第二章 火炮工作原理.

合集下载

火炮控制系统及原理

火炮控制系统及原理

火炮控制系统及原理火炮控制系统是指用于控制火炮射击的一套系统,包括火炮的瞄准、射击参数的计算和控制等。

火炮控制系统的主要原理是利用计算机技术和电子技术,实现火炮的精确射击和快速反应。

火炮控制系统的组成火炮控制系统主要由以下几个部分组成:1. 火炮瞄准系统:用于确定火炮的瞄准方向和角度,包括瞄准仪、瞄准器和瞄准传感器等。

2. 射击参数计算系统:用于计算火炮的射击参数,包括弹道计算、气象条件计算和火炮状态计算等。

3. 射击控制系统:用于控制火炮的射击,包括火炮的开火、瞄准和调整等。

4. 数据传输系统:用于传输射击数据和指令,包括无线电传输和有线传输等。

火炮控制系统的原理火炮控制系统的原理主要是利用计算机技术和电子技术,实现火炮的精确射击和快速反应。

具体原理如下:1. 火炮瞄准系统的原理:火炮瞄准系统主要是利用瞄准仪、瞄准器和瞄准传感器等设备,确定火炮的瞄准方向和角度。

其中,瞄准传感器可以通过激光或红外线等技术,实现对目标的精确瞄准。

2. 射击参数计算系统的原理:射击参数计算系统主要是利用计算机技术,对火炮的弹道、气象条件和火炮状态等进行计算和分析。

其中,弹道计算可以通过数学模型和实验数据,确定弹道曲线和射击精度;气象条件计算可以通过气象传感器和气象数据库,获取当前的气象条件;火炮状态计算可以通过传感器和监测设备,获取火炮的状态信息。

3. 射击控制系统的原理:射击控制系统主要是利用电子技术,实现对火炮的射击控制。

其中,开火控制可以通过电子触发器和点火装置,实现对火炮的快速开火;瞄准控制可以通过电动机和传动装置,实现对火炮的精确瞄准;调整控制可以通过电子控制器和执行器,实现对火炮的调整和校准。

4. 数据传输系统的原理:数据传输系统主要是利用无线电和有线传输技术,实现对射击数据和指令的传输。

其中,无线电传输可以通过卫星通信和无线电网络,实现对远距离射击数据的传输;有线传输可以通过光缆和电缆等技术,实现对近距离射击数据的传输。

火炮系统的组成及作用过程

火炮系统的组成及作用过程
下一篇:
早期的火炮靠炮手目测以调整射向随着科学技术的发展火炮的瞄准系统由目测普通光学瞄准镜发展为采用光学声学电子学激光等原理制作的近代多种观瞄器材
火炮系统的组成及作用过程
确切地说,火炮是一个由弹药、发射装置与瞄准系统三大部分组成的武器综合系统。这个系统的主体是发射装置,习惯上都称其为“火炮”,为了区别于习惯称呼,常将上述三部分合称为“火炮系统”或“火炮总体”。在这个系统中,弹药是带引信的弹丸、带点火具的发射药及药筒的统称。射击中,将发射药的化学能转换为弹丸动能的全部过程都是在炮身内完成的。为了能准确地将弹丸射向目标,火炮上需要有相应的瞄准系统及支撑炮身的炮架。早期的火炮靠炮手目测以调整射向,随着科学技术的发展,火炮的瞄准系统由目测、普通光学瞄准镜,发展为采用光学、声学、电子学、激光等原理制作的近代多种观瞄器材;由一般的机械瞄准机构发展为电力或液压驱动的随动系统。为了使用和研究方便,有时又将火炮系统概括为火力系统(firtem)与运行系统(mobile system)三大部分,见下图。

炮弹发射原理

炮弹发射原理

炮弹发射原理
炮弹发射原理是一种常见的军事武器工作原理。

其基本原理是利用火药的爆炸能释放巨大能量,通过炮管将炮弹加速发射出去。

炮弹发射主要分为以下几个步骤:
1. 装填炮弹:将炮弹放置在炮管的炮膛内,通常炮弹的底部会有一个装药腔,里面填充了火药或其他炸药。

2. 火药点燃:通过点火系统点燃炮膛里的装药,火药开始燃烧并产生大量的燃气和高温。

3. 燃气膨胀:燃烧的火药产生的高温和气体使得炮膛内的压力急剧增加,炮弹的底部受到极大的推力。

4. 炮弹加速:由于燃气的压力巨大,炮弹开始向前加速移动,被推出炮膛。

这个过程中,炮弹的形状和尾部的火炮推动器等设计也会影响其加速和稳定性。

5. 发射出炮管:当炮弹加速到足够高的速度后,它会完全离开炮管,进入自由飞行状态。

整个发射过程中,需要考虑诸如炮弹的重量、气压、燃烧速度、炮膛的材料和结构等因素,以确保炮弹能稳定且准确地发射出去。

同时,炮弹发射也是一种高度危险的过程,需要特殊的设备和操作来确保安全。

炮弹发射原理被广泛应用于军事、民用等领域,它在战斗、射击训练和科学研究等方面起着重要作用。

火炮的物理原理

火炮的物理原理

火炮的物理原理一、简介火炮是口径在20毫米以上,用火药的爆发力发射弹丸的重火器的通称。

火炮用于歼灭敌有生力量和压制敌方火器,破坏敌防御工事,完成陆地、海洋和空中的其它打击任务。

13至14世纪时,中国的火药和火器制造技术传入信仰伊斯兰教的国家和欧洲,欧洲的火炮开始发展。

19世纪开始,随工业和科学技术的发展,火炮迅速发展起来,出现了发射长形弹的线膛炮,并安装有弹性炮架。

火炮发展至今,已经是儿孙满堂,不仅家族支系众多,而且家族成员的外貌也差别甚大,出现了有善于对付各种目标的专门火炮:按安装发射的平台不同可分为地面炮、舰炮和航炮;按运动方式可分为固定火炮、机械牵引炮和自行火炮;按作战用途又可分为地面压制火炮、海岸炮、高射炮、坦克炮、特种炮等;按口径大小可分为:大口径炮(高炮在100毫米、地炮在152毫米、舰炮130毫米以上);中口径炮(高炮在61~100毫米、地炮在76~152毫米、舰炮在76~130毫米左右);小口径炮(高炮在20~60毫米、地炮在20~75毫米、舰炮在20~57毫米之间)。

按炮膛结构可分为线膛炮和滑膛炮;按弹道特性可分为加农炮(弹道低伸)、榴弹炮(弹道较弯曲)和迫击炮(弹道最弯曲)按装填方式可分为前装式火炮和后装式火炮。

二、基本构造现代火炮的基本组成部分有:炮身、炮尾、炮闩和炮架等。

其作用原理是将发射药在膛内燃烧的能量转换为弹丸的炮口动能以抛射弹丸,同时产生声、光、热等效应。

火炮的主要战术技术性能是初速、射程、精度、射速和机动性等。

火炮的主要任务是用于对地面、空中和水上目标射击,毁伤和压制敌有生力量及技术兵器,以及完成其它任务。

火炮的结构身管火炮的外观及其组成部件视炮种及其用途而异。

尽管有这些差别,然而身管火炮都是按照几乎相同的方法制造的。

身管火炮有两个或两组主要部件,就是炮身部分和炮架部分。

炮架部分用于支承炮身和保持火炮射击时的稳定性。

炮架部分包括瞄准装置,在某些情况下它还可作为运送炮身部分的手段。

第二章 火炮工作原理

第二章 火炮工作原理

2.3.3
弹丸在空中稳定飞行原理
一、陀螺稳定原理
图2-13 不旋转的陀螺要倾倒
图2-14 旋转的陀螺运动
图2-14 旋转的陀螺与弹丸
二、 尾翼弹丸飞行稳定性原理
图2-15 尾翼弹丸受力
图2-16 尾翼弹丸飞行原理
保证在全弹道上阻心始终处于尾翼与弹丸质心之间, 是使尾翼弹稳定飞行的必要条件,但尾翼过大的弹丸会 使阻力增加,使散布增大。
火药与一般热机的能源比较
(1)火药自身含氧化剂 (2)火药燃烧速率大,在极短的时间内(千分之几秒)能放 出巨大热能,生成大量高压燃气,燃气膨胀即可作功。 (3)火药燃烧具有规律性,燃烧速度与燃气压力有直接关 系,可以人为进行控制。
2.2
2.2.1
弹丸在膛内运动规律
内弹道
内弹道 主要研究弹丸在身管内运动规律、火药在膛内的燃烧 规律和燃气压力变化规律。 膛压 膛内火药燃气在弹丸后部空间的平均压力。 膛压曲线 膛压随弹丸行程(或时间)的变化曲线。 速度曲线 弹丸速度随弹丸行程(或时间)的变化曲线。 弹丸在身管内运动过程分为下面几个时期: 一、前期:是指击发底火后发射药被引燃,至弹带嵌入膛线, 弹丸即将启动的瞬间。
图2-2 膛压、速度~行程曲线
图2-3 膛压、速度~时间曲线
二、 第一时期 是指从弹丸运动开始到发射药全部燃烧结束的瞬间为止。 三、第二时期 是指从发射药全部燃烧结束瞬间起,到弹丸底面飞离身 管口部端面时为止。 四、后效时期 后效期是指弹丸底部离开膛口瞬间起,到火药燃气压降 到使膛口保持临界端面的极限值时为止。
图2-12
弹丸不稳定飞行
三、 空气弹道的特点
空气弹道与真空弹道相比,具有下述特点: 1. 弹丸在空中飞行,其质心运动轨迹不仅决定于初速和射角, 还决定于弹丸的弹道系数C,并且与射击时的气象条件有 关(如风速、风向、空气的温度、湿度和压力等), 弹道系数C是表示弹丸结构特征的一个综合参量。与弹形、 弹丸质量和尺寸有关。C=i×10×d2/m,I为弹形系数,m 为弹丸质量 (Kg) , d为口径 (dm) 。 C值小,则空气阻力加 速度就小,弹丸飞行速度衰减较慢,要提高射程,就应 改善弹形,降低I值;或增加弹丸的断面密度m /d2 ,长杆 式次口径钨心穿甲弹就是增大m /d2值的一个实例。 2. 不对称性。空气弹道的升弧和降弧并不对称,升弧平缓且 长,降弧陡峭而短;落角大于射角;落速小于初速,最 小速度值不在弹道最高点,而在降弧上某一点。 。 3. 最大射程角不一定是45 ,而是随不同的弹丸、不同的初 速而异。

大炮的原理

大炮的原理

大炮的原理
大炮可以说是军事技术中最古老的武器之一,也是最重要的武器之一。

它的历史可以追溯到古代,古埃及人就有用椰壳制造的火药发射的火炮的记录。

大炮至今仍然在军事技术中扮演着重要的角色,它可以发射许多不同类型的炮弹,例如具有爆炸性的炮弹,烟火炮弹和芯片炮弹,用于防御和攻击敌人。

大炮的发射原理是基于反作用原理。

当炮弹被放入大炮内,两个重型马达会把它移动到炮筒前端。

在炮筒中铺设了一层薄膜,充满了有毒的燃料,然后在发射按钮被按下的时候,电火花会激发燃料,爆炸产生的热量会把炮弹推出炮筒,就是所谓的“反作用”效应。

炮弹穿过空气会受到弥散力的作用,而通过一组形似螺旋的推进器将会给炮弹提供推力,从而使它们达到最高的飞行速度,达到最远的射程。

大炮发射前,还要进行一些准备工作,首先要检查炮筒是否完好,检查其外表是否有任何破损,然后把炮弹紧紧地塞入炮筒,再加入燃料和火药,这时也要根据战场的环境条件对大炮的角度进行调整,最后,就可以发射炮弹了。

由于大炮破坏力巨大,射击时还要小心担心伤及无辜,因此,现代大炮都有安全防范措施,至少会有一项技术措施,以确保其在发射过程中不会失控。

现代大炮一般会有自动发射系统,只要把发射指令发送过去,炮弹就会被发射,而且大多数大炮都是由火箭引擎提供动力,这样可以有效减少空气抗力,使炮弹可以达到更远的射程。

大炮的发展在大局观上也起到了重要的作用,使得军事调整得到
了革新,改变了原有的军事战术,也为人类进步做出了积极贡献。

当然,大炮也有它自己的缺点,它的射程有限,运输不方便,同时也非常耗费能源,但是在现代军事技术中,它仍然是一个不可缺少的重要元素。

大炮的原理

大炮的原理

大炮的原理大炮是军事化学品火药爆炸驱动的火器,主要用于发射弹药来破坏目标,使用火药爆炸产生足够大的压力来发射弹药。

大炮是一种重型武器,一般由本体、飞机和发射器3部分组成。

本体是把火药、弹药、底座和护架制成一个庞大的结构,由金属铸件成的壳体和炮管组成,这样可以密封火药,减少弹药发射炮口的烟火和火药燃烧室的火焰曝露在外面。

飞机是用来控制大炮的方向,大炮的适当的角度可以有效地改变飞行弹药的轨迹,使其能够准确地射向目标。

发射器是用来控制大炮发射弹药的滑块,当滑块完全往下拉时,大炮就发射弹药,然后发射器就把滑块收回来。

大炮发射原理分为两个部分,火药爆炸和弹药发射。

火药爆炸发生在炮管内,炮膛火药钻木塞发生火药爆炸,产生足够大的压力将炮弹从口部发射出去。

大炮口部的压力是发射弹药的主要动力。

口径越大,射击的距离越远,火力越大,但随着口径的增加,压力就越小,火力也就越弱,而且炮弹也更容易受到风流的影响,因此口径大小也是一个空间尺寸折衷的结果。

火药爆炸中形成的高温高压气流可以帮助炮弹从口部发射出去,而且也能够起到一定的冷却作用,起到保护炮管的作用。

随着安全系统的发展,防止和减轻火药爆炮必然伤害的风险,也是大炮发展过程中的重要因素。

火药爆炸产生的压力帮助炮弹发射出去,而发射的炮弹受到的力又包括重力力、空气阻力和空气流动三个力。

重力力是发射炮弹时炮弹受到的下坠力,空气阻力是炮弹受到空气摩擦力,空气流动是空气流体受到炮弹对空气的改变而产生的力。

这三种力的相互作用以及炮弹发射速度的差异,都会影响炮弹的弹道和落点。

所以空气流动的研究和利用也是大炮的发展的关键。

大炮发射原理的发展也影响了大炮的性能,发射距离越远,就可以在更远的距离攻击敌人,火力也越强。

大炮还可以搭配吊舱、拖舱、炮车等特殊装置,以满足不同的作战需求,使用方便,效果更好。

大炮发射原理是一个技术难题,它体现了许多因素,如空气动力学、热物理学、燃料学、材料学以及安全系统等因素,它们之间动态的相互影响,既受到外界的影响,也受到自身的限制。

火炮发射知识点归纳总结

火炮发射知识点归纳总结

火炮发射知识点归纳总结火炮,又称大炮,是一种利用火药推动炮弹飞行的远程杀伤武器。

它的作用是射击目标,用以破坏敌军装甲、建筑物和武器装备,以达到作战目的。

火炮作为重要的军事装备,一直以来都受到各国军队的高度重视。

火炮发射是火炮的基本功能之一,是通过火药、发射药推进炮弹飞行到目标进行打击。

火炮的发射原理是在火炮炮管内装入一定量的火药、发射药,然后在点火后,火药、发射药燃烧产生大量的气体,使炮管内的炮弹获得高速运动,从而达到远程射击的目的。

火炮发射是一个复杂的过程,需要掌握多方面的知识和技能。

以下是火炮发射的一些知识点归纳总结:1. 炮弹类型炮弹是火炮发射的主要武器,通常分为高爆炮弹、穿甲炮弹、反坦克炮弹、照明弹、炸药炮弹等几种类型,根据不同的作战目标和环境选择不同类型的炮弹进行发射。

2. 炮管结构火炮的炮管结构一般分为炮管本体、枪口膛和炮口等部分。

炮管的特点是高强度、高耐磨,以确保炮弹发射时所受的内外压力不会超过材料的极限强度,从而保证炮管的寿命和发射性能。

3. 火药、发射药火车炮的炮弹在发射时需要使用火药或发射药,通过燃烧释放能量从而推动炮弹飞行。

火药和发射药的种类、数量和燃烧速度都会影响炮弹的发射速度和射程。

4. 点火系统火炮的点火系统是火炮发射的关键部件之一,它的作用是在火药、发射药燃烧时产生的高温火焰点燃装药,从而触发炮弹的发射。

点火系统是一个复杂的机械系统,需要具备高可靠性和稳定性。

5. 装填装置火炮的装填装置包括了炮弹装填装置和火药、发射药装填装置。

炮弹装填装置用于将炮弹装入炮管;火药、发射药装填装置用于将火药、发射药装入炮弹火药室内。

这些装置需要具备高效率、高精度和高可靠性。

6. 射击控制系统火炮的射击控制系统是现代火炮的重要组成部分,它包括了瞄准装置、测距装置、火控系统、弹道计算系统等部件,用于实现火炮的精确射击和打击目标。

7. 阻尼系统当炮弹离开炮管时,它会受到一定的空气阻力和重力影响,从而使自由炮弹发射的弹道变得复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-7
相伴弹道
2.3.2 空气阻力及其对弹丸的作用
一、 空气阻力
1.摩擦阻力
(a) (b) (a) 弹丸运动 (b) 气流运动
2.涡流阻力
3.波动阻力
二、空气阻力对飞行弹丸的作用
图2-10
弹丸的攻角
图2-11 飞行弹丸受力
图2-11
飞行弹丸受力
空气阻力对飞行弹丸的作用可归纳为两个主要方面 1. 消耗弹丸的能量,使弹丸速度很快衰减。降低了落点处 的动能,减小了射程。 2. 改变弹丸的飞行姿态。翻转力矩使弹丸在飞行途中作不 规则的运动,进而更增大了空气阻力,落点不能确定, 同时也不能保证弹丸头部碰击目标,影响弹丸对目标的 毁伤作用。
图2-4 各时期膛压、速度-时间曲线 1- 膛内时期(实线);2 -后效时期(虚线)
2.2.2 影响初速和最大膛压的主要因素
现靶场内常用的一种微分修正公式如下:
pm 3 m 4 W0 4 e1 2 0.0036t 0.15H % pm 4 m 3 W0 3 e1 vm 3 2 m 1 W0 1 e1 0.0011t 0.04H % vm 4 5 m 3 W0 3 e1

真空弹道:弹丸出炮口后在空 中飞行,如果不受任何外力 的作用,只受重力作用,相 当于弹丸在真空中飞行 ,其 质心运动轨迹称为真空弹道。 还受空气阻力的作用,此时, 弹丸质心运动轨迹称为 空气 弹道。
图2-6 三种弹道示意图
真空弹道具有下述主要特点: 1. 弹道与弹丸的结构参数无关, 只取决于初速v0与射角。 2. 弹道具有对称性。 3. 初速一定,射角为45度时射 程最大,当初速相同时,用 对称于 45 度的两个射角 (45+a 及 45-a) 射击,其所对应的射 程相等,这两条弹道互称为 相伴弹道。
火炮概论
第二章 火炮工作原理
2.1 火炮发射原理及其特点
发射原理
击针击发→引燃底火药→点火药燃烧并传火→发射药燃烧→ 膛内燃气压力逐渐升高→弹丸的弹带嵌入膛→燃气压力作功→弹 丸边旋转边加速向前运动,炮管及其固连部分向后运动→弹丸运 动至炮口处获得一定的速度,具有较大的动能进入大气,按照一 定的弹道飞向目标;炮管则在复进机的作用下又回复到发射前的 位置;打开炮闩,抽出药筒,





仰线oB:火炮瞄准标后,炮膛轴线的延长线。 仰角:仰线与炮口水平面的夹角。 射线oF:初速矢量线 跳角:仰线与射线间的夹角。 射面xoy:通过初速矢量线的铅垂面。它与炮口水平面的交线ox称为炮 口水平线。 射角:初速矢量与炮口水平面的夹角。 弹道顶点S:全弹道的最高点。 最大弹道高Y:弹道顶点到炮口水平面的距离。 升弧和降弧:弹道顶点前、后的两段弹道。 落点C:降弧与炮口水平面的交点。 落角:落点的速度矢量与炮口水平面的夹角。 射程X:射出点至落点的距离。 全飞行时间T:弹丸从射出点飞到落点所需的时间。 侧偏Zc:弹道落点偏离射面的距离。 弹道诸元:表示某一时刻弹丸质的位置及运动状态的各种参量。例如 弹丸质心的坐标x,y,z,对应的飞行时间t,弹丸质心速度v的大小及 v与炮口水平面的夹角(称为弹道倾角)。
1闩体 2 炮尾 3 击针 4 底火 5 点火药包 6 药筒 7 发射药 8 弹丸 9 膛线 10 炮管 图2-1 炮弹装填入膛示意图
发射特点
三高一短”加环境恶劣: (1)温度高:炮管内火药气体温度3000~4000k。 (2)压力高:膛内火药气体压力达50~550MPa。 (3)高加速:弹丸的加速度一般达几千~几万个g。 (4)时间短:膛内过程一般几个毫秒到十几毫秒。 (5)环境恶劣:要求火炮射击能够在各种气象条件和环 境下进行工作。
(1) (2) (3) (4)
装药量ω变化的影响 药室容积W0变化的影响 装药内挥发物含量变化的影响 弹丸质量m变化的影响
2.3 弹丸在空中飞行的一般规律
图2-5 弹道示意图
2.3.1 外弹道学基本术语

外弹道: 研究弹丸在空中运动过程。 弹道: 弹丸质心在空中运动轨迹。 射出点o:外弹道的起点。取在炮口端面的中心。 初速v0:弹丸质心在射出点的速度。 炮口水平面xoz:通过射出点的水平面。
火药与一般热机的能源比较
(1)火药自身含氧化剂 (2)火药燃烧速率大,在极短的时间内(千分之几秒)能放 出巨大热能,生成大量高压燃气,燃气膨胀即可作功。 (3)火药燃烧具有规律性,燃烧速度与燃气压力有直接关 系,可以人为进行控制。
2.2
2.2.1
弹丸在膛内运动规律
内弹道
内弹道 主要研究弹丸在身管内运动规律、火药在膛内的燃烧 规律和燃气压力变化规律。 膛压 膛内火药燃气在弹丸后部空间的平均压力。 膛压曲线 膛压随弹丸行程(或时间)的变化曲线。 速度曲线 弹丸速度随弹丸行程(或时间)的变化曲线。 弹丸在身管内运动过程分为下面几个时期: 一、前期:是指击发底火后发射药被引燃,至弹带嵌入膛线, 弹丸即将启动的瞬间。
图2-2 膛压、速度~行程曲线
图2-3 膛压、速度~时间曲线
二、 第一时期 是指从弹丸运动开始到发射药全部燃烧结束的瞬间为止。 三、第二时期 是指从发射药全部燃烧结束瞬间起,到弹丸底面飞离身 管口部端面时为止。 四、后效时期 后效期是指弹丸底部离开膛口瞬间起,到火药燃气压降 到使膛口保持临界端面的极限值时为止。
图2-12
弹丸不稳定飞行
三、 空气弹道的特点
空气弹道与真空弹道相比,具有下述特点: 1. 弹丸在空中飞行,其质心运动轨迹不仅决定于初速和射角, 还决定于弹丸的弹道系数C,并且与射击时的气象条件有 关(如风速、风向、空气的温度、湿度和压力等), 弹道系数C是表示弹丸结构特征的一个综合参量。与弹形、 弹丸质量和尺寸有关。C=i×10×d2/m,I为弹形系数,m 为弹丸质量 (Kg) , d为口径 (dm) 。 C值小,则空气阻力加 速度就小,弹丸飞行速度衰减较慢,要提高射程,就应 改善弹形,降低I值;或增加弹丸的断面密度m /d2 ,长杆 式次口径钨心穿甲弹就是增大m /d2值的一个实例。 2. 不对称性。空气弹道的升弧和降弧并不对称,升弧平缓且 长,降弧陡峭而短;落角大于射角;落速小于初速,最 小速度值不在弹道最高点,而在降弧上某一点。 。 3. 最大射程角不一定是45 ,而是随不同的弹丸、不同的初 速而异。
相关文档
最新文档