高中数学必修4--平面向量教案
(完整版)高中数学必修4第二章平面向量教案完整版

高中数学必修 4 第二章平面向量教课设计( 12课时 )本章内容介绍向量这一看法是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具 .向量看法引入后,全等和平行(平移)、相似、垂直、勾股定理即可转变为向量的加(减)法、数乘向量、数目积运算,从而把图形的基天性质转变为向量的运算系统.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实质背景.在本章中,学生将认识向量丰富的实质背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数目积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.而后介绍本节从物理上的力和位移出发,抽象出向量的看法,并说了然向量与数目的差别,了向量的一些基本看法 . (让学生对整章有个初步的、全面的认识 .)第 1课时§2.1 平面向量的实质背景及基本看法教课目标:1.认识向量的实质背景,理解平面向量的看法和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等看法;并会划分平行向量、相等向量和共线向量 .2.经过对向量的学习,使学生初步认识现实生活中的向量和数目的实质差别.3.经过学生对向量与数目的鉴别能力的训练,培育学生认识客观事物的数学实质的能力.教课要点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的看法,会表示向量.教课难点:平行向量、相等向量和共线向量的差别和联系.学法:本节是本章的入门课,看法许多,但难度不大.学生可依据在原有的位移、力等物理看法来学习向量的看法,联合图形实物划分平行向量、相等向量、共线向量等看法.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、情形设置:如图,老鼠由 A 向西北逃跑,猫在 B 处向东追去,设问:猫能否追到老鼠?(画图)C结论:猫的速度再快也没用,因为方向错了.A DB 解析:老鼠逃跑的路线AC 、猫追赶的路线BD 实质上都是有方向、有长短的量 .前言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的看法:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数目与向量有何差别?2、如何表示向量?3、有向线段和线段有何差别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为 1 的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向同样或相反,这组向量有什么关系?7、假如把一组平行向量的起点所有移到一点O,这是它们能否是平行向量?这时各向量的终点之间有什么关系?(三)研究学习1、数目与向量的差别:数目只有大小,是一个代数目,可以进行代数运算、比较大小;向量有方向,大小,两重性,不可以比较大小.2.向量的表示方法:a①用有向线段表示;②用字母a、bA(起点)(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;B (终点)④向量 AB 的大小――长度称为向量的模,记作| AB |.3.有向线段:拥有方向的线段就叫做有向线段,三个因素:起点、方向、长度.向量与有向线段的差别:(1)向量只有大小和方向两个因素,与起点没关,只要大小和方向同样,则这两个向量就是同样的向量;(2)有向线段有起点、大小和方向三个因素,起点不一样,尽管大小和方向同样,也是不一样的有向线段 .4、零向量、单位向量看法:①长度为 0 的向量叫零向量,记作0. 0 的方向是任意的.注意 0 与 0 的含义与书写差别.②长度为 1 个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都不过限制了大小.5、平行向量定义:①方向同样或相反的非零向量叫平行向量;②我们规定0 与任一直量平行.说明:( 1)综合①、②才是平行向量的完好定义;( 2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向同样的向量叫相等向量.说明:( 1)向量a与b相等,记作a=b;( 2)零向量与零向量相等;( 3)任意两个相等的非零向量,都可用同一条有向线段来表示,而且与有..向线段的起点没关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同向来线上(与有向线段的......起点没关)..... .说明:( 1)平行向量可以在同向来线上,要差别于两平行线的地点关系;(2)共线向量可以相互平行,要差别于在同向来线上的线段的地点关系.(四)理解和牢固:例1 书籍 86页例 1.例2判断:(1)平行向量能否必定方向同样?(不必定)(2)不相等的向量能否必定不平行?(不必定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同向来线上,则这两个向量必定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向同样)(7)共线向量必定在同向来线上吗?(不必定)例 3 以下命题正确的选项是()A. a与b共线,b与c共线,则a与 c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四极点C.向量a与b不共线,则a与b都是非零向量D.有同样起点的两个非零向量不平行解:因为零向量与任一直量都共线,所以 A 不正确;因为数学中研究的向量是自由向量,所以两个相等的非零向量可以在同向来线上,而此时就构不行四边形,根本不行能是一个平行四边形的四个极点,所以 B 不正确;向量的平行只要方向同样或相反即可,与起点能否同样没关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来下手考虑,倘若a与b不都是非零向量,即a与b最少有一个是零向量,而由零向量与任一直量都共线,可有a与b共线,不吻合已知条件,所以有a与b都是非零向量,所以应选 C.例 4如图,设O是正六边形ABCDEF 的中心,分别写出图中与向量OA 、 OB 、 OC 相等的向量 .变式一:与向量长度相等的向量有多少个?(11 个)变式二:能否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(CB, DO, FE )课堂练习:1.判断以下命题能否正确,若不正确,请简述原由.①向量 AB 与 CD 是共线向量,则A、 B、 C、D 四点必在向来线上;②单位向量都相等;③任一直量与它的相反向量不相等;④四边形 ABCD 是平行四边形当且仅当AB = DC⑤一个向量方向不确立当且仅当模为0;⑥共线的向量,若起点不一样,则终点必定不一样.解:①不正确.共线向量即平行向量,只要求方向同样或相反即可,其实不要求两个向量AB 、 AC 在同向来线上.②不正确 .单位向量模均相等且为1,但方向其实不确立.③不正确 .零向量的相反向量还是零向量,但零向量与零向量是相等的. ④、⑤正确 .⑥不正确 .如图AC与BC共线,虽起点不一样,但其终点却相同. 2.书籍 88 页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书籍 88 页习题 2.1 第 3、5 题第 2课时§向量的加法运算及其几何意义教课目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法规和平行四边形法规作两个向量的和向量,培育数形联合解决问题的能力;3、经过将向量运算与熟习的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,浸透类比的数学方法;教课要点:会用向量加法的三角形法规和平行四边形法规作两个向量的和向量.教课难点:理解向量加法的定义.学法:数能进行运算,向量能否也能进行运算呢?数的加法启示我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生理所应当接受向量的加法定义.联合图形掌握向量加法的三角形法规和平行四边形法规 .联系数的运算律理解和掌握向量加法运算的交换律和联合律.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、设置情形:1、复习:向量的定义以及相关看法重申:向量是既有大小又有方向的量.长度相等、方向同样的向量相等.所以,我们研究的向量是与起点没关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移就任何地点2、情形设置:A B C(1)某人从 A 到 B ,再从 B 按原方向到C,则两次的位移和:AB BC AC(2)若上题改为从 A 到 B,再从 B 按反方向到 C, C A B 则两次的位移和:AB BC ACC (3)某车从 A 到 B ,再从 B 改变方向到 C,则两次的位移和:AB BC AC A BC (4)船速为AB,水速为BC,则两速度和:AB BC AC二、研究研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.A B2、三角形法规(“首尾相接,首尾连” )如图,已知向量a、b .在平面内任取一点 A ,作 AB =a,BC=b,则向量AC叫做a 与b的和,记作a+b,即a+bAB BC AC ,规定: a + 0-= 0 + aaaaC bbaa+ b bA a+ bbaB研究:( 1)两相向量的和还是一个向量;( 2)当向量a与b不共线时, a + b 的方向不一样向,且|a + b |<|a |+| b |;( 3)当a与b同向时,则a + b、a、b同向,O a A且| a + b |=| a |+|b |,当a与b反向时,若 | a |>|b |,bb b a则 a + b 的方向与 a 同样,且| a + b |=| a |-| b |;若a B | a |<| b |,则a + b的方向与b同样,且 | a +b|=| b |-| a |.( 4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推行到n个向量连加3.例一、已知向量 a 、 b ,求作向量 a + b作法:在平面内取一点,作OA a AB b ,则 OB a b .4.加法的交换律和平行四边形法规问题:上题中 b + a 的结果与 a + b 能否同样?考据结果同样从而获得:1)向量加法的平行四边形法规(对于两个向量共线不适应)aa +b = b + a2)向量加法的交换律:5.向量加法的联合律:( a + b ) + c = a + ( b + c )证:如图:使AB a ,BC b ,CD c则( a + b ) + c = AC CD AD , a + ( b + c ) =AB BD AD∴( a + b ) + c = a + ( b + c )从而,多个向量的加法运算可以依据任意的次序、任意的组合来进行.三、应用举例:例二( P94— 95)略练习: P95四、小结1、向量加法的几何意义;2、交换律和联合律;3、注意: | a + b | ≤ | a | + | b |,当且仅当方向同样时取等号.五、课后作业:P103 第2、3题六、板书设计(略)七、备用习题1、一艘船从 A 点出发以23km/ h 的速度向垂直于对岸的方向行驶,船的实质航行的速度的大小为4km/ h ,求水流的速度.2、一艘船距对岸 4 3km ,以23km / h 的速度向垂直于对岸的方向行驶,到达对岸时,船的实质航程为8km ,求河水的流速.3、一艘船从 A 点出发以v1的速度向垂直于对岸的方向行驶,同时河水的流速为v 2,船的实质航行的速度的大小为4km/ h ,方向与水流间的夹角是60,求v1和 v2.4、一艘船以5km/h的速度内行驶,同时河水的流速为2km/h ,则船的实质航行速度大小最大是km/h ,最小是km/h5、已知两个力F1,F2的夹角是直角,且已知它们的合力 F 与F1的夹角是60,|F|=10N 求 F1和 F2的大小 .6、用向量加法证明:两条对角线相互均分的四边形是平行四边形第 3课时§2.2.2 向量的减法运算及其几何意义教课目标:1.认知趣反向量的看法;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.经过论述向量的减法运算可以转变为向量的加法运算,使学生理解事物之间可以相互转变的辩证思想 .教课要点:向量减法的看法和向量减法的作图法.教课难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上联合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、复习:向量加法的法规:三角形法规与平行四边形法规向量加法的运算定律:DCB BA BA例:在四边形中,.解: CB BA BA CB BA AD CDA B二、提出课题:向量的减法1.用“相反向量”定义向量的减法( 1)“相反向量”的定义:与 a 长度同样、方向相反的向量.记作a( 2)规定:零向量的相反向量还是零向量. ( a) = a.任一直量与它的相反向量的和是零向量.a + ( a) = 0假如 a、 b 互为相反向量,则 a =b, b = a, a + b = 0( 3)向量减法的定义:向量 a 加上的 b 相反向量,叫做 a 与 b 的差 .即: a b = a + (b)求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若 b + x = a,则 x 叫做 a 与 b 的差,记作 a b3.求作差向量:已知向量a、 b,求作向量∵ (a b) + b = a + ( b) + b = a + 0 = a a O作法:在平面内取一点O,bba bBCa作 OA = a,AB = b则 BA = a b即 a b 可以表示为从向量 b 的终点指向向量 a 的终点的向量 .注意: 1AB 表示a b.重申:差向量“箭头”指向被减数2 用“相反向量”定义法作差向量, a b = a + ( b)明显,此法作图较繁,但最后作图可一致.B’a bB a+ ( b)Ob ab bAB4.研究:1)假如从向量 a 的终点指向向量 b 的终点作向量,那么所得向量是 b a.a ab a bbO B A B’O BAa ab a bb O A b B BO A2)若 a∥b,如何作出 a b?三、例题:例一、( P97例三)已知向量a、b、 c、 d,求作向量 a b、 c d.解:在平面上取一点O,作OA = a,OB = b,OC = c,OD = d,作 BA ,DC ,则BA= a b,DC = c db aA BD dcCOD CA B例二、平行四边形ABCD 中,AB a,AD b ,用 a、 b 表示向量AC 、 DB .解:由平行四边形法规得:,DB= AB AD= a bAC = a + b变式一:当 a, b 满足什么条件时,a+b 与 a b 垂直?( |a| = |b|)变式二:当 a, b 满足什么条件时,|a+b| = |a b|?( a, b 相互垂直)变式三: a+b 与 a b 可能是相当向量吗?(不行能,∵对角线方向不一样)练习:P 98四、小结:向量减法的定义、作图法|五、作业: P103 第 4、5题六、板书设计(略)七、备用习题:1.在△ABC中,BC=a,CA=b ,则AB等于 ()A. a+bB.- a+(- b) D. b-a为平行四边形ABCD平面上的点,设OA=a,OB=b,OC=c,OD=d ,则A. a+b+c+d=03 .如图,在四边形B.a-b+c-d=0 C.a+b -c-d=0ABCD 中,依据图示填空:D.a-b -c+d=0a+b=, b+c=,c-d=, a+b+c-d=.4、以以下图,O 是四边形ABCD内任一点,试依据图中给出的向量,确立a、b 、 c、d 的方向(用箭头表示),使a+b=AB ,c-d=DC,并画出 b -c 和a+d.第3题平面向量的基本定理及坐标表示第 4课时§ 2.3.1 平面向量基本定理教课目标:(1)认识平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实质问题的重要思想方法;(3)可以在详尽问题中合适地采用基底,使其余向量都可以用基底来表达.教课要点:平面向量基本定理.教课难点:平面向量基本定理的理解与应用.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.实数与向量的积:实数λ与向量 a 的积是一个向量,记作:λa(1)|λa |=|λ ||a |;( 2)λ >0 时λa与a方向同样;λ <0 时λa与a方向相反;λ =0 时λa =02.运算定律联合律:λ ( μa )=( λ μ);分配律: (λ +μ)=λa +μ,λ ( a +b)= λa+λba a a3. 向量共线定理向量 b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa.二、讲解新课:平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1e1+λ2e2.研究:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量 a 在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . 1λ,λ2是被a,e1,e2独一确立的数目三、讲解模范:例 1 已知向量e1,e2求作向量 2.5 e1 +3 e2 .例 2如图ABCD的两条对角线交于点M ,且AB = a,AD = b ,用a, b 表示 MA , MB , MC 和 MD例 3 已知 ABCD 的两条对角线 AC 与 BD 交于 E, O 是任意一点,求证: OA + OB + OC + OD =4 OE例 4( 1)如图,OA,OB不共线,AP =t AB(t R)用OA,OB表示OP.uuur uur( 2 )设OA、OB不共线,点P 在 O、A、B所在的平面内,且uuur uuur uuurR) .求证:A、B、P三点共线.OP(1t )OA tOB (t例 5已知 a=2 e121212不共线,向量12-3e , b= 2e +3e ,此中 e , e c=2e -9e,问能否存在这样的ur r r实数、 ,使 d a b 与c共线.四、课堂练习:1.设 e 、 e 是同一平面内的两个向量,则有()12A. e1、 e2必定平行1、 e2的模相等C.同一平面内的任一直量 a 都有 a =λe1+μe2 (λ、μ∈ R )D.若 e1、 e2不共线,则同一平面内的任一直量 a 都有 a =λe1+ue2(λ、 u∈R )2.已知矢量 a = e1-2e2, b =2e1+e2,此中 e1、 e2不共线,则a+b 与 c =6 e1-2e2的关系A. 不共线B.共线C.相等D. 没法确立3.已知向量e1、e2不共线,实数x、y 满足 (3x-4y)e1+(2x-3y)e2=6e1+3e2,则 x-y 的值等于 ( )4.已知 a、b 不共线,且 c =λ1a+λ2b(λ1,λ2∈ R),若 c 与 b 共线,则λ1=.5.已知λ1> 0,λ2> 0,e1、e2是一组基底,且 a =λ1e1+λ2e2,则 a 与 e1_____,a 与 e2_________( 填共线或不共线 ).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:第 5课时§—§ 2.3.3 平面向量的正交分解和坐标表示及运算教课目标:(1)理解平面向量的坐标的看法;(2)掌握平面向量的坐标运算;(3)会依据向量的坐标,判断向量能否共线.教课要点:平面向量的坐标运算教课难点:向量的坐标表示的理解及运算的正确性.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1 e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量a在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . λ1,λ2是被a,e1,e2独一确立的数目二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y轴方向同样的两个单位向量基底 .任作一个向量 a ,由平面向量基本定理知,有且只有一对实数x 、y,使得i 、j 作为a xi yj ○1我们把 ( x, y) 叫做向量 a 的(直角)坐标,记作a ( x, y) ○2此中 x 叫做 a 在 x 轴上的坐标,y 叫做a在 y 轴上的坐标,○2式叫做向量的坐标表示 .与a相等的向量的坐标也为( x, y)............特别地, i(1,0) , j(0,1), 0 (0,0) .如图,在直角坐标平面内,以原点O 为起点作OA a ,则点A的地点由 a 独一确立.设 OA xi yj ,则向量OA的坐标(x, y)就是点 A 的坐标;反过来,点 A 的坐标(x, y)也就是向量 OA 的坐标.所以,在平面直角坐标系内,每一个平面向量都是可以用一对实数独一表示 .2.平面向量的坐标运算(1)若a ( x1 , y1 ),b ( x2 , y2 ),则 a b(x1x2 , y1y2 ),a b( x1x2 , y1y2 )两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为 i 、 j ,则 a b( x1i y1 j ) ( x2 i y2 j ) ( x1x2 )i ( y1y2 ) j即 a b(x1x2 , y1y2 ) ,同理可得a b(x1x2 , y1y2 )(2)若A (x1,y1), B( x2 , y2 ) ,则AB x2x1 , y2y1一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB= OB OA=( x 2,y2)(x1, y1)= (x2x1,y2y1)(3)若a(x, y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘本来向量的相应坐标.设基底为 i 、j ,则a( xi yj )xi yj ,即 a ( x, y)三、讲解模范:uuur例 1 已知 A(x 1, y1), B(x 2, y2),求AB的坐标 .r r r r r r r r例 2 已知a =(2 ,1),b =(-3 ,4) ,求a + b,a - b,3 a +4 b的坐标.例 3 已知平面上三点的坐标分别为 A( 2, 1), B( 1, 3), C(3, 4),求点 D 的坐标使这四点构成平行四边形四个极点 .解:当平行四边形为 ABCD 时,由 AB DC 得 D 1=(2, 2)当平行四边形为ACDB 时,得 D 2=(4 , 6),当平行四边形为 DACB 时,得 D 3=( 6, 0)例 4 已知三个力 F 1 (3, 4), F 2 (2, 5), F 3 (x , y)的合力 F 1 + F 2 + F 3 = 0 ,求 F 3 的坐标 .解:由题设 F 1 + F 2 +F 3=0得: (3, 4)+ (2 , 5)+(x , y)=(0 , 0)32 x 0x 5 ∴ F 3 ( 5,1)即:5 y∴14 y四、课堂练习 :1.若 M(3 , -2)N(-5 , -1) 且 MP1MN ,求 P 点的坐标22.若 A(0 , 1), B(1, 2),C(3 , 4) ,则AB 2BC = .3.已知:四点 A(5 , 1), B(3, 4), C(1, 3),D(5 , -3), 求证:四边形 ABCD是梯形 .五、小结 (略)六、课后作业 (略)七、板书设计 (略)八、课后记:第 6课时§ 2.3.4 平面向量共线的坐标表示教课目标:( 1)理解平面向量的坐标的看法;( 2)掌握平面向量的坐标运算;( 3)会依据向量的坐标,判断向量能否共线.教课要点: 平面向量的坐标运算教课难点: 向量的坐标表示的理解及运算的正确性讲课种类: 新讲课教 具:多媒体、实物投影仪教课过程 :一、复习引入:1.平面向量的坐标表示分别取与 x 轴、 y轴方向同样的两个单位向量 i、 j.a ,由平面作为基底 任作一个向量 向量基本定理知,有且只有一对实数x 、 y ,使得 axiyj把 (x, y) 叫做向量 a 的(直角)坐标,记作 a ( x, y)此中 x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标,特别地,i (1,0) , j (0,1) , 0(0,0) .2.平面向量的坐标运算若 a ( x 1 , y 1 ) , b ( x 2 , y 2 ) ,则 a b(x1x , y1y ) ,a b(x1x , yy ) ,a ( x, y).22212若 A( x 1 , y 1 ) , B(x 2 , y 2 ) ,则 AB x 2 x 1 , y 2 y 1二、讲解新课:a ∥b ( b 0 )的充要条件是 x 1y 2-x 2y 1=0设a =(x 1,y ), b=(x 2,y )此中 b a.12x 1 x 2 由 a =λ b 得, (x 1, y 1) = λ (x 2, y 2)消去λ, x 1y 2-x 2y 1=0y 1y 2研究:( 1)消去λ时不可以两式相除,∵y 1, y 2 有可能为0, ∵ b 0∴ x 2, y 2 中最少有一个不为 0( 2)充要条件不可以写成y 1 y 2 ∵ x 1, x 2 有可能为 0x 1x 2(3) 从而向量共线的充要条件有两种形式:a ∥ b( b 0ab)x 1 y 2 x 2 y 1 0三、讲解模范:例 1 已知 a =(4 ,2) , b =(6 , y),且 a ∥ b ,求 y.例 2 已知 A(-1 , -1) , B(1 ,3) , C(2 , 5),试判断 A , B , C 三点之间的地点关系 .例 3 设点 P 是线段 P1P2上的一点, P1、P2的坐标分别是 (x1, y1), (x2, y2).(1)当点 P 是线段 P1P2的中点时,求点 P 的坐标;(2) 当点 P 是线段 P1P2的一个三均分点时,求点P 的坐标 .例 4 若向量a =(-1 ,x) 与b =(-x , 2)共线且方向同样,求x解:∵ a =(-1,x)与b=(-x,2)共线∴ (-1)×2- x?(-x)=0∴ x=±2∵ a与b方向同样∴ x=2例 5 已知A(-1 , -1), B(1 , 3), C(1, 5) , D(2 , 7) ,向量AB与CD平行吗?直线AB与平行于直线CD吗?解:∵AB =(1-(-1),3-(-1))=(2 ,4),CD=(2-1 , 7-5)=(1 , 2)又∵ 2× 2-4× 1=0∴ AB∥ CD又∵AC =(1-(-1),5-(-1))=(2,6), AB =(2,平行∴A ,B,C 不共线∴AB与CD不重合四、课堂练习:1.若 a=(2 , 3), b=(4, -1+ y) ,且 a∥ b,则 y=()4),2× 4-2× 6 0∴AB ∥ CD∴ AC与AB不2.若A(x, -1) , B(1,3) ,C(2,5)三点共线,则x 的值为()3.若AB=i+2 j ,DC=(3- x)i+(4- y)j(此中i 、j的方向分别与x、y 轴正方向同样且为单位向量). AB与 DC共线,则x、 y的值可能分别为()A.1 , 2, 24.已知 a=(4 , 2),b=(6, y),且5.已知 a=(1 , 2),b=( x, 1),若6.已知□ABCD 四个极点的坐标为, 2 D.2 ,4a∥b,则 y=.a+2b 与 2a-b 平行,则x 的值为.A(5, 7),B(3, x),C(2,3), D(4, x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:§ 平面向量的数目积第7课时一、 平面向量的数目积的物理背景及其含义教课目标:1.掌握平面向量的数目积及其几何意义;2.掌握平面向量数目积的重要性质及运算律;3.认识用平面向量的数目积可以办理相关长度、角度和垂直的问题;4.掌握向量垂直的条件 .教课要点:平面向量的数目积定义教课难点:平面向量数目积的定义及运算律的理解和平面向量数目积的应用讲课种类:新讲课教具:多媒体、实物投影仪内容解析:本节学习的要点是启示学生理解平面向量数目积的定义,理解定义以后即可指引学生推 导数目积的运算律, 而后经过看法辨析题加深学生对于平面向量数目积的认识 .主要知识点: 平面向量数目积的定义及几何意义; 平面向量数目积的5 个重要性质; 平面向量数目积的运算律 .教课过程:一、复习引入:1. 向量共线定理向量 b 与非零向量 a 共线的充要条件是:有且只有一个非零实数λ, 使b =λ a .2.平面向量基本定理:假如e 1 , e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ 1,λ 2 使a =λ 1 e 1 +λ 2 e 23.平面向量的坐标表示分别取与 x 轴、 y 轴方向同样的两个单位向量 i 、 j.a ,由平面向作为基底 任作一个向量 量基本定理知,有且只有一对实数x 、 y ,使得 a xi yj把 (x, y)叫做向量 a 的(直角)坐标,记作 a ( x, y)4.平面向量的坐标运算若 a( x1 , y1 ), b( x2, y2 ) ,则a b(x1x2 , y1y2 ) ,a b( x1x2 , y1y2 ),a (x,y).若 A( x1 , y1 ) , B(x2 , y2 ) ,则AB x2x1 , y2y15.a∥b( b0 )的充要条件是x1y2-x2y1=06.线段的定比分点及λP1,P2是直线l 上的两点,P 是l 上不一样于P1,P2的任一点,存在实数λ,使P1 P= λPP2,λ 叫做点P分P1 P2所成的比,有三种情况:λ>0( 内分 )(外分 ) λ <0 ( λ <-1)( 外分 )λ <0(-1<λ <0)7.定比分点坐标公式:若点P 1 (x1, y1 ) ,P2 (x2, y2) ,λ为实数,且P1P =λPP2,则点P 的坐标为(x1x2 ,y1y2),我们称λ为点P分P1P2所成的比. 118.点 P 的地点与λ的范围的关系:①当λ>0时, P1 P 与 PP2同向共线,这时称点P 为P1P2的内分点 .②当λ<0 (1)时, P1P 与 PP2反向共线,这时称点P 为P1P2的外分点 .9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设OP1=a,OP2=b,a b1b .可得OP=a11110.力做的功:W = |F| |s|cos ,是 F 与 s 的夹角 .二、讲解新课:1.两个非零向量夹角的看法已知非零向量a与b,作 OA =a, OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角 .说明:( 1)当θ=0时,a与b同向;( 2)当θ=π时,a与b反向;( 3)当θ=时,a与b垂直,记a⊥b;2( 4)注意在两向量的夹角定义,两向量一定是同起点的.范围0 ≤ ≤180C2.平面向量数目积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数目|a||b|cos叫a与b的数目积,记作 a b,即有 a b = |a||b|cos,(0≤θ≤π) .并规定0 与任何向量的数目积为0.研究:两个向量的数目积与向量同实数积有很大差别(1)两个向量的数目积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数目积称为内积,写成个向量的数目的积,书写时要严格划分也不可以用“×”取代.a b;今后要学到两个向量的外积a× b,而 ab 是两.符号“·”在向量运算中不是乘号,既不可以省略,(3)在实数中,若b=0.因为此中cosa 0,且有可能为a b=0,则0.b=0;但是在数目积中,若 a 0,且 a b=0,不可以推出(4)已知实数a、 b、 c(b0),则ab=bc a=c .但是 a b = b c a = c如右图: a b = |a||b|cos= |b||OA|, b c = |b||c|cos = |b||OA|a b = b c但a c(5) 在实数中,有( a b)c = a(b c),但是 (a b)c a(b c)明显,这是因为左端是与 c 共线的向量,而右端是与 a 共线的向量,而一般 a 与c 不共线.3.“投影”的看法:作图。
必修4平面向量教案

②相等向量:长度相等且方向相同的向量,叫做相等向量.
(4)例题与练习
例1(课本P84例1)
例2(课本P85例2)
例3.有两ቤተ መጻሕፍቲ ባይዱ长度相等的向量,在什么情况下,这两个向量一定相等?
解:有下列两种情况之一,这两个向量一定相等.
①两个长度相等的向量,方向也相同;②两个向量的长度都为零.
练习:
1.课本P86,练习1,2,3,4
2.回答下列问题
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量一定不平行吗? (不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任何向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(2)向量的表示及模的概念
①表示:向量通常用一条有向线段来表示,也可以用字母 等来表示,或用表示有向线段的起点和终点的字母表示,如 .
②模:有向线段的长度表示向量的大小,也就是向量的长度(或称模),记作 , 箭头所指的方向表示向量的方向.
摘要与反思
主 要 内 容 及 板 书
③零向量:长度为0的向量叫做零向量,记作 ;
④单位向量:长度等于1个单位长度的向量,叫做单位向量.
(3)平行向量(共线向量)与相等向量的概念
①平行向量:方向相同或相反的非零向量,叫做平行向量.
如图中, 就是一组平行向量,记作
∥ ∥ .
任作一条与 所在直线平行的直线 ,在 上取一点O,则可在 上分别作出 .这就是说,任一组平行向量都可移到同一直线上,因此,平行向量也叫做共线向量.
(平行(或共线向量)
3.下列各种情况中,向量的终点各构成什么图形?
高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点)B(终点)aO ABaaab b b§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|<||+||; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作= =,则+=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aABCa +ba +baa bbabb aa2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 a (2) 规定:零向量的相反向量仍是零向量.(a ) = a. 任一向量与它的相反向量的和是零向量.a + (a ) = 0如果a 、b 互为相反向量,则a = b , b = a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a b = a + (b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a b ) + b = a + (b ) + b = a + 0 = a作法:在平面内取一点O , 作OA = a , AB = b则BA = a b 即a b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b a.O abBa ba b2)若a ∥b , 如何作出ab§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量a bAABBB ’Oa baa b bOAOBa ba bBA Ob§2.3.2—§ 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相.等的向量的坐标也为.........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB OA =( x 2, y 2) (x 1,y 1)= (x 2 x 1, y 2 y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=二、讲解新课:a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中bρa ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵bρ0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (bρ)01221=-=⇔y x y x λ§平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ, 使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F ||s |cos ,是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos 有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c 如右图:a b = |a ||b |cos = |b ||OA|,bc = |b ||c |cos = |b ||OA|a b = b c 但a c(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos 2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a ba ⋅5 |ab | ≤ |a ||b |C二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos ; 2 ab a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4cos =||||b a ba ⋅ ;5|ab | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律1.交换律:a b = b a 证:设a ,b 夹角为,则a b = |a ||b |cos ,ba = |b ||a |cos ∴a b = b a 2.数乘结合律:(λa )b =λ(a b ) = a (λb ) 证:若λ> 0,(λa )b =λ|a ||b |cos, λ(a b ) =λ|a ||b |cos ,a (λb )=λ|a ||b |cos ,若λ< 0,(λa )b =|λa ||b |cos() =λ|a ||b |(cos ) =λ|a ||b |cos ,λ(a b ) =λ|a ||b |cos ,a (λb ) =|a ||λb |cos() =λ|a ||b |(cos ) =λ|a ||b |cos .C3.分配律:(a + b )c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos1 + |b | cos2 ∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos 2, ∴c (a + b ) = c a + c b即:(a + b )c = a c + b c 说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2 三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a b a ⋅ ;5|a b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a b = ba 数乘结合律:(λa )b =λ(a b ) = a (λb ) 分配律:(a + b )c = a c + b c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s =||||b a b a ⋅⋅。
向量的教案5篇

向量的教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!向量的教案5篇教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本店铺为您分享的向量的教案5篇,感谢您的参阅。
人教版高中必修4《平面向量》教学设计

人教版高中必修4《平面向量》教学设计《人教版高中必修4《平面向量》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、单元教学内容分析本章节内容教学安排在人教版必修四三角函数章节后,和差公式前,这为后面的和差公式的学习做好铺垫,又为解三角形问题和平面几何中的许多计算问题提供便利工具。
向量既有代数特征,又有几何特征,是沟通代数与几何的桥梁。
向量具有代数特征,运算及其规律是代数学研究的基本问题,向量可以进行多种运算,如向量加、减、数乘和数量积等。
向量运算具有一系列运算性质。
向量具有几何特征,它不仅可以描述,刻画几何中的点、线、面及其位置关系,数量关系,还可以表示空间中的曲线与曲面,是研究几何问题的基本工具。
本教材从学生熟悉的实例出发,经过观察、分析、归纳等方法概括出向量的相关概念,比以往的教材更能使学生产生自然而亲切的感觉,有助于激发学生的学习兴趣,调动学生的学习积极性,使他们真正认识到数学的应用价值,从而提高学生应用数学的意识。
教材结合向量的几何背景——有向线段,引入向量的表示法,规定了向量的长度的概念。
定义了零向量,单位向量、平行向量、相等向量、相反向量、共线向量等概念。
对于许多旧有的知识利用向量方法去处理,就会变得简单易懂,从而有助于学生对这些知识有更深刻的理解,更牢固的记忆,更自如的应用。
二、单元学生情况分析1、学生在初中阶段接触过物理学中的矢量,已具备基本的认知水平和运算能力。
2、学生已基本掌握函数和三角函数的基础知识,会运用数形结合法、整体代换法、分类讨论法等解决实际问题。
3、学生已具备基本的分析为和解决问题的勇气和智慧。
三、教学目标1、知识与技能目标(1)理解并掌握平面向量的基本概念。
(2)通过实例,掌握向量的加、减、数乘和数量积运算,并理解其几何意义。
(3)理解并掌握向量共线和垂直问题,理解平面向量基本定理及其意义。
会用坐标表示向量的加、减、数乘和数量积运算。
(4)掌握数量积的坐标表示,能运用数量积表示两个向量的夹角,能解决两个向量的垂直问题,投影问题。
高中数学必修4第二章平面向量教案完整版

§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点) B (终点)aO A B a a a b b b §2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=.4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aA B C a +b a +b a a b b a b b aa2)向量加法的交换律:a +b =b +a5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.任一向量与它的相反向量的和是零向量.a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3. 求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b -a. O ab B a b a -b2)若a ∥b , 如何作出a - b§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量a -b A A B B B’ O a -b a a b b O A O B a -b a -b B A O -b§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x b a λ§2.4平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.C4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0C3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a 证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。
新课标数学必修4第2章平面向量教案

第二章平面向量第1课时平面向量的实际背景及基础概念【知识与技能】1.理解平面向量、有向线段的概念,掌握向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量共线向量等概念3.会辨认图形中的相等向量;4.清楚认识现实生活中的向量和数量两个不同概念,把握其本质区别,提高辨识能力. 【过程与方法】向量的概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量关系的运算.向量不同于数量,它是一种新的量,既有大小又有方向,关于数量的运算在向量范围内不一定适用.因此,本章在介绍向量概念时,说明了向量与数量的区别.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本节是本章的入门课,概念较多,但难度不大.可根据在原有的位移、力等物理概念来学习向量的概念,结合图形来区分平行向量、相等向量、共线向量等概念.一、教学目标1.理解向量、零向量、单位向量、相等向量的意义,并能用数学符号表示向量;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量、和相等向量的意义,并会判断向量的平行、相等、共线;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生进行唯物辩证思想.二、教学重点⑴向量的概念,相等向量的概念,向量的几何表示.⑵向量是一种新的量,其特征有两个:既有大小,又有方向.让学生认识到方向性的存在是认识向量概念的关键,还要让学生理解向量和数量的区别联系,建立一种新的量的思维体系.⑶相等向量只与方向、大小有关,与位置没有关系,进一步理了解学习的向量是自由向量,为以后运用向量解决平面数形问题奠定基础.三、教学难点⑴向量概念的理解.由于向量是一种新的量,与以前的数量是不同的体系,两者之间既有联系又有区别;⑵引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生在比较中找出相近概念的区别与联系,而且由于向量同时具有几何图象的特征,在学习时还要在图形中辩清它们相等、平行,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份、地位和作用.四、教学具准备直尺、投影仪.五、教学过程㈠设置情境问:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标?答:不能,因为没有给定发射的方向.问:现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?答:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向.㈡向量的概念:力、速度、加速度等也是既有大小也有方向的量,我们把既有大小又有方向的量叫做向量.数学中用点表示位置,用射线表示方向.常用一条有向线段表示向量.在数学中,通常用点表示位置,用射线表示方向.(1)意义:既有大小又有方向的量叫向量。
北师大版高中高二数学必修4《平面向量》教案及教学反思

北师大版高中高二数学必修4《平面向量》教案及教学反思一、前言本文是结合北师大版高中高二数学必修4的平面向量教学内容,为教师提供了相应的教案和教学反思,主要包括教学目的、教学重点、难点、教学过程、教学方法、教师工作和学生工作的要求等。
二、教学目的1.了解平面向量的概念、性质和运算法则。
2.学习线性运算、数量积和向量积的定义、性质和运算法则。
3.通过实例计算向量的长度、在坐标系中的表示、平移、旋转等问题。
三、教学重点和难点1.教学重点1.向量的概念、性质和运算法则。
2.学习线性运算、数量积和向量积的定义、性质和运算法则。
3.能计算向量的长度、在坐标系中的表示、平移、旋转等问题。
2.教学难点1.向量的概念与初学者的数学思维的转换。
2.向量积的概念和运算需要一定的几何直观,较为抽象。
四、教学过程1.引入通过展示一个向量的示意图,让学生从图像上感受到向量的呈现方式,并讨论其特点。
2.【课堂互动】概念阐释让学生从示意图中认识向量的本质,理解向量的基本性质,引领学生明确向量的基本概念。
3.【实际应用】例题分析让学生通过实际的应用例子,来理解向量的一些具体应用,引领学生掌握向量的定义、性质和运算法则。
4.【例题解答】计算练习让学生通过例题练习,来计算向量的长度、在坐标系中的表示、平移、旋转等问题,巩固向量的计算方法。
5.【探究优化】性质讨论通过讨论向量的性质和运算法则,引领学生建立起向量的几何直观,从而更好地掌握计算过程。
五、教学方法1.教师工作1.运用多媒体工具和真实的案例方法,让学生更直观地理解向量的定义和运算法则。
2.通过设计不同难度的例子,巩固学生对向量的理解能力,引导学生在思考的同时发现规律。
2.学生工作1.课前预习教材,为课堂中的学习打下基础。
2.积极参与实物示例和实际的应用例子讨论,从中理解向量的特点及其解析方法。
3.认真完成课堂上各种类型的练习。
六、教学反思1.教育是不断变革和发展的,时刻驱使我们教师不断地改革教育方法,使学生更好的掌握知识,发展他们的潜能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科组长签字:高中数学必修4 平面向量基本知识回顾:1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----AB u u u r(几何表示法);②用字母a r 、b r等表示(字母表示法);③平面向量的坐标表示(坐标表示法):分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r,),(y x 叫做向量a 的(直角)坐标,记作(,)a x y r,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i r (1,0) ,j r (0,1) ,0(0,0) r。
a r ),(11y x A ,),(22y x B ,则1212,y y x x,AB3.零向量、单位向量:①长度为0的向量叫零向量,记为0;②长度为1个单位长度的向量,叫单位向量.||a 就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r.共线向量与平行向量关系:平行向量就是共线向量.性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a bu r ru r r r r 0,与同向方向---0,与反向长度---1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r)5.相等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2性质:0a b a b r u r r rg1212a b x x y yr u r(其中1122(,),(,)a x yb x yr u r)6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
向量加法的三角形法则和平行四边形法则。
平行四边形法则:AC a bu u u r r r(起点相同的两向量相加,常要构造平行四边形)DB a bu u u r r r三角形法则,加法首尾相连减法终点相连方向指向被减数——加法法则的推广:112nAB AB B Bu u u u r u u u r u u u u r……1n nB Bu u u u u u r即n个向量12,,a au r u u r……nau u r首尾相连成一个封闭图形,则有12a au r u u r 0nau u r r②向量的减法向量ar加上的br相反向量,叫做ar与br的差。
即:arbr= ar+ ( br);差向量的意义:OA= ar, OB=br, 则BA=arbr③平面向量的坐标运算:若11(,)a x yr,22(,)b x yr,则a brr),(2121yyxx,a brr),(2121yyxx,(,)a x yr。
④向量加法的交换律:+=+;向量加法的结合律:(+) +=+ (+)⑤常用结论:(1)若1()2AD AB ACu u u r u u u r u u u r,则D是AB的中点(2)或G是△ABC的重心,则0GA GB GCu u u r u u u r u u u r r7.向量的模:1、定义:向量的大小,记为 |ar| 或 |ABu u u r|2、模的求法:若 (,)a x y r,则 |a r |22x y若1122(,),(,)A x y B x y , 则 |AB u u u r |222121()()x x y y3、性质:(1)22||a a r r ;22||(0)||a b b a b r r (实数与向量的转化关系) (2)22||||a b a b r r r r ,反之不然(3)三角不等式:||||||||||a b a b a b r r r r r r (4)||||||a b a b r r r r g (当且仅当,a b r r共线时取“=”)即当,a b r r 同向时 ,||||a b a b r r r r g; 即当,a b r r 同反向时 ,||||a b a b r r r rg (5)平行四边形四条边的平方和等于其对角线的平方和,即22222||2||||||a b a b a b r r r r r r 8.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a|;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=0;(3)运算定律 λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa+λb交换律:a b b a r r r r gg ; 分配律:()a b c a c b c r r r r r r rgg g ( )·b r = (·b r )=·( b r); ——①不满足结合律:即()()a b c a b c r r r r r r gg g g ②向量没有除法运算。
如:a b c b a c r r r r r r gg ,2a a a b br r r r r g 都是错误的 (4)已知两个非零向量,a b r r,它们的夹角为 ,则a b r r g =||||cos a b r r坐标运算:1122(,),(,)a x y b x y r u r ,则1212a b x x y y r u rg(5)向量AB a u u u r r在轴l 上的投影为:︱a r ︱cos , ( 为a n r r与的夹角,n r 为l 的方向向量) 其投影的长为//||a n A B n r r g r (||n n r r 为n r 的单位向量)(6)a b r r与的夹角 和a b r r g的关系: (1)当0 时,a b r r 与同向;当 时,a b r r与反向(2) 为锐角时,则有0,a b a b r r g r u r 不共线; 为钝角时,则有0,a b a b r r gr u r不共线9.向量共线定理:向量b 与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数λ,使b =λa。
10.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e 。
(1)不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底1e 、2e 的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a,1e ,2e 唯一确定的数量。
向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x ,y),则OA =(x,y );当向量起点不在原点时,向量AB 坐标为终点坐标减去起点坐标,即若A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1) 11. 向量a 和b 的数量积:①a ·b =| a |·|b |cos ,其中 ∈[0,π]为a 和b 的夹角。
②||cos 称为在的方向上的投影。
③·的几何意义是:的长度||在的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。
④若 =(1x ,1y ), =(x 2,2y ), 则2121y y x x b a •⑤运算律:a · b =b ·a , (λa )· b =a ·(λb )=λ(a ·b ), (a +b )·c =a ·c +b ·c 。
⑥a 和b 的夹角公式:cos =a ba b• rr r r =222221212121yx y x y y x x⑦ •2a a a |a |2=x 2+y 2,或|a|=22y x ⑧| a ·b |≤| a |·| b |。
)3,3(321321y y y x x x12.两个向量平行的充要条件:符号语言:若a ∥b ,a ≠0,则a =λb坐标语言为:设a =(x 1,y 1),b =(x 2,y 2),则a ∥b (x 1,y 1)=λ(x 2,y 2),即 2121y y x x ,或x 1y 2-x 2y 1=0在这里,实数λ是唯一存在的,当a 与b 同向时,λ>0;当a 与b 异向时,λ<0。
|λ|=|b ||a |,λ的大小由 a 及 b 的大小确定。
因此,当 a ,b 确定时,λ的符号与大小就确定了。
这就是实数乘向量中λ的几何意义。
13.两个向量垂直的充要条件:符号语言:a ⊥ba ·b =0坐标语言:设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b x 1x 2+y 1y 2=0例题讲解例1、如图, OA , OB 为单位向量, OA 与OB 夹角为1200, OC 与OA 的夹角为450,| OC |=5,用 OA , OB 表示OC 。
例2、已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求点D 和向量AD 坐标。
例3、求与向量 a =3(,-1)和 b =(1,3)夹角相等,且模为2的向量c 的坐标。
例4、在△OAB 的边OA 、OB 上分别取点M 、N ,使| OM |∶| OA |=1∶3,| ON |∶|OB |=1∶4,设线段AN 与BM 交于点P ,记 OA = a , OB = b ,用 a , b 表示向量OP 。
例5、已知长方形ABCD ,AB=3,BC=2,E 为BC 中点,P 为AB 上一点 (1)利用向量知识判定点P 在什么位置时,∠PED=450; (2)若∠PED=450,求证:P 、D 、C 、E 四点共圆。
例6、直角坐标系xOy 中,i j r r,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC中,若j k i AC j i AB3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.4例7、如图,平面内有三个向量OA uu u r 、OB 、OC ,其中与OA uu u r与OB 的夹角为120°,OA uu u r 与OC 的夹角为30°,且|OA uu u r|=|OB |=1,|OC | =32,若OC =λOA uu u r+μOB (λ,μ∈R ),则λ+μ的值为 .例8、设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( )A.(-15,12)B.0C.-3D.-11例9、已知平面向量),2(),2,1(m b a ,且a ∥b ,则b a 32 =( ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10)例10、已知平面向量a r =(1,-3),b r =(4,-2),a b r r 与a r垂直,则 是( )A. -1B. 1C. -2D. 2例11、在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F. 若a AC , b BD ,则 AF ( )A .1142a b r rB. 2133a b r rC. 1124a b r rD. 1233a b r r例12、已知向量a r 和b r 的夹角为0120,||1,||3a b r r ,则|5|a b r r.例13、已知向量(3sin ,cos ),(cos ,cos )a x x b x x r r ,函数()21f x a b r r(1)求()f x 的最小正周期; (2)当[, ]62x时, 若()1,f x 求x 的值.点例14、已知向量a=(cos23x ,sin 23x ),b =(2sin 2cos x x , ),且x ∈[0,2].(1)求b a(2)设函数b a x f )(+b a,求函数)(x f 的最值及相应的x 的值。