基于神经网络语音识别技术研究65页PPT

合集下载

人工智能语音识别课件

人工智能语音识别课件

后端处理模块
语言模型
采用统计学习方法(如n-gram、循环神经网络等)对大量文本数据进行训练,得到一个能够将文本表示映射到 最终输出结果的模型。
置信度分析
对每个识别结果进行置信度评估,以过滤掉低置信度的结果,提高识别准确率。
04
CATALOGUE
语音识别技术面临的挑战与解 决方案
环境噪声与干扰问题
机器学习与深度学习在语音识别中的应用
传统机器学习方法
使用高斯混合模型、i-vector和PLDA等传统机器学习方法进行声学建模。
深度学习方法
使用深度神经网络、循环神经网络和长短时记忆网络等深度学习方法进行声学 建模和序列识别。
03
CATALOGUE
语音识别系统架构
前端处理模块
预加重
加窗
通过一个高通滤波器对输入的语音信 号进行预处理,以减少语音信号的延 迟和改善语音信号的频谱特性。
03
定期进行安全审计和监控,及时发现和处理安全漏洞和威胁。
06
CATALOGUE
实践案例分析
智能客服系统中的应用
在此添加您的文本17字
总结词:高效便捷
在此添加您的文本16字
详细描述:智能客服系统通过语音识别技术,能够快速准 确地识别用户语音信息,实现高效便捷的自助服务,提高 客户满意度。
在此添加您的文本16字
倒谱系数(cepstral coefficients)
将语音信号从时域转换到频域,提取出反映语音信号频谱特性的特征。
声学模型与解码模块
声学模型
采用统计学习方法(如隐马尔可可模型、神经网络等)对大量语音数据进行训练, 得到一个能够将语音特征映射到音素级别的模型。
解码
根据声学模型和语言模型,对输入的语音特征进行解码,生成对应的文本表示。

神经网络介绍PPT详解课件

神经网络介绍PPT详解课件

1940s
1960s
1980s
2000s
MP 模型 阈值加和 模型 Hebb学习 规则
感知器模型 自适应线性单元
Hopfield网络 Boltzman 机 BP算法
深度网络 DBN
CNN DBM
LeCun 98 Deep CNN RNN
低谷
低谷
人工神经网络发展历程
Deep Learning, Science 2006 (vol. 313, pp. 504-507)
网络模型
LeNet
网络结构的改进
NIN
AlexNet
网络深度的增加
VGGNet
GoogLeNet (Inception)
ResNet
Inception ResNet 图2:深度卷积神经网络发展图
图3:ILSVRC图像分类竞赛近年结果。
LeNet
最早的深度卷积神经网络模型,用于字符识别。网络具有如下特点:
AlexNet
AlexNet在LeNet基础上进行了更宽更深的网络设计,首次在CNN中引入了ReLU、 Dropout和Local Response Norm (LRN)等技巧。网络的技术特点如下:
➢ 使用ReLU (Rectified Linear Units)作为CNN的激活函数,并验证其效果在较深的网络超 过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题,提高了网络的训练速率。
人工神经网络发展历程
• 发展基础:
✓ 数据爆炸:图像数据、文本数据、语音数 据、社交网络数据、科学计算等
✓ 计算性能大幅提高
• 为什么有效
– 浅层神经网络可以近似任意函数,为何多层?
✓深层网络结构中,高层可以综合应用低层信息。 ✓低层关注“局部”,高层关注“全局”、更具有语

基于BP神经网络的语音情感识别研究

基于BP神经网络的语音情感识别研究

基于BP神经网络的语音情感识别研究作者:徐照松元建来源:《软件导刊》2014年第04期摘要:随着科技的迅速发展,人机交互越来越受到人们的重视,语音情感识别更是学术界研究的热点。

将BP神经网络算法用于语音情感识别研究,并在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于SVM算法分类精度提高了5%。

关键词关键词:语音情感识别;BP神经网络;SVM中图分类号:TP302文献标识码:A 文章编号文章编号:16727800(2014)004001103作者简介作者简介:徐照松(1990-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、语音情感、智能计算;元建(1986-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、智能计算。

0 引言随着科技的迅速发展,人机交互显得尤为重要。

语音是语言的载体,是人与人之间交流的重要媒介。

相较于其它交流方式而言,语音交流更加直接、便捷。

近年来,随着人机交互研究的不断深入,语音情感识别更成为了学术界研究的热点,其涉及到信号处理、模式识别、人工智能等相关领域。

语音中除了能够传达语义信息外,还包含了一些情感信息,然而这些情感信息往往被人们所忽略[3]。

语音情感识别实际上是利用计算机所提取的语音信号特征来判断其属于哪一类情感。

利用模式识别方法研究语音情感识别的文献较多,朱菊霞[4]等使用SVM算法对语音情感进行识别,并取得了86%的识别率。

余华[5]等使用粒子群算法优化神经网络来进行语音情感识别,识别率较高。

BP神经网络是神经网络的一种,属于多层前馈神经网络,与其它神经网络算法所不同的是采用了反向传播的学习算法,不断地计算输出端的误差向回传递来进行权值调整,从而达到误差最小的效果。

文中结合了BP神经网络的优点,将其用于语音情感识别研究中,并且在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于其它方法提高了5%。

科大讯飞语音识别讲义PPT学习教案

科大讯飞语音识别讲义PPT学习教案
第32页/共97页
InterReco标准开发接口
端点检测开发接口
支持对音频数据检测语音开始点及结束点的功能,并 提供端点检测的参数设置、读取功能。
识别器开发接口
通过激活语法,对语音进行语音识别并获取识别结果。 同时为满足一般IVR的需要,提供DTMF(双音多频)解析、 返回用户语音等功能。
语音录入开发接口
第18页/共97页
手机挂失 手机上网 余额查询 彩铃业务
呼叫导航系统的评估
识别性能
假如“我/的/手机/丢/了”,识别为“我们/手机/丢/掉/了 插入错误,如“掉”,标记为I 删除错误,如“的”,标记为D 替换错误,如“我们”,标记为S 假如总词数为N,其中正确为M,则识别准确率为
(N-I-D-S)/N
InterReco快速开发接口
是对应用开发接口的封装,提供最为快速 的开发能力
通过激活语法,实现在线的语音识别功能 的同时,提供了对语音文件的识别功能
与简单开发接口相比,不提供DTMF语法解 析及返回用户语音第功35页/能共97页
标准开发接口 之 端点检测开发接口
函数名称 ISRepOpen ISRepClose ISRepDetectorCreate ISRepDetectorDestroy ISRepSetParameter ISRepGetParameter ISRepSessionBegin ISRepSessionEnd ISRepPromptDone ISRepStart ISRepStop
• 基于讯飞语音识别系统SDK 的开发
第4页/共97页
讯飞语音识别系统
命令词识别系统 路由导航系统 POI系统
第5页/共97页
1 命令词识别系统
以语法的形式限定待识别的内容

深度神经网络在语音识别技术中的应用研究

深度神经网络在语音识别技术中的应用研究

深度神经网络在语音识别技术中的应用研究近年来,深度学习已成为了人工智能领域的研究热点,被广泛应用于语音识别、图像识别等领域。

其中,深度神经网络(Deep Neural Networks,简称DNN)在语音识别技术中的应用研究颇受关注。

一、DNN的基本结构和工作原理深度神经网络是一种在结构上类似于生物神经网络的人工神经网络,由多个神经网络层次组成。

DNN的基本结构由输入层、中间层和输出层构成,其中中间层也被称为隐含层。

它可以处理大量数据,并在数据集中自动学习数据特征。

每个神经网络层次都包含一组神经元,用来对输入数据进行处理。

DNN的工作原理是通过学习复杂的数据集,获得对输入数据的深度理解,从而实现对数据有效特征的提取。

具体而言,DNN通过梯度下降算法不断优化权重和偏置,在反向传播过程中实现网络参数的学习与调整,从而提高网络的准确性和性能。

DNN通过不同层次的特征提取和抽象表示,能够处理极其复杂的深度学习模式,真正实现了人工智能领域的突破性进展。

二、DNN在语音识别技术中的应用DNN是一种非线性模型,具有高度的表达能力和学习能力。

在语音识别技术中,DNN被广泛应用于语音识别、语音生成和语音合成等领域。

具体应用包括:1. 语音识别DNN在语音识别领域中应用最为广泛。

在传统的语音识别系统中,主要利用高斯混合模型(GMM)和隐马尔科夫模型(HMM)进行语音信号的建模和识别。

然而,传统的GMM和HMM模型难以捕捉数据的高阶特征,因而在实际应用中效果不尽人意。

而DNN能够提取更加丰富的特征,并在模型训练过程中通过不断迭代优化参数,从而显著提升语音识别的准确率和性能。

2. 语音生成DNN还可用于语音生成方面,即通过机器学习技术生成与自然语言相近的语音。

在该领域,DNN主要用于建模语音信号的生成模型,能够生成更加真实的语音信号,并为后续的语音应用提供基础支撑。

3. 语音合成DNN还可用于语音合成方面,即通过机器学习和信号处理技术合成自然语言的语音。

基于深度神经网络的语音合成技术

基于深度神经网络的语音合成技术

基于深度神经网络的语音合成技术深度神经网络(Deep Neural Network,DNN)是一种通过构建多层神经元来模拟人脑神经网络的一种机器学习算法。

近年来,深度神经网络在各个领域取得了巨大的成功,尤其是在语音合成技术方面。

本文将介绍基于深度神经网络的语音合成技术及其应用。

一、深度神经网络的语音合成原理深度神经网络的语音合成技术是基于机器学习的方法,通过训练神经网络模型来学习声学特征和语音模型。

其基本原理如下:1. 数据预处理:首先,需要获取大量的音频数据进行训练。

这些音频数据需要进行预处理,包括音频采样、声学特征提取等步骤。

2. 特征提取:接下来,使用特征提取算法从音频数据中提取出一系列的声学特征,如梅尔频率倒谱系数(Mel-frequency Cepstral Coefficients,MFCC)等。

3. 训练模型:将提取的声学特征作为神经网络的输入,通过大量的训练数据对神经网络进行训练,使其学习到音频数据中的潜在模式和规律。

4. 语音合成:训练完成后,使用训练好的深度神经网络模型来合成语音。

通过输入文本(文本到语音合成,Text-To-Speech,TTS),神经网络模型可以生成相应的声学特征,然后将其转化为音频信号。

二、基于深度神经网络的语音合成技术的优势基于深度神经网络的语音合成技术相较于传统方法具有以下优势:1. 自然度高:深度神经网络可以模拟人脑神经网络的结构,能够更好地捕捉语音的声学特征和语义信息,因此生成的语音更为自然、流畅。

2. 灵活性强:深度神经网络可以根据不同的训练数据和模型结构进行灵活调整,可以适应不同语种、口音和语音风格的合成需求。

3. 学习能力强:深度神经网络具有很强的学习能力,通过大量的训练数据和迭代优化训练过程,可以不断提高语音合成的质量和准确性。

4. 实时性好:基于深度神经网络的语音合成技术可以实时生成语音,响应速度快,适用于各种实时系统和应用场景。

三、基于深度神经网络的语音合成技术的应用基于深度神经网络的语音合成技术在多个领域有广泛的应用,包括但不限于以下几个方面:1. 语音助手:如智能手机的语音助手、智能音箱等,基于深度神经网络的语音合成技术可以生成自然流畅的语音回应用户的指令和问题。

语音识别(speechrecognition).ppt


三、动态时间规整的原理描述
60年代由日本学者提出,算法的思想是把未 知量伸长或缩短 ( 压扩) ,直到与参考模板的长度一 致,在这一过程中,未知单词的时间轴会产生扭曲 或弯折,以便其特征量与标准模式对应。
原理描述
DTW 是把时间规整和距离测度计算结合起来。测 试语音参数共有 I 帧矢量,而参考模板共有 J 帧矢量, I 和J 不等,寻找一个时间规整函数 j=w(i) ,它将测试 矢量的时间轴 i 非线性地映射到模板的时间轴 j 上,并 使该函数 w(i) 满足:
2. 识别:将输入语音进行处理,提取特征参数, 和模式库中的模板进行比较匹配,作出判决。
预处理
语音特征 参数分析
失真测度 计算
识别决策
模式匹配
标准 模板
语音识别的框图
专家 知识
二、预处理
语音信号的放大、防混叠滤波、自动增益控制、 模数转换、消除噪声、端点检测。
端点检测:从包含语音的一段信号中确定出语音 的起点和终点。有效的端点检测不仅能使处理的时 间减到最小,而且能排除无声段的噪声干扰。实验 表明:端点检测的正确与否影响到识别率的高低。 语音端点检测的方法:短时能量和短时过零率。
随着语音识别技术的逐渐成熟,语音识别技术开 始得到广泛的应用,涉及日常生活的各个方面如电信、 金融、新闻、公共事业等各个行业,通过采用语音识 别技术,可以极大的简化这些领域的业务流程以及操 作;提高系统的应用效率。
语音识别应用实例
1. 语音识别以 IBM推出的ViaVoice为代表,国内 则推出Dutty ++语音识别系统、天信语音识别系统、 世音通语音识别系统等。
2. 根据识别的词汇量来分,有: (1)大词汇( 1000个以上的词汇,如会议系统) (2)中词汇( 20~1000个词汇,如定票系统) (3)小词汇( 1~20个词汇,如语音电话拨号)

语音识别综述PPT课件.ppt


• 性能( 用720小时的语音数据训练)
– 从:原先的4周时间
– 10/8/2024 到:现在的3天时间
18
提纲
• 语音识别简介 • 主流方法 • 技术现状
10/8/2024
19
技术现状──识别效果
• 识别率
– 美国:广播语音可达80% – 中国:有较强噪声的朗读语音:70%左右 – 距离实用还有相当大的距离
– 中国:声学所,自动化所,清华,北大
10/8/2024
5
语音识别简介──主要应用
• 主要应用
– 桌面输入法(ViaVoice):噪音、方言问题 – 电话语音服务器:中国现阶段主要应用 – 手机、PDA命令:比较热的方向,噪音、方言 – 智能交互:信息亭,飞行员训练
10/8/2024
6
提纲
• 语音识别简介 • 主流方法 • 技术现状
• 语言模型
– 已知发音串写出词串 – P(S|LP)P(P|L)P(L|W)P(W|A)P(A) – 其中,W是字串,A是读音串,L是词串,P是
词性串,S是词义串
• 主流方法
– 三元语法:Tri-gram
10/8/2024
12
主流方法──搜索算法
• 搜索(解码)
– 识别的主要过程 – 通过搜索找到某一概率(P(W))最大化的字串
技术现状──美国语音行业现状
• 工业界
– 总体是近乎亏损,通过整合来降低成本 – 整盘后盈利或持平的可能已经出现
• 学术界
– 做大系统的单位减少,专注于创新性的小项目/子课题的研究
• DARPA(Defense Advanced Research Projects Agency )
– 集中资源扶植主力单位,不鼓励小而全的单位 – 对创新研究的小任务也有明确的整合要求 – 已完成实际需求为目的

《语音识别技术介绍》课件

2 语音识别技术的局限性
在复杂环境、多语言等情况下,识别准确性仍存在挑战。
3 语音识别技术的前景展望
随着技术的不断进步,语音识别将在更多领域别技术的应用案例
智能语音助手
如Siri、小爱同学等,提供语音 交互、查询信息、控制设备等 功能。
电话客服系统
利用语音识别技术提供自动语 音导航、语音识别、智能推荐 等服务。
聊天机器人
通过语音识别技术实现与用户 的自然语言对话,提供智能问 答、娱乐等功能。
语音识别技术的挑战和未来
1 声音环境的复杂性
语音识别技术广泛应用于智能语音助手、电话客服系统、聊天机器人等领域。
3 语音识别技术与其他技术的关系
语音识别技术与自然语言处理、机器学习等技术密切相关,共同构成智能语音系统。
语音识别技术的原理
1 语音采样和信号处理
通过麦克风采集语音信号,并对信号进行去噪、增强等处理。
2 特征提取
从语音信号中提取语音特征,如音频频谱、梅尔频率倒谱系数等。
语音识别技术需要应对噪声、回声等干扰,提高在复杂环境下的识别准确性。
2 多语言语音识别技术的发展
对不同语言、方言的准确识别是多语音识别技术发展的重要方向。
3 语音识别技术的未来发展趋势
随着人工智能技术的发展,语音识别技术将更加智能化、个性化、多场景应用。
结论
1 语音识别技术的优点
提供了人机交互的新方式,方便快捷、便于特定场景操作。
《语音识别技术介绍》 PPT课件
# 语音识别技术介绍
语音识别技术是指通过计算机对人类语音进行自动识别和理解的技术。本课 件将介绍语音识别技术的概述、原理、常见技术、应用案例、挑战和未来。
概述
1 什么是语音识别技术?

基于卷积神经网络的语音识别技术研究

基于卷积神经网络的语音识别技术研究语音识别技术是人工智能的重要研究领域之一,其核心是自然语言处理。

目前,基于深度学习的语音识别技术已经被广泛应用于语音助手、智能家居、智能客服等领域。

其中,卷积神经网络(CNN)作为一种成功的深度学习架构,在语音识别中也发挥着非常重要的作用。

一、卷积神经网络的基本结构卷积神经网络由卷积层、池化层、全连接层等组成。

其中,卷积层是CNN的核心层次,用来提取语音信号中的特征特征,应用复杂的函数实现了从原始输入到特征提取的映射。

池化层用来对特征进行降维和抽样。

全连接层将特征提取出来的特征进行整合和分类。

整个CNN模型在训练过程中通过反向传播算法自动学习如何从语音信号中提取信息,从而实现了语音识别。

二、卷积神经网络的优点相比传统的语音识别方法,卷积神经网络具有以下优点:1.神经网络能够自动学习语音信号中的特征,避免了繁琐的人工特征提取过程。

2.卷积层的卷积核可以实现对语音信号的局部响应,提高了对信号变化的适应性。

3.卷积神经网络具有高度的灵活性,能够适应不同噪音水平和说话人口音的输入环境,并且模型参数也不需事先平衡。

三、卷积神经网络语音识别的研究问题和解决方案虽然卷积神经网络在语音识别领域具有良好的应用前景,但在实际应用中也存在一些问题。

主要问题如下:1.数据量问题:语音是一个高度动态的信号,需要大量的样本数据才能有效地训练模型。

目前,不同语种及不同口音的大规模数据集仍然是绝大多数研究所面临的难题。

2.语音噪声问题:噪声对语音识别的影响极大,尤其在实际应用环境中,噪声较多,因此如何对卷积神经网络进行优化以适应不同的噪音环境是一个很重要的问题。

3.实时性问题:语音识别在实际应用中需要达到实时性,即输入语音信号到输出文字结果的时延要达到可接受的范围。

如何快速适应语音信号的变化并实现实时性也是一个重要的问题。

针对以上问题,研究人员提出了以下解决方案:1.数据增强:通过降噪、语速变换、声道增强等技术,扩充数据的变化范围,提高模型的鲁棒性和分类效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档