奇偶码
常用的检错码 - 奇偶校验码

3.2差错控制3.2.2常用的检错码- 奇偶校验码奇偶校验码是一种简单的检错码,奇偶校验码分为奇校验码和偶校验码,两者原理相同。
它通过增加冗余位来使得码字中“1”的个数保持奇数或偶数。
•无论是奇校验码还是偶校验码,其监督位只有一位;•假设信息为为I1, I2, …, I n,对于偶校验码,校验位R可以表示为:R =I1 ⊕I2⊕Λ⊕In•假设信息为为I1, I2, …, I n,对于奇校验码,校验位R可以表示为:R =I1 ⊕I2⊕Λ⊕In⊕1•无论是奇校验码还是偶校验码,都只能检测出奇数个错码,而不能检测偶数个错码。
44讨论: 从检错能力、编码效率和代价等方面来评价垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验3.2 差错控制3.2.2 常用的检错码 - 奇偶校验码 奇偶校验在实际使用时又可分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验等几种。
53.2.2常用的检错码–定比码所谓定比码,即每个码字中“1”的个数与“0”的个数之比保持恒定,故又名等比码或恒比码。
•当码字长一定,每个码字所含“1”的数目都相同,“0”的数目也都相同。
•由于若n位码字中“1”的个数恒定为m,还可称为“n中取m”码定比码(n中取m)的编码效率为:log C mR = 2 nn定比码能检测出全部奇数位错以及部分偶数位错。
实际上,除了码字中“1”变成“0”和“0”变成“1”成对出现的差错外,所有其它差错都能被检测出来64代码“1011011”对应的多项式为x 6 + x 4 + x 3 +1多项式“x 5 + x 4 + x 2 + x”所对应的代码为“110110” 3.2.2 常用的检错码 – 循环冗余检验 循环冗余码(Cyclic Redundancy Code ,简称CRC )是无线通信中用得最广泛的检错码,又被称为多项式码。
二进制序列多项式:任何一个由m 个二进制位组成的代码序列都可以和一个只含有0和1两个系数的m-1阶多项式建立一一对应的关系。
奇偶校验码,海明码,循环冗余CRC

1、奇偶校验码二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit )数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit 来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit 数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图图 1图 2注意,图8-2的8个码字相互间最少有两bit 因此,如果任何信息的一个数位被颠倒,码字,接收机能检查出来。
例如信息是1001,误收为1011接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
的,正确码字可以是1001,1111,0011或1010能确定原来到底是这4个码字中的那一个。
也可看到,在这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和图3检错能力。
码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
奇偶校验码的工作原理

奇偶校验码的工作原理
嘿!今天咱们来聊聊奇偶校验码的工作原理呀!哎呀呀,这可真是个有趣又重要的话题呢!
首先呢,咱们得搞清楚啥是奇偶校验码?简单来说呀,它就是一种用来检查数据传输过程中有没有出错的方法!哇!是不是觉得很神奇?
在奇偶校验码中呀,分为奇校验和偶校验两种。
奇校验的时候呢,如果数据位中1 的个数是奇数,那校验位就是0 ;反之,如果1 的个数是偶数,校验位就是1 。
偶校验呢,则正好相反!
比如说呀,有一组数据1010 ,如果是奇校验,因为 1 的个数是2 ,是偶数,所以校验位就得是1 ,最终变成10101 。
如果是偶校验呢,因为1 的个数是偶数,校验位就是0 ,最终就是10100 。
哎呀呀,是不是有点绕?
那奇偶校验码是怎么工作的呢?当数据传输的时候,接收方会按照相同的校验规则来计算,如果计算出来的校验位和接收到的校验位不一样,那就说明数据出错啦!哇,这可太重要了,能及时发现错误,避免很多麻烦呢!
不过呀,奇偶校验码也有它的局限性哟!它只能检测出奇数个错误,但如果是偶数个错误,它可能就发现不了啦!哎呀,这是不是有点小遗憾?
但是呢,尽管有这样的不足,奇偶校验码在很多简单的系统中还是发挥了很大的作用哟!它简单易懂,实现起来也不复杂,对于一些
对错误检测要求不是特别高的情况,那可是相当实用的呀!
怎么样?现在是不是对奇偶校验码的工作原理清楚一些啦?哎呀呀,希望这能让你对这个神奇的东西有更深入的了解呢!。
常用的检错码-奇偶校验码

常用的检错码-奇偶校验码3.2差错控制3.2.2常用的检错码- 奇偶校验码奇偶校验码是一种简单的检错码,奇偶校验码分为奇校验码和偶校验码,两者原理相同。
它通过增加冗余位来使得码字中“1”的个数保持奇数或偶数。
无论是奇校验码还是偶校验码,其监督位只有一位;假设信息为为I1, I2, …, I n,对于偶校验码,校验位R可以表示为:R =I1 ⊕I2⊕Λ⊕In假设信息为为I1, I2, …, I n,对于奇校验码,校验位R可以表示为:R =I1 ⊕I2⊕Λ⊕In⊕1无论是奇校验码还是偶校验码,都只能检测出奇数个错码,而不能检测偶数个错码。
44讨论:从检错能力、编码效率和代价等方面来评价垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验3.2 差错控制3.2.2 常用的检错码 - 奇偶校验码奇偶校验在实际使用时又可分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验等几种。
53.2.2常用的检错码–定比码所谓定比码,即每个码字中“1”的个数与“0”的个数之比保持恒定,故又名等比码或恒比码。
当码字长一定,每个码字所含“1”的数目都相同,“0”的数目也都相同。
由于若n位码字中“1”的个数恒定为m,还可称为“n中取m”码定比码(n中取m)的编码效率为:log C mR = ?2 nn定比码能检测出全部奇数位错以及部分偶数位错。
实际上,除了码字中“1”变成“0”和“0”变成“1”成对出现的差错外,所有其它差错都能被检测出来64代码“1011011”对应的多项式为x 6 + x 4 + x 3 +1多项式“x 5 + x 4 + x 2 + x”所对应的代码为“110110” 3.2.2 常用的检错码–循环冗余检验循环冗余码(Cyclic Redundancy Code ,简称CRC )是无线通信中用得最广泛的检错码,又被称为多项式码。
二进制序列多项式:任何一个由m 个二进制位组成的代码序列都可以和一个只含有0和1两个系数的m-1阶多项式建立一一对应的关系。
奇偶校验码的计算方法讲解

奇偶校验码的计算方法讲解
奇偶校验码是一种增加二进制代码传输距离的最简单
和最广泛的方法,通过增加冗余位使码字中“1”的个数恒
为奇数或者偶数。
奇偶校验码有两种,奇校验和偶校验,其计算方法如下:
1.奇校验:
先计算信息位中的“1”的个数。
如果“1”的个数是奇数,那么校验位为0。
如果“1”的个数是偶数,那么校验位为1。
最终得到的码字中“1”的个数为奇数。
2.偶校验:
先计算信息位中的“1”的个数。
如果“1”的个数是奇数,那么校验位为1。
如果“1”的个数是偶数,那么校验位为0。
最终得到的码字中“1”的个数为偶数。
在计算过程中,需要注意二进制位和校验位的异或操作,以确保最终得到的码字满足奇校验或偶校验的要求。
以上信息仅供参考,建议咨询专业技术人员获取更准确的信息。
奇偶校验码解题步骤

奇偶校验码解题步骤
奇偶校验码是一种用于检测数据传输或存储中错误的方法。
它
通常用于计算机系统中,以确保数据的准确性。
下面是解题步骤:
1. 首先,确定数据位和校验位的数量。
通常情况下,数据位是
指实际传输的数据,而校验位是用来存储奇偶校验结果的位。
2. 确定是奇校验还是偶校验。
在奇校验中,校验位被设置为确
保数据位和校验位中1的总数为奇数;而在偶校验中,校验位被设
置为确保数据位和校验位中1的总数为偶数。
3. 将数据位转换为二进制形式。
这意味着将每个数据位转换为
包含0和1的序列。
4. 对每个数据位计算其二进制形式中1的个数。
如果是奇校验,则需要确保1的个数为奇数,如果是偶校验,则需要确保1的个数
为偶数。
5. 根据计算结果设置校验位。
如果使用奇校验,校验位被设置
为确保数据位和校验位中1的总数为奇数;如果使用偶校验,校验
位被设置为确保数据位和校验位中1的总数为偶数。
6. 将数据位和校验位组合成一个完整的数据包。
7. 在接收端,重新计算数据位和校验位的奇偶性,并与接收到的校验位进行比较。
如果不匹配,则表示数据传输中发生了错误。
这些是奇偶校验码的解题步骤,通过这些步骤可以有效地检测数据传输或存储中的错误。
奇偶校验码,海明码,循环冗余CRC(精)

1、奇偶校验码二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit)数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图图 1图 2注意,图8-2的8个码字相互间最少有两bit因此,如果任何信息的一个数位被颠倒,码字,接收机能检查出来。
例如信息是1001,误收为1011接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
的,正确码字可以是1001,1111,0011或1010能确定原来到底是这4个码字中的那一个。
也可看到,这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和检错能力。
图3 码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
最新ASCII码、奇偶校验码和BCD码

• 3.已知字符F的ASCII值为70,则它的奇校验码为 01000110。( )
• 4.写字母R的ASCII码值比小写字母E的ASCII值大。 ()
• 5.ASCII码包括10个数字,52个英大、小写字母, 32个标点符号及运算符,34个控制符。( )
• 一、单项选择题
• I.为了让计算机以统一用二进制形式的代码存储、处理冬种数据,国际上普遍采用的字符编码是( )
• A.GB2312码 B.ASCII码 C.GBK码 D.GIB5码
• 2.已知字母J的ASCII码值最小的是( )
• A.48H B.4CH C.1001010B D.74D
• 3.下列字符中,ASCII码值最小的是( )
为11000001,同样,字符G设置校码后对应的编码为_________。 • 10. 比较以下两个ASCII值的大小: • “0”____“S”;“3”______“8”;“A”______“C”;“A”_____“a”。
• 三、判断题
• 1.两个BCD码数01010011和01101001相加后的 BCD码值为10111100。( )
• 9.数据在计算机内部传输过程中采用偶效验,则字符F在传输过程的八位二进制数是( )
• A.01000011 B.11000110 C.01000110 D.10001101
• 10.已知英文字母m的ASCII码值是109,那么英文字母p的ASCII码值为( )
• A.111 B.112 C.113 D.114
• 常用字符ASCII值大小顺序一般为: 标点符号<数 字<大写字母<小写字母。其中空格最小,1为31H, A为41H,a为61H,由此按序可推算出其余数字 和字母的ASCII值。字符串比较大小时要按顺序比 较,分出大小后即停止比较,跟长度无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
校验码辅导讲座二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit )数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit 来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit 数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图2的表中所示。
图 1图 2注意,图8-2的8个码字相互间最少有两bit 的差异。
因此,如果任何信息的一个数位被颠倒,就成为一个不用的码字,接收机能检查出来。
例如信息是1001,误收为1011,接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
假定只有一个数位是错的,正确码字可以是1001,1111,0011或1010。
接收者不能确定原来到底是这4个码字中的那一个。
也可看到, 在这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,码间最小距离必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
编码信息纠错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和检错能力。
图3码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
例如,单个的奇偶校验将使码的最小距离由一增加到二。
一个二进制码字,如果它的码元有奇数个1,就称为具有奇性。
例如,码字“10110101”有五个1,因此,这个码字具有奇性。
同样,偶性码字具有偶数个1。
注意奇性检测等效于所有码元的模二加,并能够由所有码元的异或运算来确定。
对于一个n位字,奇性由下式给出:奇性=a0⊕a1⊕a2⊕…⊕a n奇偶校验可描述为:给每一个码字加一个校验位,用它来构成奇性或偶性校验。
例如,在图8-2中,就是这样做的。
可以看出,附加码元d2,是简单地用来使每个字成为偶性的。
因此,若有一个码元是错的,就可以分辨得出,因为奇偶校验将成为奇性。
奇偶校验编码通过增加一位校验位来使编码中1个个数为奇数(奇校验)或者为偶数(偶校验),从而使码距变为2。
因为其利用的是编码中1的个数的奇偶性作为依据,所以不能发现偶数位错误。
再以数字0的七位ASCII码(0110000)为例,如果传送后右边第一位出错,0变成1。
接收端还认为是一个合法的代码0110001(数字1的ASCII码)。
若在最左边加一位奇校验位,编码变为10110000,如果传送后右边第一位出错,则变成10110001,1的个数变成偶数,就不是合法的奇校验码了。
但若有两位(假设是第1、2位)出错就变成10110011,1的个数为5,还是奇数。
接收端还认为是一个合法的代码(数字3的ASCII码)。
所以奇偶校验不能发现。
奇偶校验位可由硬件电路(异或门)或软件产生:偶校验位 a n =a0⊕a1⊕a2⊕…⊕a n-1,奇校验位 a n =NOT(a0⊕a1⊕a2⊕…⊕a n-1)。
在一个典型系统里,在传输以前,由奇偶发生器把奇偶校验位加到每个字中。
原有信息中的数字在接收机中被检测,如果没有出现正确的奇、偶性,这个信息标定为错误的,这个系统将把错误的字抛掉或者请求重发。
在实际工作中还经常采用纵横都加校验奇偶校验位的编码系统--分组奇偶校验码。
现在考虑一个系统,它传输若干个长度为m位的信息。
如果把这些信息都编成每组n个信息的分组,则在这些不同的信息间,也如对单个信息一样,能够作奇偶校验。
图4中n个信息的一个分组排列成矩形式样,并以横向奇偶(HP)及纵向奇偶(VP)的形式编出奇偶校验位。
m位数字横向奇偶位个码字纵向奇偶位图 4 用综横奇偶校验的分组奇偶校验码研究图4可知:分组奇偶校验码不仅能检测许多形式的错误。
并且在给定的行或列中产生孤立的错误时,还可对该错误进行纠正。
经常有综横奇偶校验的题目。
一般解法应该是这样:先找一行或一列已知数据完整的,确定出该行(或列)是奇校验还是偶校验。
并假设行与列都采用同一种校验(这个假设是否正确,在全部做完后可以得到验证)。
然后找只有一个未知数的行或列,根据校验性质确定该未知数,这样不断做下去,就能求出所有未知数。
【例】2007年试题由 6 个字符的 7 位 ASCII 编码排列,再加上水平垂直奇偶校验位构成下列矩阵(最后一列为水平奇偶校验位,最后一行为垂直奇偶校验位):字符7 位 ASCII 码HP30X1X200110Y1100100X31+X41010110Y201X5X61111D100X710X80=0X9111X1011VP00111X111X12则 X1 X2 X3 X4 处的比特分别为 __(36)__ ;X5 X6 X7 X8 处的比特分别为 ____ ;X9 X10 XI1 X12处的比特分别为 __(38)__ ;Y1 和 Y2 处的字符分别为 __(39)__ 和__(40)__ 。
[解]从ASCII码左起第5列可知垂直为偶校验。
则:从第1列可知X4=0;从第3行可知水平也是偶校验。
从第2行可知X3=1;从第7列可知X8=0;从第8列可知X12=1;从第7行可知X11=1;从第6列可知X10=0;从第6行可知X9=1;从第2列可知X1=1;从第1行可知X2=1;从第3列可知X5=1;从第4行可知X6=0;从第4列(或第5行)可知X7=0;整理一下:(36) X1X2X3X4 = 1110(37) X5X6X7X8 = 1000(38) X9X10X11X12 = 1011(39) 由字符Y1的ASCII码1001001=49H知道,Y1即是“I”(由“D”的ASCII码是1000100=44H推得)(40) 由字符Y2的ASCII码0110111=37H知道,Y2即是“7”(由“3”的ASCII码是0110011=33H推得)假如你能记住“0”的ASCII码是0110000=30H;“A”的ASCII码是1000001=41H,则解起来就更方便了。
三、海明校验我们在前面指出过要能纠正信息字中的单个错误,所需的最小距离为3。
实现这种纠正的方法之一是海明码。
海明码是一种多重(复式)奇偶检错系统。
它将信息用逻辑形式编码,以便能够检错和纠错。
用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。
每一个这种奇偶位被编在传输码字的特定位置上。
实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。
推导并使用长度为m位的码字的海明码,所需步骤如下:1、确定最小的校验位数k,将它们记成D1、D2、…、Dk,每个校验位符合不同的奇偶测试规定。
2、原有信息和k个校验位一起编成长为m+k位的新码字。
选择k校验位(0或1)以满足必要的奇偶条件。
3、对所接收的信息作所需的k个奇偶检查。
4、如果所有的奇偶检查结果均为正确的,则认为信息无错误。
如果发现有一个或多个错了,则错误的位由这些检查的结果来唯一地确定。
校验位数的位数推求海明码时的一项基本考虑是确定所需最少的校验位数k。
考虑长度为m位的信息,若附加了k个校验位,则所发送的总长度为m+k。
在接收器中要进行k个奇偶检查,每个检查结果或是真或是伪。
这个奇偶检查的结果可以表示成一个k位的二进字,它可以确定最多2k种不同状态。
这些状态中必有一个其所有奇偶测试试都是真的,它便是判定信息正确的条件。
于是剩下的(2k-1)种状态,可以用来判定误码的位置。
于是导出下一关系:2k-1≥m+k码字格式从理论上讲,校验位可放在任何位置,但习惯上校验位被安排在1、2、4、8、…的位置上。
图5列出了m=4,k=3时,信息位和校验位的分布情况。
图5 海明码中校验位和信息位的定位校验位的确定k个校验位是通过对m+k位复合码字进行奇偶校验而确定的。
其中:P1位负责校验海明码的第1、3、5、7、…(P1、D1、D2、D4、…)位,(包括P1自己)P2负责校验海明码的第2、3、6、7、…(P2、D1、D3、D4、…)位,(包括P2自己)P3负责校验海明码的第4、5、6、7、…(P3、D2、D3、D4、…)位,(包括P3自己)对m=4,k=3,偶校验的例子,只要进行三次偶性测试。
这些测试(以A、B、C表示)在图6所示各位的位置上进行。
图6 奇偶校验位置因此可得到三个校验方程及确定校验位的三个公式:A=B1⊕B3⊕B5⊕B7=0 得P1=D1⊕D2⊕D4B=B2⊕B3⊕B6⊕B7=0 得P2=D1⊕D3⊕D4C=B4⊕B5⊕B6⊕B7=0 得P3=D2⊕D3⊕D4若四位信息码为1001,利用这三个公式可求得三个校验位P1、P2、P3值。
和海明码,如图7则表示了信息码为1001时的海明码编码的全部情况。
而图8中则列出了全部16种信息(D1D2D3D4=0000~1111)的海明码。
图7 四位信息码的海明编码图8 未编码信息的海明码上面是发送方的处理在接收方,也可根据这三个校验方程对接收到的信息进行同样的奇偶测试:A=B1⊕B3⊕B5⊕B7=0;B=B2⊕B3⊕B6⊕B7=0;C=B4⊕B5⊕B5⊕B7=0。
若三个校验方程都成立,即方程式右边都等于0,则说明没有错。
若不成立即方程式右边不等于0,说明有错。
从三个方程式右边的值,可以判断那一位出错。
例如,如果第3位数字反了,则C=0(此方程没有B3),A=B=1(这两个方程有B3)。
可构成二进数CBA,以A为最低有效位,则错误位置就可简单地用二进数CBA=011指出。
同样,若三个方程式右边的值为001,说明第1位出错。
若三个方程式右边的值为100,说明第4位出错。
海明码的码距应该是3,所以能纠正1位出错。
而奇偶校验码的码距才是2,只能发现1位出错,但不能纠正(不知道那一位错)。
无校验的码距是1,它出任何一位出错后还是合法代码,所以也就无法发现出错。
这是关于海明码的经典说法,即码距为3,可以发现2位,或者纠正1位错。
应满足2k-1≥m+k。