人教版七年级数学下册练习第4讲平方根和立方根(含答案)
人教版七年级下第六章实数“平方根、立方根"习题

人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。
初中数学平方根立方根综合练习题12(附答案)

初中数学平方根立方根综合练习题一、单选题1.一个数的立方根是它本身,则这个数是( )A.0B.1,0C.1,-1D.1,-1或02.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.下列各式中,正确的是( )A.2(9= 2=- 3=- D.3=±4.下列命题:①过一点有且只有一条直线与已知直线平行;②一个实数的立方根不是正数就是负数;③如果一个数的平方根是这个数本身,那么这个数是1或0;④两条直线被第三条直线所截,同位角相等.其中假命题的个数有( )A.4个B.3个C.2个D.1个5.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有( )A.1个B.2个C.3个D.4个( )A.8B.4C.2D.-2二、解答题7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.观察以下各式:①2=3=4=④5=,. 1. 请写出第5个等式;2. 用n(n 为大于1的整数)表示出你所发现的规律.三、计算题9.实数计算:1. ()239627----; 2. ()3238231-++-; 10.计算: 0318(2016)--+-;四、填空题11.-27的立方根是________.12.若x ,y 满足()323|94|0x y ++-=,则xy 的立方根为 .13.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是__________. 14.设实数x,y,z 适合333987x y z ==,9871x y z ++=,则2223(9)(8)(7)x y z ++=4449(9)(8)(7)x y z ++=__________.参考答案1.答案:D解析:立方根是它本身有3个,分别是±1,0.故选D.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:D解析:A.原式3=,错误;B.原式22=-=,错误;3399-=-D.原式3=±,正确,故选:D.4.答案:A解析:5.答案:C解析:6.答案:C64=8,即8的立方根等于2,故选C7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:1.6=2.n =解析:9.答案:1.0; 2. 解析:10.答案:0解析:11.答案:-3解析:-27的立方根是-3,故答案为-3.12.答案:32-解析:()323|94|0x y ++-=39230,940,,24x y x y ∴+=-==-=解得 3927248xy ∴=-⨯=- 32xy ∴-的立方根是13.答案:34+解析:14.答案:; 解析:。
平方根立方根基础训练及答案

平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。
初中数学实数(认识平方根和立方根)基础题(含答案)

初中数学实数(认识平方根和立方根)基础题一、单选题(共9道,每道11分)1.的平方根是()A. B.C. D.答案:C试题难度:三颗星知识点:整数、分数的平方根、算术平方根2.0.0004的算术平方根是()A.0.2B.±0.2C.0.02D.±0.02答案:C试题难度:三颗星知识点:小数、幂的平方根、算术平方根3.的平方根是()A.4B.±4C.2D.±2答案:D试题难度:三颗星知识点:多重平方根、算术平方根4.一个正数的平方根是a+3与2a+4,则这个正数为()A. B.C. D.答案:D试题难度:三颗星知识点:正数的平方根5.一个数的算术平方根为a,比这个数小2的数是()A.a+2B.-2C.+2D.a2-2答案:D试题难度:三颗星知识点:乘方与开方互为逆运算6.-27的立方根为()A.±3B.-3C.3D.9答案:B试题难度:三颗星知识点:立方根7.如果一个数的平方根是这个数本身,那么这个数一定是()A.1B.1或0C.0D.-1或0或1答案:C试题难度:三颗星知识点:等于本身的数8.已知0≤x≤6,则的化简结果是()A.2x-5B.7C.4D.5-2x答案:B试题难度:三颗星知识点:双重非负性9.一个正方体木块的体积为125厘米3,现先要把它锯成8块同样大小的正方体小木块,则小木块的棱长是()厘米A.5B.2.5C. D.1.25答案:B试题难度:三颗星知识点:立方根的简单应用。
七年级数学下册平方根与立方根【九大题型】(举一反三)(人教版)

专题6.1 平方根与立方根【九大题型】【人教版】【题型1 平方根、立方根的概念及表示】 (1)【题型2 平方根性质的运用】 (2)【题型3 开平方、开立方的运算】 (4)【题型4 利用开平方、开立方解方程】 (5)【题型5 算术平方根的概念及非负性】 (7)【题型6 开方运算中的小数点移动规律】 (8)【题型7 平方根与立方根综合】 (10)【题型8 算术平方根、立方根的应用】 (11)【题型9 算术平方根、立方根的规律探究】 (13)【例1】(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1【分析】根据平方根的被开方数不能是负数,可得答案.【解答】解:在﹣a,﹣a2+1,﹣a2,﹣a2﹣1中,﹣a2﹣1是负数,没有平方根.故选:D.【变式1-1】(2022春•鞍山期末)下列说法正确的是()A.﹣1是1的平方根B.﹣1是-1的平方根C.﹣1是1的立方根D.﹣1没有立方根【分析】根据平方根和立方根的概念与性质进行辨别即可.【解答】解:∵±1都是1的平方根, ∴选项A 符合题意; ∵-1没有平方根, ∴选项B 符合题意; ∵1的立方根是1, ∴选项C 不符合题意; ∵﹣1的立方根是﹣1, ∴选项D 符合题意, 故选:A .【变式1-2】(2022春•应城市期末)下列各式中,正确的是( ) A .−√−9=3B .√−273=−3C .√183=±12D .√83=−2【分析】根据算术平方根、平方根、立方根的定义解决此题. 【解答】解:A .−√−9无意义,故A 不符合题意. B .√−273=−3,故B 符合题意. C .√183=12,故C 不符合题意. D .√83=2,故D 不符合题意. 故选:B .【变式1-3】(2022春•高安市期中)下列叙述中,错误的是( ) A .0只有一个平方根 B .若x 2=3,则x =±√3C .√64的立方根是2D .512的立方根是±8【分析】根据立方根与平方根的定义即可求出答案. 【解答】解:A 、0只有一个平方根,故A 不符合题意. B 、若x 2=3,则x =±√3,故B 不符合题意. C 、√64=8,8的立方根是2,故C 不符合题意. D 、512的立方根是8,故D 符合题意. 故选:D .【例2】(2022春•临洮县期中)一个正数x 的两个平方根分别是2a ﹣1与﹣a +2,求a 的值和这个正数x 的值.【分析】正数x 有两个平方根,分别是﹣a +2与2a ﹣11,所以﹣a +2与2a ﹣1互为相反数;即﹣a +2+2a ﹣1=0解答可求出a ;根据x =(﹣a +2)2,代入可求出x 的值.【解答】解:∵正数x有两个平方根,分别是﹣a+2与2a﹣1,∴﹣a+2+2a﹣1=0解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9.【变式2-1】(2022•工业园区期中)一个正数M的两个平方根分别是2a+3和2b﹣1,求(a+b)2022.【分析】利用正数的平方根有2个,且互为相反数求出a+b的值,代入原式计算即可得到结果.【解答】解:根据题意得:2a+3+2b﹣1=0,整理得:a+b=﹣1,则原式=1.【变式2-2】(2022春•孟村县期中)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=√2.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.故答案为:(1)﹣4;(2)√2.【变式2-3】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【例3】(2022春•雨花区校级月考)根据图中呈现的运算关系,可知a=﹣2020,b=﹣2020.【分析】利用立方根和平方根的定义及性质即可解决问题.【解答】解:依据图中呈现的运算关系,可知2020的立方根是m,a的立方根是﹣m,∴m3=2020,(﹣m)3=a,∴a=﹣2020;又∵n的平方根是2020和b,∴b=﹣2020.故答案为:﹣2020,﹣2020.【变式3-1】(2022春•绥棱县期末)已知x、y为实数,且满足√1+x+√1−y=0,那么x2022﹣y2022=0.【分析】根据√1+x+√1−y=0,且√1+x与√1−y均大于等于0,以此解出x、y值进而计算出结果.【解答】解:∵√1+x+√1−y=0,且√1+x与√1−y均≥0,∴1+x=0,1﹣y=0,得x=﹣1,y=1,x2022﹣y2022=(﹣1)2022﹣12022=1﹣1=0,故答案为:0.【变式3-2】(2022春•五常市期末)1106的平方根是±11000,﹣27的立方根是﹣3.【分析】根据平方根、立方根的定义进行计算即可.【解答】解:1106的平方根为±√1106=±1103=±11000;﹣27的立方根为√−273=−3,故答案为:±11000,﹣3.【变式3-3】(2022春•龙岩期末)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.2√2B.2C.√2D.±√2【分析】直接利用立方根以及算术平方根、无理数的定义分析得出答案.【解答】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是√2,即y=√2.故选:C.【题型4 利用开平方、开立方解方程】【例4】(2022•靖江市期末)求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【分析】(1)移项,把二次项系数化为1,开平方求出x;(2)把二次项系数化为1,开立方求出x.【解答】解:(1)4x2﹣9=0,4x2=9,x2=94,x1=32,x2=−32;(2)8(x+1)3=125,(x+1)3=1258,x+1=52,x=1.5.【变式4-1】(2022春•阆中市期中)(1)已知4(x﹣3)2=64,求x的值.(2)已知(x+1)3+27=0,求x的值.【分析】(1)根据题意可化为(x﹣3)2=16,根据平方根的定义可得x﹣3=±√16,计算即可得出答案;(2)根据题意可化为(x+1)3=﹣27,根据立方根的定义可得x+1=√−273,计算即可得出答案.【解答】解:(1)4(x﹣3)2=64,(x﹣3)2=16,x﹣3=±√16,x﹣3=±4,x﹣3=4或x﹣3=﹣4,x=7或x=﹣1;(2)(x+1)3+27=0,(x+1)3=﹣27,x+1=√−273,x+1=﹣3,x=﹣4.【变式4-2】(2022春•安陆市期中)求x的值:(1)2x2=50;(2)(x+1)3+3=−38.【分析】(1)根据等式的性质以及平方根的定义就求出答案;(2)根据等式的性质以及立方根的定义即可求出答案.【解答】解:(1)2x2=50,两边都除以2得,x2=25,根据平方根的定义得,x=±5;(2)(x+1)3+3=−38,移项得,(x+1)3=−38−3,合并同类项得,(x+1)3=−278,根据立方根的定义得,x+1=−32,解得x=−52.【变式4-3】(2017秋•金牛区校级月考)解方程:若(x﹣1)2﹣1=8,则x=﹣2或4;若x3−827=0,则x=23.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程变形后,利用立方根定义开立方即可求出x的值.【解答】解:(1)(x﹣1)2﹣1=8,(x﹣1)2=9,x﹣1=±3,x=﹣2或4;(2)x3−827=0,x3=8,27x=2.3.故答案为:﹣2或4;23A.(x2+4)4B.(x2+4)2C.x2+4D.√x2+4【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.我们把正的平方根叫a的算术平方根,由此即可求出√(x2+4)2的算术平方根.【解答】解:∵√(x2+4)2=x+4,∴√(x2+4)2的算术平方根是√x2+4.故选:D.【变式5-1】(2022春•巴彦县期末)若x﹣5有算术平方根,则x满足的条件是x≥5.【分析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【变式5-2】(2022春•宁县期末)若√7−x为整数,x为正整数,则x的值为3或6或7.【分析】根据算术平方根的定义解决此题.【解答】解:由题意得,7﹣x≥0.∴x≤7.∵x为正整数,∴x可能为1、2、3、4、5、6、7.∵√7−x为整数,∴x=3或6或7.故答案为:3或6或7.【变式5-3】(2022春•椒江区期末)我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术方根都是整数,则称这三个数为“完美组合数”.例如:﹣9,﹣4,﹣1这三个数,√(−9)×(−4)=6,√(−9)×(−1)=3,√(−4)×(−1)=2,其结果6,3,2都是整数,所以﹣1,﹣4,﹣9这三个数称为“完美组合数”.(1)﹣18,﹣8,﹣2这三个数是“完美组合数”吗?请说明理由.(2)若三个数﹣3,m,﹣12是“完美组合数”,其中有两个数乘积的算术平方根为12,求m的值.【分析】(1)对于三个互不相等的负整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“完美组合数”,由此定义分别计算可作判断;(2)分两种情况讨论:①当√−3m=12时,②当√−12m=12时,分别计算即可.【解答】解:(1)﹣18,﹣8,﹣2这三个数是“完美组合数”,理由如下:∵√(−18)×(−8)=12,√(−18)×(−2)=6,√(−8)×(−2)=4,∴﹣18,﹣8,﹣2这三个数是“完美组合数”;(2)∵√(−3)×(−12)=6,∴分两种情况讨论:①当√−3m=12时,﹣3m=144,∴m=﹣48;②当√−12m=12时,﹣12m=144,∴m=﹣12(不符合题意,舍);综上,m的值是﹣48.【题型6 开方运算中的小数点移动规律】【例6】(2022春•遵义期末)如下表,被开方数a和它的算术平方根√a的小数点位置移动符合一定的规律,根据规律可得m,n的值分别为a0.06250.625 6.2562.5625625062500625000√a0.250.791m n2579.1250791(注:表中部分数值为近似值)()A.m=0.025,n≈7.91B.m=2.5,n≈7.91C.m≈7.91,n=2.5D.m=2.5,n≈0.791【分析】根据二次根式的乘法法则以及算术平方根的定义解决此题.【解答】解:由题意得,√0.0625=0.25,√0.625≈0.791,√6.25=m,√62.5=n.∵√6.25=√0.0625×100=√0.0625×10=0.25×10=2.5, √62.5=√0.625×100=√0.625×10≈0.791×10≈7.91, ∴m =2.5,n ≈7.91. 故选:B .【变式6-1】(2022•乐清市校级期中)(1)填表:a0.000001 0.001 1 1000 1000000 √a 30.010.1110100(2)由上你发现了什么规律?用语言叙述这个规律.被开方数的小数点每向右移动三位,相应的立方根的小数点就向 右 移动 1 位; (3)根据你发现的规律填空:①已知√33=1.442,则√30003= 14.42 ; ②已知√0.0004563=0.07696,则√4563= 7.696 . 【分析】(1)开立方运算,然后填表即可; (2)根据表格信息,可得答案; (3)根据(2)的规律求解即可. 【解答】解:(1)如表格所示;(2)被开方数的小数点每向右移动三位,相应的立方根的小数点就向右移动1位; (3)①已知√33=1.442,则√30003=14.42; ②已知√0.0004563=0.07696,则 √4563=7.696;【变式6-2】(2022春•岳麓区校级期中)已知√25.36≈5.03587,√253.6≈15.92482,则√253600≈ 503.587 (结果保留3位小数).【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可. 【解答】解:√25.36≈5.03587, √253600 =√25.36×104, =√25.36×√104, =5.03587×100, =503.587. 故答案为:503.587.【变式6-3】(2022•无棣县期末)先填写下表,观察后回答下列问题:a… ﹣0.001 0 0.001 1 1000 … √a 3…﹣0.11…(1)被开方数a 的小数点位置移动和它的立方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:√a 3=−50,√0.1253=0.5,你能求出a 的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可; (2)依据规律进行计算即可. 【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位; (2)能求出a 的值; ∵√0.1253=0.5, ∴√−0.1253=−0.5,由﹣0.5和﹣50,小数点向右移动了2位,则﹣0.125的小数点向右移动6位, ∴a =﹣125 000【题型7 平方根与立方根综合】【例7】(2022春•海珠区校级期中)一个正数m 的两个平方根分别为1﹣3a 和a +5,则这个正数m 的立方根是 4 .【分析】一个正数的两个平方根互为相反数,根据互为相反数的两个数的和为0,列出方程求出a ,再求出平方根,然后根据平方根的平方求出m ,最后求m 的立方根. 【解答】解:根据题意,得:(1﹣3a )+(a +5)=0, 1﹣3a +a +5=0, ﹣3a +a =﹣1﹣5, ﹣2a =﹣6, a =3.∴a +5=3+5=8, ∴m =82=64, ∴64的立方根为4. 故答案为:4.【变式7-1】(2022春•海珠区期末)若实数5x +19的立方根是4,则实数3x +9的平方根是 ±6 .【分析】根据立方根的定义列出方程求出x ,然后求出3x +9的值,最后求它的平方根即可.【解答】解:∵5x +19的立方根是4, ∴5x +19=43=64, ∴x =9,∴3x+9=3×9+9=36,∴36的平方根为±6,故答案为:±6.m−2是n﹣m+3的算术平方根,B=【变式7-2】(2022春•兴仁市月考)已知A=√n−m+3m−2n+3是m+2n的立方根,求B﹣A的平方根.√m+2n【分析】首先利用算术平方根的定义以及结合立方根的定义得出n,m的值,进而利用平方根的定义求出答案.【解答】解:由题意得:m﹣2=2,m﹣2n+3=3,解得:m=4,n=2,3=2,则A=√2−4+3=1,B=√4+2×2∴B﹣A=2﹣1=1,则B﹣A的平方根为:±1.【变式7-3】(2022•兴化市月考)若a、b满足a2=9,b3=﹣8,则a﹣b的值为5或﹣1.【分析】根据平方根与立方根的定义即可求出答案.【解答】解:由题意可知:a=±3,b=﹣2,当a=3时,原式=3﹣(﹣2)=3+2=5.当a=﹣3时,原式=﹣3﹣(﹣2)=﹣1.故答案为:5或﹣1.【题型8 算术平方根、立方根的应用】【例8】(2022•桥西区校级期中)解答下列应用题:(1)某房间的面积为17.6m2,房间地面恰好由110块相同的正方形地砖铺成,每块地砖的边长是多少?(2)已知第一个正方体水箱的棱长是60cm,第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,则第二个水箱需要铁皮多少平方米?【分析】(1)先求出一块地砖的面积,再求出边长即可;(2)先求出第一个正方体水箱的体积,再根据第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,求出第二个水箱的棱长,进而求出表面积即可.【解答】解:(1)每块地砖的面积为:17.6÷110=0.16(m2),所以正方形地砖的边长为:√0.16=0.4(m).答:每块地砖的边长是0.4m;(2)由题意可知,第一个正方体水箱的体积为:603=216000(cm3),所以第二个正方体水箱的体积为:3×216000+81000=729000(cm3),3=90(cm),所以第二个正方体水箱的棱长为:√729000所以需要铁皮90×90×6=48600cm2=4.86m2.【变式8-1】(2022秋•沂源县期末)有一个底面为正方形的水池,水池深2m,容积为11.52m3,则此水池底面正方形的边长为()A.2.4m B.4.2m C.9.25m D.13.52m【分析】设水池底面正方形的边长为xm,由题意得2x2=11.52,再根据算术平方根的定义求得x=2.4.【解答】解:设水池底面正方形的边长为xm.由题意得,2x2=11.52.∴x=2.4.∴此水池底面正方形的边长为2.4 m.故选:A.【变式8-2】(2022•南安市校级月考)要制造一个长方体箱子,底面为正方形,体积为0.25m3,且长方体的高是底面边长的2倍.(1)求长方体的底面边长;(2)求长方体的表面积.【分析】(1)设出地面边长,然后根据高是底面边长的2倍表示出高,利用正方体的体积公式求得底边长即可;(2)利用其表面积的计算方法求得其表面积即可.【解答】解:(1)设底面边长为xm,则高为2x(m),则x2•2x=0.25解得:x=0.5,故长方形的底面边长为0.5m;(2)S全=2S底+4S侧=2×0.25+4×0.5=2.5m2【变式8-3】(2022春•奈曼旗期中)小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x=√49=7∴4x=4×7=28 (cm)3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【题型9 算术平方根、立方根的规律探究】【例1】(2022春•崇川区校级期中)将1、√2、√3、√6按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(12,3)表示的两数之和是1+√2.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n 个数到底是哪个数后再计算.【解答】解:(5,4)表示第5排从左向右第4个数是√2,×11×(11+1)=66(个).∵前11排共有12∴(12,3)表示第12排从左向右第3个数是第69个数,每4个数一个循环,∴69÷4=17……1,∴(12,3)表示的数是1,两数之和是1+√2.故答案为:1+√2.【变式1-1】(2022春•青山区期中)请先在草稿纸上计算下列四个式子的值:①√13;②√13+23;③√13+23+33;④√13+23+33+43,观察你计算的结果,用你发现的规律写出下面式子的值:√13+23+33+⋯+263=351.【分析】先计算出前4个式子的值,据此得出√13+23+33+⋯⋯+n 3=1+2+3+……+n ,据此求解可得.【解答】解:∵①√13=1;②√13+23=3=1+2;③√13+23+33=6=1+2+3;④√13+23+33+43=10=1+2+3+4,……∴√13+23+33+⋯+263=1+2+3+ (26)(1+26)×262=351,故答案为:351.【变式1-2】(2022春•孝义市月考)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚给出了如下方法:(1)由103=1000,1003=1000000,确定√593193是两位数;(2)由59319个位上的数是9,确定√593193个位上的数是9;(3)划去59319后面的三位319得到59,而33=27,43=64,由此确定√593193十位上的数是3.请你类比上述过程,确定21952的立方根是 28 .【分析】根据题目提供的方法,类推确定21952的立方根.【解答】解:(1)由103=1000,1003=1000000,确定√219523是两位数;(2)由21952个位上的数是2,确定√219523个位上的数是8;(3)划去21952后面的三位952得到21,而23=8,33=27,由此确定√219523十位上的数是2,所以√219523=28,故答案为:28.【变式1-3】(2022春•越秀区校级期中)将一组数√3,√6,√9,√12,⋯,√180,按下面的方式进行排列:√3,√6,√9,√12,√15,√18√21,√24,√27,√30,√33,√36⋯⋯若√12的位置记为(1,4),√24的位置记为(2,2),则这组数据中最大的有理数的位置记为 (8,6) .【分析】观察数据的规律为3的倍数的算术平方根,6个为一排,共10列,其中最大的有理数应该为12,据此规律解答即可.【解答】解:∵这组数据是3的倍数的算术平方根,其中最大的有理数是√144=12, 又√144在第八行第六列,∴这组数据中最大的有理数√144的位置记为(8,6),故答案为:(8,6).。
部编数学七年级下册专题09算术平方根与立方根的综合运用(解析版)含答案

专题09 算术平方根与立方根的综合运用【例题讲解】已知4是32a -的算术平方根,215a b --的立方根为5-.(1)求a 和b 的值;(2)求24b a --的平方根.【详解】(1)解:∵4是32a -的算术平方根,∴3216a -=,∴6a =,∵215a b --的立方根为5-,∴215125a b --=-,∴2156125b -´-=-,∴37b =.(2)解:242376464b a --=´--=,64的平方根为8±,∴24b a --的平方根为8±.【综合解答】1270-=,那么6()a b +的立方根是( )A .-1B .1C .3D .7【答案】B【解析】【分析】根据非负数的性质,得出a ,b 的值,再代入计算即可.【详解】:270-=,0=,3270b -=∴3640a +=,3270b -=,∴a=-4,b=3,∴6()a b +=1,∴6()a b +的立方根为1,故答案为:B .【点睛】本题考查了非负数的性质和立方根,掌握非负数的性质是解题的关键.2的值为( )A .114-B .114±C .154D .134【答案】A【解析】【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.【详解】原式1300.52=---++11300.524=---++324=-;故答案为:A.【点睛】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.3 1.442=0.6694=等于( )A .57.68B .115.36C .26.776D .53.552【答案】C【解析】【分析】根据立方根的运算法则即可.【详解】440.669410426.776===´´=,故答案为:C .【点睛】进行正确的拆分.4.下列计算正确的是( ).A 3B 8=±C 7=-D 13=-【答案】D【解析】【分析】根据立方根、算术平方根、绝对值等知识逐项进行计算即可求解.【详解】,故原选项计算错误,不合题意;B.8=,故原选项计算错误,不合题意;C. 7=,故原选项计算错误,不合题意;D. 13=-,故原选项计算正确,符合题意.故选:D【点睛】本题考查了立方根、算术平方根等知识,理解立方根、算术平方根的意义并正确计算化简是解题关键.5.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C【解析】【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16Q 4(2)=16-,\16的4次方根是2±,故不符合题意;B.5232=Q ,5(2)32-=-,\32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y \> 且1,1,x y >>,x y \>\当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.6.已知a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,则x 和y 分别是( )A .,1001000a x y b ==B .1000,1000b x a y ==-C .,1000100a x y b ==-D .,1000100a x yb ==【答案】C【解析】【分析】根据题意,x 的算术平方根和-b 的立方根,然后根据x 的算术平方根和a 的算术平方根即可求出x 与a 的关系,根据-b 的立方根和y 的立方根关系即可求出y 与b 的关系.【详解】解:∵a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,∴x 的算术平方根是1.23,-b 的立方根是45.6∵1.23=110×12.3,456=10×45.6∴x =2110a æöç÷èø,y=103(-b )即,1000100a x yb ==-故选C .【点睛】此题考查的是平方根、算术平方根和立方根,根据两数算术平方根的关系推出这两数的关系和两数立方根的关系推出这两数的关系是解题关键.7.实数a ___________.【答案】8【解析】【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=,故答案为:8.【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.8.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.【答案】0.【解析】【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.9.已知21a -的平方根是±3,b +2 的立方根是2,则b a -的算术平方根是___________【答案】1【解析】【分析】先根据平方根,立方根的定义列出关于a 、b 的方程,求出a 、b 后再代入进行计算求出b a -的值,然后根据算术平方根的定义求解.【详解】解:根据题意得,2a-1=(±3)2=9,b+2 =23,∴a=5,b=6,∴b-a=1,∴b a-的算术平方根是1,故答案是:1.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.10.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.【解析】【分析】先根据2a−1的平方根是±3,3a+b+10的立方根是3得出21931027aa b-=ìí++=î,解之求出a、b的值,再利用算术平方根定义得出答案.【详解】解:∵2a−1的平方根是±3,3a+b+10的立方根是3,∴21931027aa b-=ìí++=î,解得a=5,b=2,∴a+b=7,则a+b【点睛】本题主要考查立方根、平方根、算术平方根,解题的关键是掌握立方根、平方根、算术平方根的定义.11.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,则a+2b+c的算术平方根为_____.【答案】4【解析】【分析】由题意首先根据平方根与立方根的概念可得2a-1与3a+b-9的值,进而可得a 、b 的大小,可得c 的值,进而可得a+2b+c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a-1=9,3a+b-9=8;解得:a=5,b=2;又有7<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.故答案为:4.【点睛】本题主要考查平方根、立方根、算术平方根的定义及无理数的估算能力,熟练掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法是解题的关键.12A B ,则A +B =________.【答案】【解析】【详解】===A+B=三、解答题13.()20151-.(2)已知∶2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.(3)已知a b -3是400.【答案】(1)114;(2)m +2n =13;=6【解析】【分析】(1)首先进行开方和乘方运算,再进行有理数的加减运算,即可求得;(2)根据平方根的定义得出方程,解方程即可分别求得m 、n 的值,据此即可解答;(3) 根据无理数的估算和算术平方根的定义,即可求得a 、b 的值,据此即可解答.【详解】解:(1) ()20151+-52314=+-- 114=(2)Q 2m +2的平方根是±4,3m +n +1的平方根是±5,2216m \+=,3m +n +1=25,解得m =7,n =3,272313m n \+=+´=;(3)\,13,13a \=,又Q b -3是400的算术平方根,400的算术平方根是20,320b \-=,解得b =23,6==.【点睛】本题考查了二次根式的加减混合运算,平方根和算术平方根的定义,无理数的估算,代数式求值问题,熟练掌握和运用各运算法则和方法是解决本题的关键.14.已知4是32a -的算术平方根,2+a b 的立方根是2.C 的整数部分.(1)求a ,b ,c 的值;(2)求2a b c -+的平方根.【答案】(1)6a =,1b =, 5c =(2)3±【解析】【分析】(1)根据算术平方根和立方根的定义列出式子,解出a ,b ,c 的值即可.(2)将(1)中所求数值代入,并计算平方根即可.(1)解:由题有2324a -=,322a b +=解得: 6a =;1b =.<∴5< ,∴5c =,即:6a =,1b =,5c =;(2)(2)解:把6a =,1b =,5c =,代入2a b c -+得26215a b c -+=-´+,29a b c -+=,∴2a b c -+的平方根是3±.【点睛】本题考查算术平方根,平方根,立方根的定义,无理数的整数部分,熟练理解平方根,算术平方根,立方根的定义是解题的关键.15.(1)计算:①②(2)求方程中的x 的值①()242160x +-=②()32621127x -+=【答案】(1)①12;②142)①0x =或4x =-;②23x =【解析】【分析】(1)根据算术平方根以及立方根进行计算即可;(2)根据算术平方根以及立方根解方程即可.【详解】(1)①解:原式=()442-´-48=+12=②解:原式=()())563114-----+-563114=-+++14=(2)①()242160x +-=()224x +=22x +=±解得0x =或4x =-②()32621127x -+=()312127x -=1213x -=解得23x =【点睛】本题考查了算术平方根以及立方根,掌握算术平方根以及立方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.16.(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分,求3a b c -+的平方根.(3)3a =,求a b +的立方根.【答案】(1)49;(2)4±;(3)-1【解析】【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根.【详解】解:(1)解:依题意:3210a a -++=,解得4a =-,37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34<<解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -³ìí-³î,得2b =,代入3a =,得3a =-1ab +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.17.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)=2.154=4.642,=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.18.观察下列各式,并用所得出的规律解决问题:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873» 1.225»»_____»______.(31=10=100=,……小数点的变化规律是_______________________.(4 2.154»0.2154»-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2 3.873» 1.225»12.25»0.3873»;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154»0.2154»-,0.2154»,0.2154»-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平方根、立方根和开立方(附答案与全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平方根、立方根和开立方知识网络重难突破知识点一平方根算术平方根概念:一般的如果一个正数x的平方等于a,即算术平方根的表示方法:非负数a的算术平方根记作平方根概念:如果一个数的平方等于,那么这个数就叫做的平方根或二次方根,即,那么x叫做a 的平方根。
平方根的性质与表示:表示:正数a的平方根用表示,叫做正平方根,也称为算术平方根,叫做a的负平方根。
性质:一个正数有两个平方根:(根指数2省略)且他们互为相反数。
0有一个平方根,为0,记作负数没有平方根平方根与算术平方根的区别与联系:【典型例题】1.(2019·迁安市期末)25的算术平方根是( ) A .5B .5±C .5-D .252.(2018·( ) A .±3B .3C .9D .813.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.(2020·沈阳市第七中学初二期末)9的平方根是( ) A .±3B .3C .±4.5D .4.55.(2020·东营市期末)16的平方根是( ) A .±4B .±2C .4D .﹣46.(2020·沭阳县外国语实验学校初二期末)下列说法正确的是( )A .(﹣3)2的平方根是3B ±4C .1的平方根是1D .4的算术平方根是27.(2019·=4,那么x 等于( ) A .2B .2±C .4D .4±8.(2020·河南省实验中学初二期中)已知一个正数的两个平方根分别为35a -和7a -,则这个正数的立方根是( ) A .4B .3C .2D .19.(2020·宝鸡市期末)一个正数的两个平方根分别是21a -与2a -+,则a 的值为( ) A .-1B .1C .-2D .210.(2020·南京市期末)面积为13的正方形的边长是( ) A .13的平方根B .13的算术平方根C .13开平方的结果D .13的立方根11.(2019·恩施市期末)已知(x +1)2= 16 ,则 x 的值是( ) A .3B .7C .3 或-5D .7 或-812.(2020·银川市期末)“1625的算术平方根是45”,用式子表示为( )A .=±45B =±45C .1625=45D .±1625=4513.(2020·陕西省宝鸡市第一中学初二期中)下列运算中错误的有( ) ①164,=②366497=±,③233-=-,④23±=3 A .4个B .3个C .2个D .1个14.(2020·沈阳市第二十三中学初一期中)若x 是9的算术平方根,则x 是( ) A .3B .-3C .9D .8115.(2020·贵港市期末)若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( ) A .﹣2B .±5C .5D .﹣5知识点二 立方根和开立方立方根概念:如果一个数的立方等于,即那么x 叫做的立方根或三次方根,表示方法:数a 的立方根记作,读作三次根号a立方根的性质:任何实数都有唯一确定的立方根。
人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案

第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册练习第4讲算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a)a (2②|a |a2一.练习:(预习自主完成)1. 81的算术平方根是() A.9 B.9 C .-9 D .32.1681的算术平方根是() A.49B.23C.49D.233.下列说法不正确的是() A、9的算术平方根是3 B、0的算术平方根是C 、负数没有算术平方根 D、因为2xa ,所以x 叫做a 的算术平方根4. 如果5.1y,那么y 的值是() A .2.25 B .22.5 C .2.55 D .25.55. 计算22的结果是() A .-2 B .2 C .4 D .-46. 下列各式中正确的是()A .525 B.662C.222D.3327. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有()A. 2个B. 3个C. 4个D. 5个8. 已知5x2,则x 为()A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是()A .a+1 B .a2+1 C .a+1D .1a2二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2.144=_____4925=________0025.0=_______2196________28________3. 当______m 时,m 3有意义;4.已知0)3b (1a 22,则32ab ________。
5.21a 的最小值是________,此时a 的取值是________.6.12x 的算术平方根是2,则x =________.7.若9x 2-49=0,则x=________.8.已知7+3与3-7的小数部分分别为a 、b ,求a-b 的值。
229. 若2a+︱b-1︳=0,求(a+b )2019 。
10.已知a 、b 满足2a a 44-a b22,求|a+2b|+ab11.求下列各式中的x 。
18x212(1-x )2=252(x+1)2-8=012.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b 的平方根。
13.(1)一个非负数的平方根是2a-1和a-5,则这个非负数是多少?(2)已知2a-1与-a+2是m 的平方根,求m 的值。
14.小明想用一块面积为16cm 2的正方形纸片,沿边的方向裁出一块面积为12cm 2的长方形纸片,使它的长宽之比为3:2,他能裁出吗?15.实数a ,b ,c 在数轴上的位置如图所示,且|a|=|c|,化简:|a|+|a+b|-22c2)a c (Ⅲ、立方根如果一个数的立方等于a ,那个这个数叫做a 的立方根或者三次方根,记作_________;求一个数的________的运算,叫做开立方。
公式补充:33aa练习:1.下列说法错误的是()A 、1的平方根是± 1B 、-1的立方根是-1C 、2是2的平方根D 、-3是23-)(的平方根2.下列说法:①正数都有平方根;②负数都有平方根;③正数都有立方根;④负数都有立方根。
其中正确的有()A 、1个 B、2个 C、3个 D、4个3.已知a+2的算术平方根是a+2的相反数,3a+3b 的算术平方根是3,2a+b 的平方根为______4.若a a3,则a=_______,若27a 3-1=0,则a=________。
5.已知31-y 3和3x 2-1为同一个正数的两个平方根,则xy 的值为__________6.观察下列各式的规律:①322322,②833833,③15441544……以此规律,若n10mn10m,则m+n=_________.7._____,0)2(1a 2的平方根是则b a b,_____643的平方根是8.若a 是介于3与7之间的整数,b 是2的小数部分,则ab-22的值为9._____的立方根是它本身,__________的算术平方根是它本身,______的平方根是它本身,___________的相反数是它本身,__________的倒数是它本身。
10.已知a 、b 、c 三个数满足下列条件:a 是算术平方根最小的整数,b 2=b 3,3c c,求a+b+c 的值。
11.(1)已知,),(833=1+y 16=x 32求yx 的立方根。
(2)当x 为何值时,33x 3-46x 5与互为相反数?12.计算(1)(x-1)3=8 (2)(1-x )2=1.21(3)33381--2764-(4)32279)2(13. 3即是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x 2 - y 2的平方根。
作业:1.下列说法正确的是()A.7是49的算术平方根,即749 B.7是2)7(的平方根,即7)7(2C.7是49的平方根,即749 D.7是49的平方根,即7492.一个数的算术平方根的相反数是312,则这个数是().A.79 B.349 C.493 D.9493.下列各组数中互为相反数的是()A.2与2)2( B.2与38 C.2与21 D.2与24.已知5a+3b=0,那么a -b =_________;25的算术平方根是______;如果3x =2,那么(x+3)2=______;3641的相反数是________。
5.16的算术平方根是_____,平方根是______,若x2=16,则5-x 的算术平方根是_______6.36-64的平方根______,若4a+1的平方根是5,则a 2的算术平方根是_____7.已知21a 的平方根是±5,522a b 的算术平方根是4,求34a b 的平方根.8.若a ,b 为实数,且3a a 99ab22,求a+b 的值。
9.已知a 是10的整数部分,b 是10的小数部分,求23)3b ()a (的值。
10.一个正数的两个平方根分别是2a-1和a-8,求这个数。
11.若8a与(b-27)2互为相反数,求33b a的平方根。
第4讲算术平方根、平方根、立方根答案一.练习:1.B2.B3.D4.A5.B6.D7.C8.C9.D 二、填空题:1.625 ;0或1;32.12 ,75,0.5 ,196 ,83.≤34. 15. 2 ,-16.237. ±378. 27-5 (提示∵5<7+3<6,∴a=7+3-5=7-2,∵0<3-7<1,∴b=3-7)9. -1 10. 211.(1)±6 (2)-4或6 (3)1或-312. ±313. (1)9(提示:一个非负数的平方根有两个,互为相反数关系)(2)1或9 (提示:2a-1与-a+2是m 的平方根,那么2a-1与-a+2相等或互为相反数)14.不能(设长为3x cm ,则宽为2x cm , 3x ·2x=12,x=2,则长为32cm ,宽为22cm ,32>4)15.-a-b-3cⅢ、立方根练习:1.D2.C3.±14.0或±1 ,31 5.32 6.109 7.±3,±28. -29. 0、±1 ,0或1,0 ,0 ,±110. 0或1 (提示:由题可得:a=0,b=0或1,c=0)11. (1)±2(2)-512. (1)3 (2)-0.1或2.1 (3)-21(4)-213. ±6作业:1.C2.D3.A4. 8;5;16;41-5. 2,±2,1或36.2,67. ±10 8. 3 9. -1710. 25 11. ±1。