制药化工原理课后习题答案
制药化工原理习题答案

制药化工原理习题答案【篇一:制药工程化工原理期中考试答案】__…__…__…__…:号…学… 线_…__…__…__…__…__…__…_:名封姓…… _…__…__…__…__…_:密.级…班… …__…__…__…__…:系…院….… …新乡学院2013 ― 2014 学年度第二学期《化工原理》期中试卷课程归属部门:化学与化工学院试卷适用范围:2012级制药工程专业考试形式:开卷考试时间:110 分钟一、(每空1分,共30分)1.液柱压差计是基于流体静力学原理的测压装置,用u形管压差计测压时,若一端与大气相通,则读数r表示的是表压或真空度。
2. 若离心泵入口真空表读数为700mmhg,当地大气压为760mmhg,则输送42℃水时(饱和蒸汽压为8.2kpa)泵内会发生汽蚀现象。
(会,不会)3.牛顿粘性定律的表达式为f??adudy,该式应用条件是流体作层流流动。
4.一转子流量计,当通过水流量为1 m3/h时,测得该流量计进、出间压强降为20pa,当流量增大为2 m3/h时,相应的压强降。
5.往复压缩机的实际工作循环包括:压缩、排气、、四个过程。
6.启动时需要关闭出口阀门的液体输送泵是。
7.离心泵说明书中所标的汽蚀余量越大,说明其抗汽蚀能力。
8.安装在管路上的离心泵,其他条件不变,所送液体温度降低,泵发生汽蚀的可能性低,若供液槽液面上方的压强降低,泵发生汽蚀的可能性增大;若所送液体密度增大,泵发生汽蚀的可能性增大。
9.由三支管组成的并联管路,各支管的管长和摩擦系数相等,管径比为1:2:3,则三支管的流量比为1::243。
10.已知某油品在圆管中定态流动,其re=1000。
已测得管中心处的点速度为0.5m/s,则此管截面上的平均速度为 0.25m/s。
若油品流量增加一倍,则通过每米直管的压头损失为原损失的 2 倍。
11.往复泵流量调节的方法有:、 12.当要求气体的压缩比p2p?1时,宜采用多级压缩。
制药化工原理课后习题答案

制药化工原理课后习题答案The latest revision on November 22, 2020绪论2.解:∴2321001325.1mJmNmNatmL⨯=⋅⋅⋅⋅⋅⋅-∴21001325.1JatmL⨯=⋅以J·mol-1·K-1表示R的值R =××102 J﹒mol-1﹒K-1= J﹒mol-1﹒K-1第一章流体流动1.表压=-真空度=-×104Pa绝压=×104 Pa2.解:设右侧水面到B′点高为h3,根据流体静力学基本方程可知PB=PB′则ρ油gh2=ρ水gh3h=h1+h3=892mm3.解:正U型管水银压差计由图可知 PA =P1+(x+R1)ρ水gP B =P 2+x ρ水g∵P 1-P 2=∴P A -P B =+ρ水gR 1又有P A =P C P C = P B +ρHg gR 1∴ρHg gR 1=+ρ水gR 1∴mm m s m m kg R 00.200200.081.9)100013600( 2.472kPa231==⋅⨯⋅-=--倒U 型压差计 设右侧管内水银高度为M∵指示流体为空气∴P C =P DP 1=P C +ρ水g(R 2+M) P 2=P D +ρ水gM∴mm m sm m kg R 0.2522520.081.91000 2.472kPa232==⋅⨯⋅=- 4.(1)P B =-(表)(2)R ′=7.解:由公式AVsu =可得 Vs=uA=u πd 2/4=×π××2)2×10-6=×10-3m 3/sWs=Vs ρ=×10-3×1840=s8.解:由题可知:1—1′截面:P 1=×105Pa u=0以2—2′截面为基准水平面∴z 1=3m2—2′截面:设管内流速为u z 2=03—3′截面:u, z 3=3m4—4′截面:u, z 4=3+=5—5′截面:u, z 5=3m6—6′截面:u, z 6=2m, P 6=×105Pa根据伯努利方程:We=0, ∑h f =0有ρ++=ρ+62611P 2u gz P gz∵P 1=P 6 ∴u 2/2=g(z 1-z 6)=有ρρ222112P u gz P gz ++=+×3+×105/1000=+P 2/1000∴P 2=×105Pa×105/1000=+P 3/1000∴P 3=×105Pa×3+×105/1000=×++P 4/1000∴P 4=×105Pa∴P 5=×105Pa9. (1)u=s V h =h(2)Δz=解:ηNeN =Ne=We ﹒Ws取釜内液面为1—1′截面,高位槽内液面为2—2′截面根据伯努利方程:f h Pu gz We u P gz ∑+++=+++ρρ22222111221—1′截面:z 1=0, P 1=-×104(表压), u 1=02—2′截面:z 2=15m, P 2=0(表压), AWsu ρ=2A=πd 2/4=×π×[(76-4×2)×10-3]2=×10-3m 2∴s m h m u /46.1/3.524710501063.3102342==⨯⨯⨯=- 173740106105046.11068Re 43=⨯⨯⨯⨯==--μρdu >4000 湍流又ε/d=×10-3/68×10-3=×10-3查图得λ=查表1—3得,ξ全开闸阀= ξ半开截止阀= ξ90°标准弯头= ξ进= ξ出=1∴h f ′=++3×+×2=kg∴∑h f =+=kgWe=kgNe=×2×104/3600=N==12.解:1—1′:高位槽液面 2—2′:出口管内侧列伯努利方程 f h Pu gz We u P gz ∑+++=+++ρρ2222211122z 2=0, z 1=4m, P 1=P 2=0(表), u 1=0, We=0∴∑hf +u22/2=4g∑hf = hf+hf′查表1—3得,ξ半开截止阀= ξ90°标准弯头=hf ′=∑ξ﹒u22/2=++×u22/2=×u22/2∴gdu4)75.10201(222=++λ化简得(400λ+×u22/2=20℃时μ水=λ=f(Re)=f(u2) 需试差321075.49Re⨯==uduμρ假设 u0 Re λ→ u0 01.0=dε766307960082588∴截止阀半开时该输水系统的u=sVs=uA=×π×=s∴Vs=h第二章 流体输送设备1、解:分别取离心泵的进、出口截面为1-1′截面和2-2′截面,由伯努力方程得:其中,12Z Z -= m ;41109.1⨯-=p Pa(表压);52107.4⨯=p Pa(表压);21u u =;21,-f H =0;20℃时水的密度3m kg 2.998-⋅=ρ。
化工原理课后习题答案上下册(钟理版)

第一章 流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρHP B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压) 2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02R p gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
制药化工原理课后习题答案新编

绪论2.解:∴2321001325.1m J m N m N atm L ⨯=⋅⋅⋅⋅⋅⋅-∴21001325.1J atm L ⨯=⋅以J ·mol -1·K -1表示R 的值R =××102 J ﹒mol -1﹒K -1= J ﹒mol -1﹒K -1第一章 流体流动1. 表压=-真空度=-×104Pa 绝压=×104 Pa2.解:设右侧水面到B ′点高为h 3,根据流体静力学基本方程可知P B =P B ′ 则ρ油gh 2=ρ水gh 3h=h 1+h 3=892mm3.解:正U 型管水银压差计 由图可知 P A =P 1+(x +R 1)ρ水gP B =P 2+x ρ水g ∵P 1-P 2= ∴P A -P B =+ρ水gR 1又有P A =P C P C = P B +ρHg gR 1∴ρHg gR 1=+ρ水gR 1∴mm m s m m kg R 00.200200.081.9)100013600( 2.472kPa231==⋅⨯⋅-=--倒U 型压差计 设右侧管内水银高度为M∵指示流体为空气∴P C =P D P 1=P C +ρ水g(R 2+M) P 2=P D +ρ水gM∴mm m s m m kg R 0.2522520.081.91000 2.472kPa232==⋅⨯⋅=-4.(1)P B =-(表) (2)R ′=0.178m 7.解:由公式AVsu =可得 Vs=uA=u πd 2/4=×π××2)2×10-6=×10-3m 3/sWs=Vs ρ=×10-3×1840=2.89kg/s8.解:由题可知:1—1′截面:P 1=×105Pa u=0以2—2′截面为基准水平面∴z 1=3m2—2′截面:设管内流速为u z 2=0 3—3′截面:u, z 3=3m 4—4′截面:u, z 4=3+=3.5m 5—5′截面:u, z 5=3m6—6′截面:u, z 6=2m, P 6=×105Pa 根据伯努利方程:We=0, ∑h f =0有ρ++=ρ+62611P 2u gz P gz∵P 1=P 6 ∴u 2/2=g(z 1-z 6)=有ρρ222112P u gz P gz ++=+×3+×105/1000=+P 2/1000∴P 2=×105Pa ×105/1000=+P 3/1000∴P 3=×105Pa×3+×105/1000=×++P 4/1000∴P 4=×105Pa ∴P 5=×105Pa9. (1)u=1.55m/s V h =10.95m 3/h (2)Δz=2.86m 解:ηNeN =Ne=We ﹒Ws取釜内液面为1—1′截面,高位槽内液面为2—2′截面根据伯努利方程:f h Pu gz We u P gz ∑+++=+++ρρ22222111221—1′截面:z 1=0, P 1=-×104(表压), u 1=0 2—2′截面:z 2=15m, P 2=0(表压), AWsu ρ=2 A=πd 2/4=×π×[(76-4×2)×10-3]2=×10-3m 2∴s m h m u /46.1/3.524710501063.3102342==⨯⨯⨯=- 173740106105046.11068Re 43=⨯⨯⨯⨯==--μρdu >4000 湍流 又ε/d=×10-3/68×10-3=×10-3查图得λ=查表1—3得,ξ全开闸阀= ξ半开截止阀= ξ90°标准弯头= ξ进= ξ出=1∴h f ′=++3×+×2=kg∴∑h f =+=kgWe=kg Ne=×2×104/3600=N==12.解:1—1′:高位槽液面 2—2′:出口管内侧列伯努利方程 f h Pu gz We u P gz ∑+++=+++ρρ2222211122z 2=0, z 1=4m, P 1=P 2=0(表), u 1=0, We=0∴∑h f +u 22/2=4g ∑h f = h f +h f ′查表1—3得,ξ半开截止阀= ξ90°标准弯头= h f ′=∑ξ﹒u 22/2=++ ×u 22/2=×u 22/2∴g du 4)75.10201(222=++λ化简得(400λ+×u 22/2=20℃时μ水=λ=f(Re)=f(u 2) 需试差 321075.49Re ⨯==u du μρ假设 u 0 Re λ → u 001.0=dε76630 79600 82588∴截止阀半开时该输水系统的u 0=1.66m/sVs=uA=×π×=0.00326m 3/s∴Vs=11.73m 3/h第二章 流体输送设备1、解:分别取离心泵的进、出口截面为1-1′截面和2-2′截面,由伯努力方程得: 其中,12Z Z -=0.4 m ;41109.1⨯-=p Pa(表压);52107.4⨯=p Pa(表压);21u u =;21,-f H =0;20℃时水的密度3m kg 2.998-⋅=ρ。
制药化工原理课后习题答案

绪论2.解:∴2321001325.1m J m N m N atm L ⨯=⋅⋅⋅⋅⋅⋅- ∴21001325.1J atm L ⨯=⋅以J ·mol -1·K -1表示R 的值R =0.08206×1.01325×102 J ﹒mol -1﹒K -1=8.315 J ﹒mol -1﹒K -1第一章 流体流动1. 表压=-真空度=-4.8×104Pa 绝压=5.3×104 Pa2.解:设右侧水面到B ′点高为h 3,根据流体静力学基本方程可知P B =P B ′ 则ρ油gh 2=ρ水gh 3h=h 1+h 3=892mm3.解:正U 型管水银压差计 由图可知 P A =P 1+(x +R 1)ρ水gP B =P 2+x ρ水g∵P 1-P 2=2.472kPa ∴P A -P B =2.472kP A +ρ水gR 1 又有P A =P C P C = P B +ρHg gR 1∴ρHg gR 1=2.472kPa +ρ水gR 1∴mm m s m m kg R 00.200200.081.9)100013600( 2.472kPa231==⋅⨯⋅-=--倒U 型压差计 设右侧管内水银高度为M∵指示流体为空气∴P C =P DP 1=P C +ρ水g(R 2+M) P 2=P D +ρ水gM∴mm m s m m kg R 0.2522520.081.91000 2.472kPa232==⋅⨯⋅=-4.(1)P B =-845.9Pa(表) (2)R ′=0.178m 7.解:由公式AVsu =可得 Vs=uA=u πd 2/4=0.8×π×(57-3.5×2)2×10-6=1.57×10-3m 3/sWs=Vs ρ=1.57×10-3×1840=2.89kg/s8.解:由题可知:1—1′截面:P 1=1.013×105Pa u=0以2—2′截面为基准水平面∴z 1=3m2—2′截面:设管内流速为u z 2=0 3—3′截面:u, z 3=3m4—4′截面:u, z 4=3+0.5=3.5m 5—5′截面:u, z 5=3m6—6′截面:u, z 6=2m, P 6=1.013×105Pa 根据伯努利方程:We=0, ∑h f =0有ρ++=ρ+62611P 2u gz P gz∵P 1=P 6 ∴u 2/2=g(z 1-z 6)=9.8有ρρ222112P u gz P gz ++=+9.8×3+1.013×105/1000=9.8+P 2/1000∴P 2=1.209×105Pa 1.013×105/1000=9.8+P 3/1000∴P 3=0.915×105Pa9.8×3+1.013×105/1000=9.8×3.5+9.8+P 4/1000∴P 4=0.866×105Pa ∴P 5=0.915×105Pa9. (1)u=1.55m/s V h =10.95m 3/h (2)Δz=2.86m 解:ηNeN =Ne=We ﹒Ws取釜内液面为1—1′截面,高位槽内液面为2—2′截面根据伯努利方程:f h Pu gz We u P gz ∑+++=+++ρρ22222111221—1′截面:z 1=0, P 1=-2.5×104(表压), u 1=0 2—2′截面:z 2=15m, P 2=0(表压), AWsu ρ=2 A=πd 2/4=0.25×π×[(76-4×2)×10-3]2=3.63×10-3m 2∴s m h m u /46.1/3.524710501063.3102342==⨯⨯⨯=- 173740106105046.11068Re 43=⨯⨯⨯⨯==--μρdu >4000 湍流又ε/d =0.3×10-3/68×10-3=4.41×10-3 查图得λ=0.029 查表1—3得,ξ全开闸阀=0.17 ξ半开截止阀=9.5 ξ90°标准弯头=0.75 ξ进=0.5 ξ出=1∴h f ′=(0.17+9.5+3×0.75+1.5)×1.462/2=14.2J/kg∴∑h f =22.7+14.2=36.9J/kgWe =208.87J/kgNe =208.87×2×104/3600=1.16kWN=1.16/0.7=1.66kW12.解:1—1′:高位槽液面 2—2′:出口管内侧列伯努利方程 f h Pu gz We u P gz ∑+++=+++ρρ2222211122z 2=0, z 1=4m, P 1=P 2=0(表), u 1=0, We=0∴∑h f +u 22/2=4g ∑h f = h f +h f ′查表1—3得,ξ半开截止阀=9.5 ξ90°标准弯头=0.75h f ′=∑ξ﹒u 22/2=(9.5+0.75+0.5) ×u 22/2=10.75×u 22/2∴g du 4)75.10201(222=++λ化简得(400λ+11.75)×u 22/2=39.220℃时μ水=1.005λ=f(Re)=f(u 2) 需试差 321075.49Re ⨯==u du μρ假设 u 0 Re λ → u 0 01.0=dε1.5 76630 0.039 1.66 1.6 79600 0.039 1.66 1.66 82588 0.0388 1.66 ∴截止阀半开时该输水系统的u 0=1.66m/sVs=uA=1.66×0.25π×0.052=0.00326m 3/s∴Vs=11.73m 3/h第二章 流体输送设备1、解:分别取离心泵的进、出口截面为1-1′截面和2-2′截面,由伯努力方程得: 其中,12Z Z -=0.4 m ;41109.1⨯-=p Pa(表压);52107.4⨯=p Pa(表压);21u u =;21,-f H =0;20℃时水的密度3m kg 2.998-⋅=ρ。
化工原理课后习题答案第七章吸收习题解答

化工原理课后习题答案第七章吸收习题解答(总18页)-本页仅作为预览文档封面,使用时请删除本页-第七章 吸 收7-1 总压 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用,通过实验测定其亨利系数E 为 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。
(溶液密度近似取为1000kg/m 3)解:溶质在液相中的摩尔分数:50640.01391000501864x ==+ 二氧化硫的平衡分压:*34.13100.0139kPa=57.41kPa p Ex ==⨯⨯相平衡常数:634.1310Pa40.77101.310PaE m P ⨯===⨯7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数),求填料塔出口水溶液中硫化氢的最大浓度。
已知塔内温度为20℃,压强为×105 Pa ,亨利系数E 为。
解:相平衡常数为:6548.910321.711.5210E m P ⨯===⨯ 硫化氢的混合气进口摩尔浓度:15340.04305953429y ==+若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即:41max 0.0430 1.3410321.71y x m -===⨯7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。
(1)含NO 2 (摩尔分率)的水溶液和含NO 2 (摩尔分率) 的混合气接触,总压为,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。
解:(1)相平衡常数为:5131 1.6810Pa1.658101.310Pa E m P ⨯===⨯ *1 1.6580.0030.00498y m x ==⨯=由于 *y y >,所以该过程是吸收过程。
天津大学版 化工原理下册课后答案

第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。
已知入塔混合气中氨含量为 5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比、。
解:先计算进、出塔气体中氨的摩尔分数和。
进、出塔气体中氨的摩尔比、为由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。
2. 试证明由组分A和B组成的双组分混合物系统,下列关系式成立:(1)(2)解:(1)由于故(2)故3. 在直径为0.012 m、长度为0.35 m的圆管中,CO气体通过N2进行稳态分子扩散。
管内N2的温度为373 K,总压为101.3 kPa,管两端CO的分压分别为70.0 kPa和7.0 kPa,试计算CO的扩散通量。
解:设 A-CO; B-N2查附录一得4. 在总压为101.3 kPa,温度为273 K下,组分A自气相主体通过厚度为0.015 m的气膜扩散到催化剂表面,发生瞬态化学反应。
生成的气体B离开催化剂表面通过气膜向气相主体扩散。
已知气膜的气相主体一侧组分A的分压为22.5 kPa,组分A在组分B中的扩散系数为1.85×10-5 m2/s。
试计算组分A和组分B的传质通量和。
解:由化学计量式可得代入式(7-25),得分离变量,并积分得5. 在温度为278 K的条件下,令某有机溶剂与氨水接触,该有机溶剂与水不互溶。
氨自水相向有机相扩散。
在两相界面处,水相中的氨维持平衡组成,其值为0.022(摩尔分数,下同),该处溶液的密度为998.2 kg/m3;在离界面5 mm的水相中,氨的组成为0.085,该处溶液的密度为997.0 kg/m3。
278 K时氨在水中的扩散系数为1.24×10–9 m2/s。
试计算稳态扩散下氨的传质通量。
解:设 A-NH3;B-H2O离界面5 mm处为点1、两相界面处为点2,则氨的摩尔分数为,点1、点2处溶液的平均摩尔质量为溶液的平均总物质的量浓度为故氨的摩尔通量为6. 试用式(7-41)估算在105.5 kPa、288 K条件下,氢气(A)在甲烷(B)中的扩散系数。
化工原理第三版(陈敏恒)上、下册课后思考题答案(精心整理版)

化工原理第三版(陈敏恒)上、下册课后思考题答案(精心整理版)第一章流体流动1、什么是连续性假定?质点的含义是什么?有什么条件?连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点?拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降?粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
4、静压强有什么特性?①静止流体中,任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于某一点不同方向上的静压强在数值上是相等的;③压强各向传递。
7、为什么高烟囱比低烟囱拔烟效果好?由静力学方程可以导出,所以H增加,压差增加,拔风量大。
8、什么叫均匀分布?什么叫均匀流段?均匀分布指速度分布大小均匀;均匀流段指速度方向平行、无迁移加速度。
9、伯努利方程的应用条件有哪些?重力场下、不可压缩、理想流体作定态流动,流体微元与其它微元或环境没有能量交换时,同一流线上的流体间能量的关系。
12、层流与湍流的本质区别是什么?区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
13、雷诺数的物理意义是什么?物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程?其应用条件有哪些?应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
15、何谓水力光滑管?何谓完全湍流粗糙管?当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制药化工原理课后习题答案绪论2.解:∴∴以J ·mol -1·K -1表示R 的值R =0.08206×1.01325×102 J ﹒mol -1﹒K -1=8.315 J ﹒mol -1﹒K -1第一章 流体流动1.表压=-真空度=-4.8×104Pa 绝压=5.3×104 Pa2.解:设右侧水面到B ′点高为h 3,根据流体静力学基本方程可知P B =P B ′则ρ油gh 2=ρ水gh 3h=h 1+h 3=892mm3.解:正U 型管水银压差计由图可知 P A =P 1+(x +R 1)ρ水gP B =P 2+x ρ水g ∵P 1-P 2=2.472kPa ∴P A -P B =2.472kP A +ρ水gR 1又有P A =P C P C = P B +ρHg gR 1∴ρHg gR 1=2.472kPa +ρ水gR 1∴倒U 型压差计 设右侧管内水银高度为M∵指示流体为空气∴P C =P DP 1=P C +ρ水g(R 2+M) P 2=P D +ρ水gM∴4.(1)P B =-845.9Pa(表)51001325.1Paatm⨯=1mN Pa2=⋅-1m N J =⋅3310m L -=2321001325.1m J m N m N atm L ⨯=⋅⋅⋅⋅⋅⋅-21001325.1J atm L ⨯=⋅mmm kg mm m kg h 4921000600820h 3323=⋅⨯⋅==--水油ρρmmm s m m kg R 00.200200.081.9)100013600( 2.472kPa231==⋅⨯⋅-=--mmm s m m kg R 0.2522520.081.91000 2.472kPa232==⋅⨯⋅=-(2)R ′=0.178m 7.解:由公式可得Vs=uA=u πd 2/4=0.8×π×(57-3.5×2)2×10-6=1.57×10-3m 3/sWs=Vs ρ=1.57×10-3×1840=2.89kg/s8.解:由题可知:1—1′截面:P 1=1.013×105Pa u=0以2—2′截面为基准水平面∴z 1=3m2—2′截面:设管内流速为u z 2=03—3′截面:u, z 3=3m4—4′截面:u, z 4=3+0.5=3.5m 5—5′截面:u, z 5=3m6—6′截面:u, z 6=2m, P 6=1.013×105Pa 根据伯努利方程:We=0, ∑h f =0有∵P 1=P 6 ∴u 2/2=g(z 1-z 6)=9.8有9.8×3+1.013×105/1000=9.8+P 2/1000∴P 2=1.209×105Pa1.013×105/1000=9.8+P 3/1000∴P 3=0.915×105Pa9.8×3+1.013×105/1000=9.8×3.5+9.8+P 4/1000∴P 4=0.866×105Pa∴P 5=0.915×105Pa9. (1)u=1.55m/s V h =10.95m 3/h (2)Δz=2.86mAVsu =s m kg u AWsG ⋅=⨯===2/147218408.0ρρ++=ρ+62611P 2u gz P gz ρρ222112P u gz P gz ++=+ρρ323112P u gz P gz ++=+ρρ424112P u gz P gz ++=+ρρ525112P u gz P gz ++=+解:Ne=We ﹒Ws取釜内液面为1—1′截面,高位槽内液面为2—2′截面根据伯努利方程:1—1′截面:z 1=0, P 1=-2.5×104(表压), u 1=02—2′截面:z 2=15m, P 2=0(表压), A=πd 2/4=0.25×π×[(76-4×2)×10-3]2=3.63×10-3m 2∴>4000 湍流又ε/d =0.3×10-3/68×10-3=4.41×10-3查图得λ=0.029查表1—3得,ξ全开闸阀=0.17 ξ半开截止阀=9.5 ξ90°标准弯头=0.75 ξ进=0.5 ξ出=1∴h f ′=(0.17+9.5+3×0.75+1.5)×1.462/2=14.2J/kg∴∑h f =22.7+14.2=36.9J/kgWe =208.87J/kgNe =208.87×2×104/3600=1.16kWN=1.16/0.7=1.66kW12.解:1—1′:高位槽液面2—2′:出口管内侧列伯努利方程 z 2=0, z 1=4m, P 1=P 2=0(表), u 1=0, We=0∴∑h f +u 22/2=4g ∑h f = h f +h f ′查表1—3得,ξ半开截止阀=9.5 ξ90°标准弯头=0.75h f ′=∑ξ﹒u 22/2=(9.5+0.75+0.5) ×u 22/2=10.75×u 22/2ηNeN =fh Pu gz We u P gz ∑+++=+++ρρ2222211122AWsu ρ=2sm h m u /46.1/3.524710501063.3102342==⨯⨯⨯=-173740106105046.11068Re 43=⨯⨯⨯⨯==--μρdu kgJ u d l h f /7.22246.1068.050029.0222=⨯⨯=⋅=λ9.36246.1151050105.224++=+⨯-g We fh Pu gz We u P gz ∑+++=+++ρρ222221112222u d l h f ⋅=λ∴化简得(400λ+11.75)×u 22/2=39.220℃时μ水=1.005λ=f(Re)=f(u 2) 需试差 假设 u 0Reλ → u 01.5 76630 0.039 1.661.6 79600 0.039 1.661.66 82588 0.03881.66∴截止阀半开时该输水系统的u 0=1.66m/sVs=uA=1.66×0.25π×0.052=0.00326m 3/s∴Vs=11.73m 3/h第二章 流体输送设备1、解:分别取离心泵的进、出口截面为1-1′截面和2-2′截面,由伯努力方程得:其中,=0.4 m ;Pa(表压);Pa(表压);;=0;20℃时水的密度。
m3、解:(1)20℃时:由附录2及附录7知,水的密度,饱和蒸气压Pa 。
m(2)85℃时:由附录2及附录7知,水的密度,饱和蒸气压Pa 。
g du 4)75.10201(222=++λ321075.49Re ⨯==u du μρ01.0=dε21,2222211122-+++=+++f H gu ρg p Z H g u ρg p Z 21,212212122-+-+-+-=⇒f H gu u ρg p p Z Z H 12Z Z -41109.1⨯-=p 52107.4⨯=p 21u u =21,-f H 3m kg 2.998-⋅=ρ34.500081.92.998109.1107.44.045=++⨯⨯+⨯+=⇒H kW7.13W 1037.170.0360081.92.9987034.504e=⨯=⨯⨯⨯⨯===⇒ηρηgHQ N N 10,v0g ----=f H h ρgp p H ∆3m kg 2.998-⋅=ρ4v 102335.0⨯=p 28.45.2381.92.998102335.01081.944g =--⨯⨯-⨯=⇒H 3m kg 6.968-⋅=ρ5v 105788.0⨯=pm4、解:=-2.21m<-1.5m故该泵不能正常工作。
6、解:=17 m 由于输送介质为水,结合和m ,查附录21选IS100-80-125型泵,主要性能参数为:,m,,,kW故泵实际运行时的轴功率为kW ,其中因阀门调节所多消耗的功率为第四章 沉降与过滤2、解:设颗粒沉降位于层流区,故核算流型故假设成立,即颗粒沉降位于层流区。
因此,可完全除去的最小颗粒直径为。
3、解:在操作温度下,气体量=5538.527.15.2381.96.968105788.01081.954g -=--⨯⨯-⨯=⇒H 10,v0g ----=f H h ρgp p H ∆6.15.381.95301045.6106.655--⨯⨯-⨯=21,21221212e 2-+-+-+-=f H gu u ρg p p Z Z H 81.91000109.600104⨯⨯+++=13e h m 100-⋅=Q 17e =H 13h m 100-⋅=Q 20=H 1min r 2900-⋅=n 78.0=η0.7=N 0.7=N kW 05.1W 104878.0360081.91000100)1720(==⨯⨯⨯⨯-==ηρ∆∆g HQ N tcS bLu V = 1S tc s m 025.04036003600-⋅=⨯==⇒bL V u μρρ18)(s 2c tc gd u -=m1075.181.9)06.13000(025.010218)(1855s tc c --⨯=⨯-⨯⨯⨯=-=⇒g u d ρρμ2023.010206.1025.01075.1e 55tc c t <=⨯⨯⨯⨯==--μρu d R m1075.15-⨯13S s m 54.127342727336002160-⋅=+⨯=V 13h m -⋅设8颗粒沉降位于层流区,则由 层(需50块隔板)m 核算流型故假设成立,得降尘室内隔板间距和层数分别为0.082m 和51层。
注:此题原始数据有点问题。
在该组数据下,气流在降尘室内已达到湍流。
5、解:根据恒压过滤方程得;由下式可算得,15min 收集到的总滤液量,即故再过5min 所得的滤液量=0.47 L6、解:(1)过滤面积滤框总容积滤饼充满滤框时滤液体积过滤终了时恒压过滤方程μm 13526s 2c tc s m 101.4104.31881.9)5.04000()108(18)(----⋅⨯=⨯⨯⨯-⨯⨯=-=μρρg d u tc S NbLu V =51101.41.48.154.13tc S ≈⨯⨯⨯==⇒-bLu V N 082.0512.4===⇒N H h 2108.4104.35.0101.4108e 4536tc c t <⨯=⨯⨯⨯⨯⨯==----μρu d R τ2e 22KA V V V =+⎪⎩⎪⎨⎧⨯⨯⨯=⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯----6010)1.0()106.1(2)106.1(605)1.0()101(2)101(23e 2323e 23K V K V 34e m 107-⨯=⇒V 127s m 108--⋅⨯=K 6015)1.0()108()107(22742⨯⨯⨯⨯=⨯⨯⨯+--V V 33m 1007.2-⨯=⇒V 3333m 1047.0106.11007.2---⨯=⨯-⨯=V ∆22m86.4938281.0=⨯⨯=A 32m 623.038025.081=⨯⨯=3m 79.708.0623.0==V 23m m 156.086.4979.7-⋅===A V q τK q q q =+e 22τ52105156.001.02156.0-⨯=⨯⨯+⇒(2)洗涤时间=416 s(3)(4)由于,故。