天津市七年级数学下册第六章实数6.1平方根(第1课时)学案新人教版
人教版七年级下册第六章实数6.1平方根教案

(1) (2) (3) (4)
分析:此题本质还是求几个非负数的算术平方根。
解:(1) =2,(2) = ,
(3) = =11,(4) =6
例3、求下列各数的算术平方根:
⑴ ⑵ ⑶(-10)²⑷
解:(1)因为 =9,所以 = =3;
⑵因为 =64= ,所以 = = =8;
⑶因为(-10)²=100= ,所以 = =10;
所以大正方形的边长为 dm。
二、探究 的大小:
由上面的实验我们认识了 ,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论 的大小。
因为 =1, =4, < < ,所以 < < ,
因为 =1.96, =2.25,所以 < < ,
因为 =1.9881, =2.0164,所以 < < ,
因为 =1.999 396, =2.002 225,所以 < < ……
填表:
正方形的面积/
1
9
16
36
正方形的边长/
学生会求出边长分别是1、3、4、6、 ,
提问:上面的问题它们有共同点吗?它们的本质是什么呢?
实际上是已知一个正数的平方,求这个正数的问题。
归纳:
1、算术平方根的概念:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。
2、算术平方根的表示方法:
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、布置作业
课本P47习题6.1第1、2题
板书设计
一、引入:
二、探究:
归纳:
三、典例:
例1、
例2、
例3、
四、随堂练习:
教学反思
七年级数学下册第6章实数6.1平方根(第1课时)学案新人教版

6.1平方根(第一课时)班级: 姓名:【学习目标】1.理解算术平方根的意义,会用根号表示正数的算术平方根,会求一个非负数的算术平方根,掌握算术平方根的非负性。
2。
培养逆向思维能力.重点难点:理解算术平方根的意义。
【学习过程】一、【自主预习】:(阅读课本40页的内容,完成以下题目)(一)算术平方根的定义1. 填表:表中的问题,实际上是已知一个正数的 ,求 的问题.2。
算术平方根的定义一般的,如果一个正数..x 的 等于a ,即a x =2,那么这个正数....x 叫做 算术平方根.....。
a 的算术平方根记为 ,读作“ ”, a 叫做 .规定:0的算术平方根是 。
(二)算术平方根的性质=2)4( ;=2)91(;2)2(= ;=2)31( 。
一个非负数的算术平方根一定是 ,一个非负数的算术平方根的平方一定等于 .a要有意义,a 的取值范围是三、【合作探究】:例: 求下列各数的算术平方根:(1)100 (2)4964; (3) 0。
0001. 精练1.填空:(1)因为_____2=64,所以64的算术平方根是______,=______;(2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________。
2.求下列各式的值:(1==______; (=______;(4______; (5=______. 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:=_______,_______,_______,=_______,_______, _______,_______, _______4。
辨析题:小欧认为,因为(-4)2=16,所以16的算术平方根是-4.你认为小欧的看法对吗?为什么?四、【总结升华】:本节课我的收获:我的疑问:【学习评价】答案:精练的答案:1、(1)8,8,8 (2)0。
人教版七年级数学下册第六章6.1平方根(教案)

4.应用平方根解决实际问题:运用所学的平方根知识解决一些简单的实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过平方根的定义和性质的探究,让学生理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升解决问题的能力:通过求平方根的方法学习和实际问题的应用,培养学生运用数学知识解决实际问题的能力。
举例:在解释负数没有平方根时,可以借助数轴,说明实数范围内无法找到一个数的平方等于负数;在讲解迭代法时,以√2为例,展示迭代法的步骤,让学生通过实际操作感受方法的可行性;在解决实际问题中,如计算正方形的对角线长度,指导学生先将问题转化为求边长的平方根,进而求解。
四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数乘以自身等于另一个数的运算。它是解决许多实际问题的关键,如在几何中求解边长、面积等。
2.案例分析:接下来,我们来看一个具体的案例。通过求解一个正方形的边长,展示平方根在实际中过程中,我会特别强调平方根的定义和求法这两个重点。对于难点部分,如负数没有平方根、迭代法的应用,我会通过举例和比较来帮助大家理解。
课堂上,我尝试通过实际案例引入平方根的应用,让学生们感受到数学知识在生活中的重要性。这种做法激发了学生的兴趣,他们积极参与讨论和实验操作,这让我感到很欣慰。但同时我也注意到,在小组讨论中,个别学生参与度不高,可能是因为他们对问题不够了解或者缺乏自信。我需要在以后的课堂中更加关注这些学生,鼓励他们大胆表达自己的想法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题,如求解不同形状的面积。
2023年人教版七年级数学下册第六章《平方根(1)》学案

新人教版七年级数学下册第六章《平方根(1)》学案教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点:1. 理解算术平方根大概念2. 根据算术平方根的概念正确求出非负数的算术平方根。
知识重点1. 算术平方根的概念。
情境导入同学们,20XX 年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度1v (米/秒)而小于第二宇宙速度:2v (米/秒).1v 、2v 的大小满足gR v gR v 2,2221==.怎样求1v 、2v 呢?这就要用到我们即将学到的知识请看下面的问题.提出问题 感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:你是怎样算出画框的边长等于5dm 的呢?(学生思考并交流解法)这个问题相当于在等式2x =25中求出正数x 的值. 练习:多媒体上出示教科书第160页的填表.正方形的面积1 9 16 36 0.25 边长归纳新知上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数. 也就是,在等式2x =a (x ≥0)中,规定x =a .思考:这里的数a 应该是怎样的数呢?试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.议一议:下列式子表示什么意思?你能求出它们的值吗?81.0964(1)建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根,因为……(2) 规定:0的算术平方根是0.(3) 因为没有什么数的平方等于负数,所以负数的算术平方根没有意义 所以对 而言,需要分类讨论,当a ≥0时,标示a 的算术平方根,当a <0时,无意义。
人教版七年级数学下册6.1《平方根第1课时》平方根第1课时 教学设计 教案

第六章实数6.1 平方根第1课时《算术平方根》是人教版教材七年级数学第6章第一节的内容.在此之前,学生们已经掌握了数的平方,这为过渡到本节内容的学习起到了铺垫的作用.本课是《实数》的开篇第一课,掌握好算术平方根的概念和计算,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累.1.了解算术平方根的概念;2.会求正数的算术平方根并会用根号表示;3.经历算术平方根概念的形成过程,理解平方与开方之间是互为逆运算;4.通过引导、启发学生探索、合作交流等数学活动,使学生掌握研究问题的方法;5.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的.【教学重点】算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.一、复习回顾问题1:求下列各式的值.27= 2(7)-=2(1.5)= 2( 1.5)-=20=设计意图:通过平方运算的练习,为概念的引入作铺垫.问题2:若已知一个数的平方为下列各数,你能把这个数的取值说出来吗?()2144= ()20= ()2 1.69= ()294= 设计意图:通过提问,引发学生的思考,为概念的引入作铺垫.二、创设情境,复习引入我们知道,要求正方形的面积,只要知道边长,利用面积公式即可救出;知道面积,怎样求边长呢?如:“学校要举行美术作品比赛,小欧想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?”(1)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?大家说了很多方法,我们知道5²=25,所以这个正方形画布的边长应取5分米;现在请同学们根据这一方法填写下表:(2)想一想:如果正方形的面积是52dm ,它的边长是多少?表中的数,我们很容易知道是什么数的平方,但5是什么数的平方呢?这就是我们今天要学习的“算术平方根”,学习后大家说知道了.设计意图:从学生熟悉的正方形面积和边长的关系除法,提出已知正方形面积求正方形边长的问题,构造出典型的求算术平方根的问题.通过解决类似的问题,解释问题的本质:他们都是已知一个正数的平方,求这个正数的问题,进而从具体到抽象地给出算术平方根的概念,使学生理解算术平方根的意义.算术平方根的概念(1)从填表知道正数3的平方等于9,我们把正数3叫做9的算术平方根;正数4的平方等于16,我们把正数4叫做16的算术平方根.(2)归纳概念:一般地,如果一个正数x 的平方等于a ,即x2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做被开方数,规定:0的算术平方根是0. (3)上述概念可归纳为:在等式a x 2(x ≥0)中,规定x=a 为a 的算术平方根.三、运用新知例1 想一想:下列式子表示什么意思?你能求出它们的值吗?并说明理由.例2 求下列各数的算术平方根 (1)100 (2)6449 (3)0.0001 ①以100为例进行分析:100的算术平方根,就是求一个数x ,使2x =100,因为210=100,所以100的算术平方根是10,记作 =10.解:因为210=100,所以100的算术平方根是10,即 100 =10.②学生独立完成(2)(3)的分析后,同桌互相交流.③在学生交流的基础上2人板书,并根据板书的情况进行订正.试一试求下列各数的算术平方根(1)121 (2) 0.25 (3)36解决问题我们再回到“正方形的面积是5 2dm ,它的边长是多少?”现在学习了算术平方根,你能说出5的算术平方根吗?(1)同桌交流讨论;(2)根据讨论结果,说出下列各数的算术平方根:2 5 15 38 1设计意图:加深对“”的理解,能够表示算术平方根并会求一个正数的算术平方根. 思考:负数有算术平方根吗?为什么?(学生思考后,抽几名学生回答,再根据回答的情况进行讲解.)设计意图:进一步加深对算术平方根概念的理解.四、巩固新知练习1 下列各式是否有意义(1) 4- ;(2)4- ;(3)23)(- ;(4)2101. (根据学生的回答,指导学生解答 )②指导学生完成余下的判断题.练习2 判断:(1)5是25的算术平方根. (2)-6是36的算术平方根.(3)0的算术平方根是0. (4)0.01是0.1的算术平方根.(5)-5是-25的算术平方根.五、归纳小结这节课我们学习了“算术平方根”,你有哪些收获,能总结一下吗?学生自由发表对本节课的理解,教师归纳如下:(1)算术平方根是非负数;(2)被开方数是非负数;(3)规定:零的算术平方根是零.六、布置作业课本习题6.1第1、2题.略.。
七年级数学下册第六章实数6.1平方根(1)教案(新版)新人教版

6.1 平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示. 难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:正方形面积1 9 16 36 425 边长134625师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78. (3)∵2=0.0001,∴0.0001的算术平方根是0.01,即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.。
【推荐】七年级数学下册第六章实数6.1平方根学案新版新人教版.doc
Word文档,精心制作,可任意编辑平方根学习目标1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.学习过程:复习提问是2的算术平方根1.下列说法中不正确的是() A.2B.2的平方根是2C.2的算术平方根是22.0的算术平方根是 0.25的算术平方根是引入新课平方等于4的数有几个,它们是多少?3的平方等于9,平方等于9的数还有吗?是多少?自主学习合作探究一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫算术平方根。
表达式为:若x2=a,那么x叫做a的平方根. 记作:正数a有两个平方根,它们互为相反数例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4; 4是16的算术平方根.小组比赛展示探究结果例3求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11教材想一想课堂小结平方根与算术平方根关系2.正数的平方根的互为相反数一分钟记忆:平方根的定义及性质反馈检测 : 1.下列说法中不正确的是( ) A.2-是2的平方根 B.2是2的平方根C.2的平方根是2D.2的算术平方根是22.41的平方根是( ) A.161 B.81 C.21 D.21±3.下列各式中,正确的个数是( )① 3.09.0= ②34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5⑤67±是36131的平方根A.1个B.2个C.3个D.4个二、填空题4. 如果某数的一个平方根是-6,那么这个数为________.5.如果正数m 的平方根为1x +和3x -,则m 的值是 .6.16的算术平方根是 的平方根是 .三、解答题 求下列各式的值。
⑴225 ⑵0004.0- ⑶4112± ⑷ ()21.0-- 布置作业习题2.4教学反思教师反思:加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.。
七年级下册数学人教版 第6章 实数6.1 平方根6.1.1 算术平方根【教案】
算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书人教版七年级(下)第六章《实数》的第一节《平方根》.本节内容计3个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的问题情境 初步探究 反馈练习 学习小结 作业布置深入探究实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒). 即铁球到达地面需要2秒. 说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.。
人教版七年级下册 6.1 平方根 第一课时 教案
课时数
教学目标
知识与技能
1.了解算术平方根的概念n加油,会用根号表示正数的算术平方根,并了解算术n加油平方根的非负性;
2.了解开方与乘方互为逆运算,
过程n加油与方法
会用平方运算求某些非负数的算术平方根;
情感价值观
通过对实际生n加油活中问题的解决,让学生体验数学与生活实际是紧n加油密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
归纳得出新知
要练说,得练听。听是说的n加油前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在n加油教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视n加油教师的语言,我对幼儿说话,注意声音清楚,高低n加油起伏,抑扬有致,富有吸引力,这样能引起幼儿的注n加油意。当我发现有的幼儿不专心听别人发言时,就n加油随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时n加油机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,n加油边听边想,边听边说的能力,如听词对词,听词句n加油说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底n加油,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,n加油轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。 也可以写成 ,读作“二次根号a”。
2.归纳新知4.巩固练习
在等式 =a (x≥0)中,规定x = .5.提出问题
6.课堂小结
教学反思
教学重n加油点
算术平方根的概念。
教学难点
根据算术平方根的概念正n加油确求出非负数的算术平方根。
教学方法
自主探究
使用媒体
多媒体
n加油教学过程
教学流程
七年级数学下册第六章实数6.1.1平方根学案新人教版
1 第六章实数6.1.1平方根【学习目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系和区别(难点)2. 用符号正确的表示一个数的平方根(重点)3. 理解开平方运算和平方之间的互逆运算, 了解算术平方根的非负性.01自主学习案1. 知识回顾:上学期我们已经学习过有理数,同时也感知了“互 为相反数的平方相等”,故由平方值 去探索平方根的问题实际上只是互逆过程,只要求出一个数的平方就可得知平方根的值。
⑴平方根与算术平方根的概念:⑵算术平方根的表示方法:2•阅读教科书P40页并尝试求解下列各数的算术平方根: ⑴ 10000 ⑵36 ⑶2 7 ⑷ 0-0001 ⑸49 9① 根据算术平方根的定义解题,明确平方与开平方互为逆运算;② 求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③ 0的算术平方根是0。
(可小组交流合作完成)02课堂探究案(一) 合作交流,探求新知1•你能求出下列各数的平方吗2•问题导入问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为 25dm 2的正方形 画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?如果正方形的面积分别是 41、9、16、36、 ,那么正方形的边长分别是多少呢? 252. 总结,思考:思考如下问题:你能求出一1, - 25, - 100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有 1个;0的算术平方根是0 ;负数没有算术平方根。
即:只有非负数有算术平方根,如果 X = 爲 有意义,那么a 一 0,x 一 0。
0, -1, 5 , 2.3,- -,-3, 3, 1,52 注: a _0且 a _0这一点不太容易理解,需要在以后的学习中慢慢渗透(二)应用举例1. 求下列各式的值:分析:此题本质还是求几个非负数的算术平方根【思路导航】 注:①根据算术平 方根的定义 解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解; 2. 求下列各数的算术平方根:【思路导航】 注:、a 2二a(a_0)a = _a (a — 0)教师需强调a = 0时对两种情况都成立.03课堂达标案1、 某数的算术平方根等于它本身 ,则这个数为 _______ ;?若某数的算术平方根为其相反数,则这个数为 _______ .2、 求下列各式的值:3、求下列各数的算术平方根:0.0025 121 42 (-丄)2 1 —2 164、已知 一 a • 1 -1 =0,求 3a - 2b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1平方根(第1课时)
一、教学目标
1. 经历算术平方根概念的形成过程,了解算术平方根的概念.
2. 会求某些正数(完全平方数)的算术平方根并会用符号表示.
二、重点和难点
1. 重点:算术平方根的概念.
2. 难点:算术平方根的概念.
三、预习:
学校要举行美术作品比赛,小鸥很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?
(一)说这块正方形画布的边长应取多少分米?你是怎么算出来的?
答:因为52= 25,所以这个正方形画布的边长应取5分米。
(二)填下表
4
止方形的面积916361
25
边长
这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念
正数3的平方等于9,我们把正数3叫做9的算术平方根.
正数4的平方等于16,我们把正数4叫做16的算术平方根.
说说6和36这两个数?说说1和1这两个数?
同桌之间互相说一说5和25这两个数.(同桌互相说)
四:数学概念
1 •什么是算术平方根呢?如果一个正数的平方等于a,那么这个正数叫做a的算术平方根
请大家把算术平方根概念默读两遍.
2 •如果一个正数的平方等于a,那么这个正数叫做a的算术平方
被开方数根.为了书写方便,我们把a的算术平方根记作、、a
3 •(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a叫做被开方数,,;表示a的算术平方
2
五•精讲
1 •概念(开平方与平方运算的互逆性;双重非负性)
2 •读法,写法 ;
3 •性质
4 • P40 页,例 1 六•我的收获和存在的问题 七:反馈练习
1、求下列各数的算术平方根:
(要注意解题格式,解题格式要与课本第 40页上的相同)
49
⑴
64
2、填空:
1 6
所以 的算术平方根是
49
3、求下列各式的值: (1) 81 =
八:能力提升
2 2 2 2 2 2 2
13 = 169, 14 = 196, 15 = 225, 16 = 256, 17 = 289, 18 = 324, 19 =361,填空并记住下列各式:
'•19 6 =
,
3 24
(1) 因为 2
=64,所以64的算术平方根是 ,即-.64 =
因为
2
=0.25,所以0.25的算术平方根是
,即0. 2 5 = 0. 01
;(6) ,32
(2)0.0 001.
因为
.100 =
2 2
1、根据 11 = 121 , 12 = 144, ,即
4. 你认为卓玛的看法对吗?2、辨析题:卓玛认为,因为(一4)2= 16,所以16的算术平方根是
为什么?
九:作业P47页1,2题
3。