是出现次数最多的数,由可得这次调查中的众数是;中位数就是将一组数据从小到大排列,最中间的那个数即为这组数据第个数和第个数的平均数,即,B 11.原速现速C 12. ;13.(1)所以这次调查的中位数是.解析:设原来、、三个同学有张扑克,则由题意得:第一步时:有张,有张;第二步时:有张;有张;第三步时:有张,有张,∴同学手中有(张).故答案为:.解析:圆锥的展开图的圆心角为(度),所以展开图的面积为.故答案为:.解析:过点作,∵平分,14.15.(1)(2)16.(2)∴,,∵为半圆的直径,,∴,,∴,∴,又∵,∴,∴,则,∵,∴,则.故答案为:.∵为半圆的直径,,∴,∴,∵,∴,∴,则,∵,∴,同理可证,∴,∴,则,∴,设,则,解得,(舍去),∴.(1)(2)故答案为:.解析:原式.解析:原式,将代入原式,所以原式.故答案为:.解析:这种作已知角的平分线的方法的依据是.故答案为:①.∵、在以点为圆心的弧上,∴,又∵分别以、为圆心,相同长度画弧,∴,∴在和中,有,∴≌,∴,∴是的角平分线.17..18.(1)①(2)证明见解析.19.(1)(2)(3)(4)(1)解析:这次调查活动一共抽取了(人).故答案为:.(人),.故答案为:;.一周劳动次数为次的有(人),如图:某学校学生一周劳动次数的条形统计图某学校学生一周劳动次数的扇形统计图人数次及以上次次次及以下一周劳动次数次及以上次及以上次次.该校一周劳动次数为次及以上的有(人).故答案为:该校一周劳动次数为次及以上的有人.解析:连接,(1)(2);(3)画图见解析.(4)人.20.(1)证明见解析.(2)⊙的半径为.21.(2)(1)(2)∵平分,∴,∵,∴,∴,∴且,∴,∴,为圆的切线.作与点,∵,,∴,∴,∵,∴,∴半径为.解析:设货车满载可以运吨物资,型号货车满载可以运吨物资,则由题意可得,解得.答:货车满载可以运吨生活物资,型号货车满载可运吨生活物资.设至少需要联系辆型货车,由题意可得,解得,又为整数,所以最小取,答:至少需联系辆型货车.(1)货车满载可以运吨生活物资,型号货车满载可以运吨生活物资.(2)至少需联系辆型货车.22.(1)(2)(3)解析:∵,∴,又∵,∴,∴且,∴.设为,则,,∵,,∴,,在中有,解得,∴.故答案为:.∵,∴,设,,则可得,,根据勾股定理,可求得,,,∵,∴有,同时平方可得,∴,整理可得,即,,将代入可得.故答案为:.(1)证明见解析.(2).(3).23.(1)(2)(3)解析: 1 :通过原点,有无数个点关于原点对称.2 :也有无数个点关于原点对称.3 :没有任何两个点关于原点对称.由题意得,两点关于原点对称,所以,,将,两点代入原方程可得:,,可得:,,又因为,所以,所以,综上所述:,,.设和是图象上关于原点对称的点的横坐标,得:,化简得:,所以,异号,,,又因为,将代入上式,可得:,即:,又因为,异号,故,,令,则,(1)✓✓×(2),,.(3).24.(1)(2)所以,二次函数对称轴为且开口向上,所以当时,最小值为,当时,最大值为,所以.解析:如图,过作于,∵,∴,∴,∴,∵,∴,∴.如图,连接,取的中点,连接、,(1).(2).(3)或.25.(3)∵是弦的中点,点是弦的中点,,∴,,即,∴,∴、、、四点共圆,为的外心,∴在以为圆心,为半径的圆上运动,∵,∴运动路径长为.当点靠近点时,如图,作交圆于,作交于,交于,作交于,交于,交于,连接,∵是弦的中点,点是弦的中点,∴,∵,,∴,设,,由题可知,,∴,,∴,,∵,∴,即,解得,∴,即,由于,∴,又∵,∴,同理当点靠近点时,可知,综上所述,或.。

长沙市2019年中考数学试卷及答案(Word解析版)

长沙市2019年中考数学试卷及答案(Word解析版)

湖南省长沙市2019年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、1D、-12.下列几何体中,主视图、左视图、俯视图完全相同的是()=4+=6.(3分)(2019•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()AC=43m7.(3分)(2019•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()8.(3分)(2019•长沙)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是().9.(3分)(2019•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转..==90=180=7210.(3分)(2019•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()..y=y=二、填空题(共8小题,每小题3分,共24分)11.(3分)(2019•长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=110度.12.(3分)(2019•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).13.(3分)(2019•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.ACB=∠AOB=×14.(3分)(2019•长沙)已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.15.(3分)(2019•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.件进行检测,抽到不合格产品的概率是:=故答案为:16.(3分)(2019•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.=(=17.(3分)(2019•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.18.(3分)(2019•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).的坐标代入得:.三、解答题(共2小题,每小题6分,共12分)19.(6分)(2019•长沙)计算:(﹣1)2019+﹣()﹣1+sin45°.20.(6分)(2019•长沙)先简化,再求值:(1+)+,其中x=3.••=.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2019•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.××.22.(8分)(2019•长沙)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E 处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.,÷=2=××=五、解答题(共2小题,每小题9分,共18分)23.(9分)(2019•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?24.(9分)(2019•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC 的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.x=ACB=六、解答题(共2小题,每小题10分,共20分)25.(10分)(2019•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.y=,,则(=42b+=.<,进而求出(y=≠x=,,时,,)k=,,(===.<>=,>26.(10分)(2019•长沙)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.,进而与,±,x,,x r=r=>a PA=,PM=PN=PH=aAM=,,=时,=4a;=4(负数舍去)a2或2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档