2013重庆高考数学

合集下载

2013重庆高考试卷

2013重庆高考试卷
试题注重与生活、生产的联系,注重使学生在现实生活背景中深入理解生物学的概念,考查学生理论联系实际,综合运用所学知识解决自然界和社会生活中的有关生物学问题。例如选择题4的注射青霉素过敏;7题Ⅰ的马拉松运动员长跑;7题Ⅱ的对某坡地的改造。
2013年重庆高考理综物理试题:层次分明难度适中1.试题总的印象
2013年重庆高考物理试题不偏不倚、堂堂正正。题目情景比较新颖,试题内容与生产、生活实际以及学生学习联系紧密,关注科技热点,很好地体现了新课程理念,倡导学生的探究学习,融入研究性学习的过程和方法,注重“知识与技能”、“过程与方法”、“情感态度与价值观”多方面检测考生的科学素养。试题难易适中,对学生能力的考查,对各个层次学生的区分做得相当好,体现教育评价的科学性,可以说是一套比较出彩的高考题。
3.体现了新课程理念,注重过程与方法,倡导学生的探究学习
如第4、5、6、7、8题,试题选材有伽利略斜面实验的多角度分析、我国科学家在实验上观察到的反常霍尔效应的量子化、舰载机着陆时阻拦索的研究性学习课题、电热毯故障检测的研究性学习课题、测量磁感应强度的研究性学习课题、关于“子母球”的研究性学习课题等等,这些素材来源于教材、学生生活和生产实践,注重物理学与科学技术与社会生活的联系,注重对学生建模能力的培养,提倡科学探究,注重学习中的过程与方法,回归了物理学研究的本源、物理学主要的研究方法以及研究精神等。在考查学生对物理知识的掌握的同时,了解物理学的发生与发展过程,恰当地体现了新课标要求。
4.试题层次分明,体现选拔功能
今年高考物理试题科学严谨,符合课标和考纲的要求。试题起点较低,层次分明,难易适中,整卷阶梯明显,有主要考查1个考点的简单题目,也有考查了多个考点的复杂题目,较复杂的题目又搭建了台阶,让考生易于入手,对不同层次的考生都有较好的区分度。这些题目既考查了学生进一步学习物理所必备的基础知识,同时又能考查学生学习物理的基本素养,充分体现了试题的选拔功能,有利于高等学校选拔人才,也有利于学校新课程改革的顺利推进。

高考数学热点专题突破讲练:三角恒等变换与解三角形(含新题详解)

高考数学热点专题突破讲练:三角恒等变换与解三角形(含新题详解)

第七讲 三角恒等变换与解三角形简单三角恒等变换差角余弦公式倍角公式和(差)角公式余弦定理正弦定理三角形面积公式解三角形应用举例1.(倍角公式)(2013·课标全国卷Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12D.23【解析】 ∵sin 2α=23,∴cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π 22 =1-sin 2α2=1-232=16.【答案】 A2.(正弦定理与和角公式)(2013·陕西高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【解析】 由正弦定理,及b cos C +c cos B =a sin A ,得 sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A , ∴sin A =1,得A =π2(由于0<A <π),故△ABC 是直角三角形. 【答案】 A3.(正弦定理)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =________. 【解析】 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin B sin A=2 3.【答案】 2 3图2-2-14.(余弦定理的应用)(2013·福建高考)如图2-2-1,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】 ∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】35.(三角恒等变换)(2013·重庆高考改编)4cos 50°-tan 40°=________. 【解析】 4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.【答案】 3简单的三角恒等变换(2013·湖南高考)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335, 求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合.【思路点拨】 (1)利用和(差)角、倍角公式将f (x )、g (x )化简,沟通二者联系;(2)由f (x )≥g (x ),化为“一角一名称”的三角不等式,借助三角函数的图象、性质求解.【自主解答】 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x , 即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12, 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.1.(1)注意角之间的关系,灵活运用和(差)、倍角公式化为“同角x ”的三角函数,这是解题的关键;(2)重视三角函数图象,性质在求角的范围中的应用,由图象的直观性、借助周期性,整体代换可有效避免错误.2.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.变式训练1 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2. 求cos 2αsin (α-π4)的值.【解】 依题意得sin α-cos α=12,所以1-2sin αcos α=14,2sin αcos α=34.则(sin α+cos α)2=1+2sin αcos α=74.由0<α<π2,知sin α+cos α=72>0.所以cos 2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142.正(余)弦定理(2013·山东高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.【思路点拨】 (1)由余弦定理,得关于a ,c 的方程,与a +c =6联立求解;(2)依据正弦定理求sin A ,进而求cos A ,sin B ,利用两角差的正弦公式求值.【自主解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角. 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.1.(1)本题求解的关键是运用正弦(余弦)定理完成边角转化;(2)求解易忽视判定A 的范围,错求cos A =±13,导致增解.2.以三角形为载体考查三角变换是近年高考的热点,要时刻关注它的两重性:一是作为三角形问题,它必然通过正弦(余弦)定理、面积公式建立关于边的方程,实施边角转化;二是它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的.变式训练2 (2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc .(1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值. 【解】 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因为0<A <π,所以A =5π6.(2)由(1)得sin A =12.又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ). 所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.解三角形及应用(2013·济南质检)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .【思路点拨】 (1)从要证的结论看,需将条件中角的三角函数化为边,因此需统一为正弦函数,然后运用三角变换公式化简.(2)由(1)的结论,联想余弦定理,求cos B ,进而求出△ABC 的面积.【自主解答】 (1)在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B (sin Acos A+sin C cos C )=sin A cos A ·sin Ccos C, 所以sin B (sin A cos C +cos A sin C )=sin A sin C . 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 所以sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)因为a =1,c =2,所以b = 2. 由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34.因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.认真分析题设与要求结论的联系与区别,消除差异,从而找到解题的突破口,这是本题求解的关键.2.三角形中的边角计算是近年命题的重点,解决这类问题要抓住两点:(1)根据条件,恰当选择正弦、余弦定理完成边角互化;(2)结合内角和定理、面积公式,灵活运用三角恒等变换公式.变式训练3 已知三角形的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(c -a ,b -a ),n =(a +b ,c ),且m ∥n .(1)求角B 的大小;(2)求sin A +sin C 的取值范围.【解】 (1)∵m ∥n ,∴c (c -a )=(b -a )(a +b ), ∴c 2-ac =b 2-a 2,则a 2+c 2-b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =12.又0<B <π,因此B =π3.(2)∵A +B +C =π,∴A +C =2π3,∴sin A +sin C =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +sin2π3 cos A -cos 2π3sin A =32sin A +32cos A =3sin ⎝⎛⎭⎫A +π6, ∵0<A <2π3,∴π6<A +π6<5π6,∴12<sin ⎝⎛⎭⎫A +π6≤1,∴32<sin A +sin C ≤ 3. 故sin A +sin C 的取值范围是⎝⎛⎦⎤32,3正(余)弦定理的实际应用【命题要点】 ①实际问题中的距离,高度测量;②实际问题中角度、方向的测量;③实际行程中的速度、时间的计算.如图2-2-2所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?图2-2-2【思路点拨】 由题设条件,要求该救援船到达D 点的时间,只需求出C 、D 两点间的距离,先在△ABD 中求BD ,再在△BDC 中求CD ,进而求出时间.【自主解答】 由题意知AB =5(3+3),∠DBA =90°-60°=30°,∠DAB =45°,∴∠ADB =105°.∴sin 105°=sin 45°·cos 60°+sin 60°·cos 45° =22×12+32×22=2+64. 在△ABD 中,由正弦定理得: BD sin ∠DAB =ABsin ∠ADB,∴BD =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)×222+64=103(1+3)1+3=10 3.又∠DBC =180°-60°-60°=60°,BC =203, 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2·BD ·BC ·cos 60° =300+1 200-2×103×203×12=900.∴CD =30(海里),∴救援船需要的时间t =3030=1(小时).1.该题求解的关键是借助方位角构建三角形,要把需求量转化到同一个三角形(或相关三角形)中,运用正(余)弦定理沟通边角关系.2.应用解三角形知识解决实际问题需要下列三步: (1)根据题意,画出示意图,并标出条件.(2)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解.(3)检验解出的结果是否符合实际意义,得出正确答案.变式训练4 如图2-2-3,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,图2-2-3下午4时到达C 岛. (1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值.【解】 (1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30 cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.从近两年的高考命题看,正弦定理、余弦定理是高考命题的热点,不仅是用来解决一些简单的三角形边角计算问题;且常与三角函数、向量、不等式交汇命题,灵活考查学生分析解决问题的能力,多以解答题的形式出现,属中低档题目.以三角形为载体的创新交汇问题(12分)已知△ABC 是半径为R 的圆内接三角形,且2R ·(sin 2A -sin 2C )=(2a -b )sin B .(1)求角C ;(2)试求△ABC 的面积S 的最大值. 【规范解答】 (1)由2R (sin 2A -sin 2C ) =(2a -b )sin B ,得a sin A -c sin C =2a sin B -b sin B , ∴a 2-c 2=2ab -b 2,4分由余弦定理得cos C =a 2+b 2-c 22ab =22,又0<C <π,∴C =π4.6分(2)∵csin C=2R , ∴c =2R sin C =2R . 由(1)知c 2=a 2+b 2-2ab , ∴2R 2=a 2+b 2-2ab .8分又a 2+b 2≥2ab (当且仅当a =b 时取“=”), ∴2R 2≥2ab -2ab , ∴ab ≤2R 22-2=(2+2)R 2.10分∴S △ABC =12ab sin C =24ab ≤2+12R 2. 即△ABC 面积的最大值为2+12R 2. 12分【阅卷心语】易错提示 (1)不能灵活运用正弦定理化简等式,致使求不出角C ,究其原因是不能深刻理解正弦定理的变形应用.(2)对求△ABC 的面积的最大值束手无策,想不到利用等式求ab 的最大值. 防范措施 (1)利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可实施边角转化.(2)对于“已知一边及其对角”的三角形,常用余弦定理,得到其他两边的关系,再利用基本不等式便可求三角形面积的最值.1.已知函数f (x )=sin(x +7π4)+cos(x -3π4),x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求f (β)的值. 【解】 (1)∵f (x )=sin ⎝⎛⎭⎫x +74π-2π+sin ⎝⎛⎭⎫x -34π+π2 =sin(x -π4)+sin(x -π4)=2sin(x -π4). ∴T =2π,f (x )的最小值为-2.(2)由cos(β-α)=45,cos(β+α)=-45得 cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴f (β)=2sin ⎝⎛⎭⎫π2-π4=2sin π4= 2. 2.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.【解】 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4. (2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理得4=a 2+c 2-2ac cos π4. 又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.。

2013年高考重庆卷理科数学试题及答案

2013年高考重庆卷理科数学试题及答案

2013年普通高等学校招生全国统一考试理科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<0 答案 D解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选D.3.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322答案 B 解析 因为(3-a )(a +6)=18-3a -a 2=-⎝⎛⎭⎫a +322+814, 所以当a =-32时,(3-a )(a +6)的值最大,最大值为92.4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5C .5,8D .8,8答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因9+15+10+y +18+245=16.8,所以y =8,故选C.5.某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803 C .200 D .240 答案 C解析 由三视图还原的几何体为两底面为梯形的直棱柱,梯形的面积为12(2+8)×4=20,所以棱柱的体积为20×10=200.6.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f(x)的两零点分别位于区间(a,b)和(b,c)内,故选A. 7.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.17答案 A解析两圆心坐标分别为C1(2,3),C2(3,4).C1关于x轴对称的点C1′的坐标为(2,-3),连接C2C1′,线段C2C1′与x轴的交点即为P点.(|PM|+|PN|)min=|C2C1′|-R1-R2(R1,R2分别为两圆的半径)=(3-2)2+(4+3)2-1-3=50-4=52-4.故选A.8.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7C.k≤8 D.k≤9答案 B解析当k=2时,s=log23,当k=3时,s=log23·log34,当k=4时,s=log23·log34·log45.由s=3,得lg 3lg 2×lg 4lg 3×lg 5lg 4×…×lg(k+1)lg k=3,即lg(k+1)=3lg 2,所以k=7.再循环时,k=7+1=8,此时输出s,因此判断框内应填入“k≤7”.故选B. 9.4cos 50°-tan 40°等于()A. 2B.2+32C. 3 D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.10.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A.⎝⎛⎦⎤0,52 B.⎝⎛⎦⎤52,72 C.⎝⎛⎦⎤52,2D.⎝⎛⎦⎤72,2 答案 D解析 设B 1(cos α,sin α),B 2(cos β,sin β),A (x ,y ),O (0,0).由AB 1→⊥AB 2→,得cos(α-β)-x (cos α+cos β)-y (sin α+sin β)+x 2+y 2=0① OP →=OA →+AP →=OA →+AB 1→+AB 2→=(cos α+cos β-x ,sin α+sin β-y ). 而|OP →|<12,则0≤|OP →|2<14,整理得0≤x 2+y 2+2+2cos(α-β)-2x (cos α+cos β)-2y (sin α+sin β)<14,②将①代入②,得0≤x 2+y 2+2-2(x 2+y 2)<14,即0≤2-(x 2+y 2)<14,整理得74<x 2+y 2≤2.所以|OA →|2∈⎝⎛⎦⎤74,2,即|OA →|∈⎝⎛⎦⎤72,2. 二、填空题11.已知复数z =5i1+2i (i 是虚数单位),则|z |=________.答案5解析 |z |=⎪⎪⎪⎪⎪⎪5i 1+2i =|5i||1+2i|=55= 5.12.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________. 答案 64解析 因为a 1,a 2,a 5成等比数列,则a 22=a 1·a 5,即(1+d )2=1×(1+4d ),d =2.所以a n =1+(n -1)×2=2n -1,S 8=(a 1+a 8)×82=4×(1+15)=64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答) 答案 590解析 利用直接法分类求解.一脑一内三骨的选法有C 14C 15C 33=20种,一脑二内二骨的选法有C 14C 25C 23=120种,一脑三内一骨的选法有C 14C 35C 13=120种,二脑一内二骨的选法有C 24C 15C 23=90种,二脑二内一骨的选法有C 24C 25C 13=180种,三脑一内一骨的选法有C 34C 15C 13=60种,满足题意的选法共20+120+120+90+180+60=590(种).14.如图,在△ABC 中,∠C =90°,∠A =60°,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为______. 答案 5解析 由题意,得弦切角∠BCD =∠A =60°,∠C =∠D =90°,所以△ABC ∽△CBD .所以AB CB =ACCD ,CD =CB ×AC AB =20sin 60°×20cos 60°20=5 3.又因CD 与圆相切,所以CD 2=DE ×DB ,则DE =CD 2DB =(53)2CB sin 60°=25×320×sin 60°×sin 60°=5.15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.答案 16解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t=±2,从而y =±8.所以A (4,8),B (4,-8).所以|AB |=|8-(-8)|=16.16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 答案 (-∞,8]解析 因为|x -5|+|x +3|表示数轴上的动点x 到数轴上的点-3,5的距离之和,而(|x -5|+|x +3|)min =8,所以当a ≤8时,|x -5|+|x +3|<a 无解,故实数a 的取值范围为(-∞,8]. 三、解答题17.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解 (1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ).解 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上知X 的分布列为X 0 10 50 200 P6743521051105从而有E (X )=0×67+10×435+50×2105+200×1105=4(元).19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求P A 的长;(2)求二面角B -AF -D 的正弦值. 解 (1)如图,连接BD 交AC 于点O ,因为BC =CD ,即△BCD 为等腰三角形, 又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz , 则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3, 又OD =CD sin π3= 3.故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ), 因为F 为PC 的中点,所以F ⎝⎛⎭⎫0,-1,z2. 又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ), 因AF ⊥PB ,故AF →·PB →=0, 即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2). 由n 1·AD →=0,n 1·AF →=0得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos α=25,求tan α的值.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos α=25.因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b2=1.由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x-2x 0)2-x 20+8 (x ∈[-4,4]).设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点.因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 20.因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP →·QP ′→=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0,即(x 1-x 0)2-y 21=0.由椭圆方程及x 1=2x 0得14x 21-8⎝⎛⎭⎫1-x 2116=0, 解得x 1=±463,x 0=x 12=±263. 从而|QP |2=8-x 20=163. 故这样的圆有两个,其标准方程分别为⎝⎛⎭⎫x +2632+y 2=163,⎝⎛⎭⎫x -2632+y 2=163. 22.对正整数n ,记I n ={1,2,3,…,n },P n =⎩⎨⎧⎭⎬⎫m k |m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解 (1)当k =4时,⎩⎨⎧⎭⎬⎫m k |m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B .同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k |m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14. 当k =4时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143.可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧⎭⎬⎫m k |m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3.则A 和B是不相交的稀疏集,且A∪B=P14. 综上,所求n的最大值为14. (注:对P14的分拆方法不是唯一的)。

2013年高考数学选填压轴题(理科)含答案

2013年高考数学选填压轴题(理科)含答案

高考理科数学选填压轴题训题型一:集合与新定义 (2013福建理10)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ).D A .A =N*,B =NB .A ={x|-1≤x≤3},B ={x|x =-8或0<x≤10}C .A ={x|0<x <1},B =RD .A =Z ,B =Q(2013广东理8)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S中,则下列选项正确的是( ).BA .(y ,z ,w)∈S ,(x ,y ,w)∉SB .(y ,z ,w)∈S ,(x ,y ,w)∈SC .(y ,z ,w)∉S ,(x ,y ,w)∈SD .(y ,z ,w)∉S ,(x ,y ,w)∉S 提示:特殊值法,令x=1,y=2,z=3,w=4即得。

题型二:平面向量(2013北京理13)向量a ,b ,c 在正方形网格中的位置如图所示,若()c a b λμλμ=+∈R ,,则λμ= .4 (2013湖南理6)已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ).AA .11] B .12] C .[11] D .[12]解析:由题意,不妨令a =(0,1),b =(1,0),c =(x ,y ),由|c -a -b |=1得(x -1)2+(y -1)2=1,|c |可看做(x ,y )到原点的距离,而点(x ,y )在以(1,1)为圆心,以1为半径的圆上.如图所示,当点(x ,y )在位置P 时到原点的距离最近,在位置P ′时最远,而PO1,P ′O1,故选A .(2013重庆理10)在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB .若|OP|<12,则|OA |的取值范围是( ).D A.0,2⎛ ⎝⎦ B.,22⎛ ⎝⎦ C.2⎛ ⎝ D.2⎛ ⎝ 解析:因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB 所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ), 则AP =1AB +2AB =(a ,b ),即P (a ,b ).由|1OB |=|2OB |=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0.由|OP |<12,得(x -a )2+(y -b )2<14, 即0≤1-x 2+1-y 2<14.所以74<x 2+y 2≤2,即2<≤所以|OA |的取值范围是⎝,故选D .(2013山东理15)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为__________.7/12(2013天津理12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点. 若1AC BE =, 则AB 的长为 .1/2(2013浙江理17)设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈,若12,e e 的夹角为6π,则||||x b 的最大值等于________。

2013年重庆高考数学试题理科10题

2013年重庆高考数学试题理科10题

磕. 若I — O P l < , 则 I l 的 取 值

上A B 2 得 一[ ( c o s 0 1 +c 0 s 2 ) c o s 0+
( s i n 0 1 +s i n 0 2 ) s i n 0 ] R十C O S ( 0 l 一0 2 ) =0 ①.
2 0 1 3 年 重庆 高考数学试题理科 1 O 题
重庆 市 第八 中学校 4 0 0 0 3 0 郑军委 陶兴模
题目 在平面 上, 上 磕, I — O B 1 I = l — O B 2 I
: 1, :A — BI +
A B 2 =( C O S 0 2一R e o s 0 , s i n 0 2一R s i n 0 ) .
代入 ② 得 ,
O — — B ・ O — — B , =O —} A・ ( O — — P +O — — A)一o — — a
=O — — — A — ■ ・ 0 — — — p③. 即O — — — B 0 ・ O — — — B — + ,=O — — — A・ — }O — — — P — - } .
将 ① 式平方得
—— — —— ——’ ————

+2 一 0 P. =
解法 3 不等式法
根 据条件 知 , B , P, B :
构成一个 矩形 A B 。 P B : ,以
口2 — P
+ OB. +2 DB ・D B,


=2 , 由 0≤I

( , ) , 则 点 P的坐标 为 ( 口 , 6 ) , 由J O — B I = I
1得
解i n 0 ) , P ( r c o s , r s i n ) , B t ( C O S 0 1 , s i n 0 1 ) , B 2 ( C O S 0 2 , s i n 0 2 ) . 由题 意 可 知 : 0

2013年重庆高考数学理科试卷(带详解)

2013年重庆高考数学理科试卷(带详解)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则()U A B = ð ( )A.{1,3,4}B.{3,4}C.{3}D.{4} 【测量目标】集合的并集与补集运算.【考查方式】先求出两个集合的并集,再结合补集概念求解. 【难易程度】容易 【参考答案】D【试题解析】∵A B ={1,2,3},而U ={1,2,3,4},故()U A B = ð={4},故选D . 2.命题“对任意x ∈R ,都有20x …”的否定为( )A.对任意x ∈R ,都有20x < B.不存在x ∈R ,使得20x <C.存在0x ∈R ,使得200x …D.存在0x ∈R ,使得200x <【测量目标】含有一个量词的命题的否定.【考查方式】根据含有一个量词的命题的否定的方法直接求解. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是一个特称命题(存在性命题),故选D .()63a-剟的最大值为( )A.9B.92 C.3 D.3【测量目标】函数的最值.【考查方式】利用配方法结合函数的定义域求解. 【难易程度】容易 【参考答案】B=63a-剟,所以当32a =-92=,故选B. 4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) .已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为 ( )A.2,5B.5,5C.5,8D.8,8第4题图【测量目标】茎叶图.【考查方式】结合茎叶图上的数据,根据中位数和平均数的概念求解. 【难易程度】容易 【参考答案】C【试题解析】由甲组数据中位数为15,可得x =5;而乙组数据的平均数91510182416.85y ++(+)++=,可解得y =8.故选C .5.某几何体的三视图如图所示,则该几何体的体积为 ( )第5题图A.5603 B.5803C.200D.240 【测量目标】由三视图求几何体的体积.【考查方式】先将三视图还原为空间几何体,在根据体积公式求解. 【难易程度】容易 【参考答案】C【试题解析】由几何体的三视图可得,该几何体是一个横放的直棱柱,棱柱底面为梯形,梯形两底长分别为2和8,高为4,棱柱的高为10,故该几何体体积V =12×(2+8)×4×10=200,故选C . 6.若a <b <c ,则函数f (x )=(x -a ) (x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间 ( )A. (a ,b )和(b ,c )内B. (-∞,a )和(a ,b )内C. (b ,c )和(c ,+∞)内D. (-∞,a )和(c ,+∞)内 【测量目标】函数零点的求解与判断.【考查方式】利用函数在区间端点处的函数值并判断符号. 【难易程度】容易 【参考答案】A【试题解析】由题意a <b <c ,可得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.显然f (a ) f (b )<0,f (b ) f (c )<0,所以该函数在(a ,b )和(b ,c )上均有零点,故选A .7.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为 ( )A.4 1 C.6- 【测量目标】圆与圆的位置关系.【考查方式】利用圆心坐标和半径,在结合对称性求解. 【难易程度】中等 【参考答案】A【试题解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |…|PC 1|-1,|PN |…|PC 2|-3, ∴|PM |+|PN |…|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.(步骤1 ) 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-4=44=,故选A.(步骤2)8.执行如图所示的程序框图,如果输出s =3,那么判断框内应填入的条件是( )A.6k …B.7k …C.8k …D.9k …第8题图【测量目标】循环结构的程序框图.【考查方式】利用循环结构运算并结合输出结果求解.【难易程度】中等 【参考答案】B【试题解析】由程序框图可知,输出的结果为s =log 23×log 34× ×log k (k +1)=log 2(k +1) .由s =3,即log 2(k +1)=3,解得k =7.又因为不满足判断框内的条件时才能输出s ,所以条件应为k …7.故选B. 9.4cos50tan 40-=( )D.1 【测量目标】同角三角函数的基本关系,诱导公式.【考查方式】利用商数关系,三角恒等及角度拆分求解. 【难易程度】较难 【参考答案】C【试题解析】4cos50tan 40-=4sin40cos40sin40cos40︒︒-=2sin80sin 402sin100sin 40cos 40cos 40︒︒︒︒︒︒--=(步骤1 )=2sin(6040)sin40cos40︒︒︒︒+-=122sin40sin4022cos40︒︒︒︒+⨯-=故选C. (步骤2 ) 10.在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB.若|OP |<12,则|OA |的取值范围是( )A.0,2⎛ ⎝⎦B.22⎛ ⎝⎦C.2⎛ ⎝D.2⎛ ⎝【测量目标】平面向量的数量积运算.【考查方式】利用所给条件转化为以O 为起点的向量表示,再利用所给关系列出不等式求解. 【难易程度】较难 【参考答案】D【试题解析】因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ),则AP =1AB +2AB=(a ,b ),即P (a ,b ).(步骤1 ) 由|1OB |=|2OB|=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0. (步骤2 )由|OP |<12,得(x -a )2+(y -b )2<14,即0≤1-x 2+1-y 2<14.(步骤3 )所以74<x 2+y 2≤2,即2<所以|OA |的取值范围是⎝,故选D.(步骤4 ) 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.已知复数5i12iz =+(i 是虚数单位),则|z |=__________. 【测量目标】复数代数形式的四则运算.【考查方式】先化简复数,再利用定义求解. 【难易程度】容易【试题解析】5i 5i(12i)2i 12i (12i)(12i)z -===+++-,∴||z ==12.已知{}n a 是等差数列,11,a =公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8S =__________.【测量目标】等差数列的前n 项和,等比数列性质. 【考查方式】利用等比中项及等差数列的通项公式求解. 【难易程度】中等 【参考答案】64【试题解析】由a 1=1且a 1,a 2,a 5成等比数列,得a 1(a 1+4d )=(a 1+d )2,解得d =2,故S 8=8a 1+872⨯d =64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答). 【测量目标】排列组合及其应用.【考查方式】利用两个计数原理,组合数公式求解. 【难易程度】中等 【参考答案】590【试题解析】设选骨科医生x 名,脑外科医生y 名, 则需选内科医生(5-x -y )人. (步骤1 )(1)当x =y =1时,有113345C C C 120= 种不同选法;(2)当x =1,y =2时,有122345C C C 180= 种不同选法; (3)当x =1,y =3时,有131345C C C 60= 种不同选法;(4)当x =2,y =1时,有212345C C C 120= 种不同选法; (5)当x =2,y =2时,有221345C C C 90= 种不同选法;(6)当x =3,y =1时,有311345C C C 20= 种不同选法;(步骤2 )所以不同的选法共有120+180+60+120+90+20=590种.(步骤3 )考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.如图,在△ABC 中,∠C =90,∠A =60,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为__________.第14题图【测量目标】圆的性质的应用.【考查方式】利用圆的几何性质、解三角形求解. 【难易程度】中等 【参考答案】5【试题解析】在Rt △ABC 中,∠A =60,AB =20,可得BC =由弦切角定理,可得∠BCD =∠A =60. (步骤1)在Rt △BCD 中,可求得CD =,BD =15.又由切割线定理,可得CD 2=DE DB ,可求得DE =5. (步骤2)15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线23,x t y t⎧=⎨=⎩(t 为参数)相交于A ,B 两点,则|AB |=__________. 【测量目标】坐标系与参数方程.【考查方式】利用极坐标方程与参数方程转化为普通方程求解. 【难易程度】较难 【参考答案】16【试题解析】由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4,而由曲线参数方程消参得x 3=y 2, ∴y 2=43=64,即y =±8,(步骤1) ∴|AB |=|8-(-8)|=16. (步骤2)16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 【测量目标】解绝对值不等式.【考查方式】利用不等式的解法求解. 【难易程度】较难 【参考答案】(-∞,8]【试题解析】由绝对值不等式,得|x -5|+|x +3|≥|(x -5)-(x +3)|=8,(步骤1) ∴不等式|x -5|+|x +3|<a 无解时,a 的取值范围为(-∞,8].(步骤2)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(1)小问6分,(2)小问7分.)设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.【测量目标】导数的几何意义,利用导数求函数的极值.【考查方式】利用导数的运算、函数的定义域、函数的单调性求解. 【难易程度】容易【试题解析】(1)因f (x )=a (x -5)2+6ln x ,故()f x '=2a (x -5)+6x.(步骤1) 令x =1,得f (1)=16a ,()1f '=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故12a =.(步骤2) (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),()f x '=x -5+6x =23x x x(-)(-).(步骤3) 令()f x '=0,解得x 1=2,x 2=3.当0<x <2或x >3时,()0f x '>,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时, ()0f x '<,故f (x )在(2,3)上为减函数.(步骤4)由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3. (步骤5) 18.(本小题满分13分,(1)小问5分,(2)小问8分.)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下: 其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率;奖级 摸出红、蓝球个数 获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖 2红1蓝 10元(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ). 【测量目标】古典概型,离散型随机变量的期望.【考查方式】利用概率公式求解古典概型和独立事件的概率. 【难易程度】中等【试题解析】设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球, 则A i 与B j 独立.(步骤1)(1)恰好摸到1个红球的概率为P (A 1)=123437C C 18C 35=.(步骤2) (2)X 的所有可能值为0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=3337C 11C 3105=, P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=3337C 22C 3105= , P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=213437C C 1124C 310535== , P (X =0)=12461105105357---=.(步骤3)从而有E (X )=0×7+10×35+50×105+200×105=4(元).(步骤4)19.(本小题满分13分,(1)小问5分,(2)小问8分.)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值.第19题图【测量目标】二面角,空间直角坐标系.【考查方式】利用线面位置关系建立空间直角坐标系求解. 【难易程度】中等【试题解析】(1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形.又AC 平分∠BCD ,故AC ⊥BD.以O为坐标原点,OB ,OC ,AP的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -,则OC =CD πcos 3=1,而AC =4,得AO =AC -OC =3,又OD =CD πsin 3故A (0,-3,0),B ,C (0,1,0),D (步骤1)第19题图因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,F 0,1,2z ⎛⎫- ⎪⎝⎭.(步骤2)又AF =0,2,2z ⎛⎫ ⎪⎝⎭,PB=z -),因AF ⊥PB ,故AF PB=0,(步骤3)即6-22z =0,z =舍去-),所以|PA|=步骤4)(2)由(1)知AD =(AB =AF=设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),(步骤5)由n 1 AD =0,n 1 AF =0,得111130,20,y y ⎧+=⎪⎨+=⎪⎩(步骤6)因此可取n 1=-2).(步骤7)由n 2AB=0,n 2 AF=0, 得222230,20,y y +==⎪⎩故可取n 2=(3,.(步骤8) 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=12121||||8= n n n n ,故二面角B -AF -D 步骤9) 20.(本小题满分12分,(1)小问4分,(2)小问8分.)在△ABC 中,内角A,B ,C 的对边分别是a ,b ,c ,且a 2+b 2=c 2.(1)求∠C ;(2)设cos A cos B =52cos()cos()cos 5A B ααα++=,求tan α的值. 【测量目标】余弦定理,同角三角函数的基本关系.【考查方式】利用余弦定理的变形求解,借助三角恒等变换将所给等式化简求解. 【难易程度】中等【试题解析】(1)因为a 2+b 2=c 2,由余弦定理有cos C =2222a b c ab +-==(步骤1)故3π4C ∠=.(步骤2)(2)由题意得2(sin sin cos cos )(sin sin cos cos )cos A A B B ααααα--=5.(步骤3)因此(tan αsin A -cos A )(tan αsin B -cos B ),tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B ,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =5.①(步骤4) 因为3π4C =,A +B =π4,所以sin(A +B )=2,(步骤5)因为cos(A +B )=cos A cos B -sin A sin B ,即5-sin A sin B =,解得sin A sin B =5210-=.(步骤6) 由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. (步骤7)21.(本小题满分12分,(1)小问4分,(2)小问8分.)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程.第21题图【测量目标】椭圆的标准方程,圆锥曲线中的轨迹问题.【考查方式】利用椭圆的方程,集合性质,平面向量数量积及轨迹方程的求法求解. 【难易程度】较难【试题解析】(1)由题意知点A (-c,2)在椭圆上,则222221c a b(-)+=.(步骤1) 从而e 2+24b=1.由2e =得22481b e ==-, 从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=.(步骤2)(2)由椭圆的对称性,可设()0,0Q x .又设M (x ,y )是椭圆上任意一点, 则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 02+28116x ⎛⎫- ⎪⎝⎭=12(x -2x 0)2-x 02+8(x ∈[-4,4]).(步骤3) 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值.(步骤4)又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 02. 因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP QP ' =(x 1-x 0,y 1) (x 1-x 0,-y 1)=0,(步骤5)即(x 1-x 0)2-y 12=0.由椭圆方程及x 1=2x 0得22111810416x x ⎛⎫--= ⎪⎝⎭,解得1x =,102x x ==.(步骤6) 从而|QP |2=8-x 02=163.故这样的圆有两个,其标准方程分别为22163x y ⎛++= ⎝⎭,22163x y ⎛+= ⎝⎭.(步骤7)22.(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,n },,n n n P I k I ⎫=∈∈⎬⎭.(1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.【测量目标】集合的表示,集合中元素的基本特征,间接证明.【考查方式】利用集合元素的特征、分类讨论思想和反证法求解论证. 【难易程度】较难【试题解析】 (1)当k =4时,7I ⎫∈⎬⎭中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(步骤1)(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A B =P n ⊇I n ,不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B.同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.(步骤2)再证P 14符合要求,当k =1时,1414I I ⎫∈=⎬⎭可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1 B 1=I 14. (步骤3)当k =4时,集合14I ⎫∈⎬⎭中除整数外剩下的数组成集合13513,,,,2222⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:215911,,,2222A ⎧⎫=⎨⎬⎩⎭,23713,,222B ⎧⎫=⎨⎬⎩⎭.(步骤4)当k =9时,集合14I ⎫∈⎬⎭中除正整数外剩下的数组成集合12451314,,,,,,333333⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:31451013,,,,33333A ⎧⎫=⎨⎬⎩⎭,32781114,,,,33333B ⎧⎫=⎨⎬⎩⎭.(步骤5)最后,集合1414,,1,4,9C I k I k ⎫=∈∈≠⎬⎭且中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1 A 2 A 3 C ,B =B 1 B 2 B 3,则A 和B 是不相交的稀疏集,且A B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.(步骤6)。

【创新方案】高考数学(理)一轮知能检测:第3章 第6节 正弦定理和余弦定理(数学大师 为您收集整理)

【创新方案】高考数学(理)一轮知能检测:第3章 第6节 正弦定理和余弦定理(数学大师 为您收集整理)

第六节 正弦定理和余弦定理[全盘巩固]1.已知△ABC ,sin A ∶sin B ∶sin C =1∶1∶2,则此三角形的最大内角的度数是( ) A .60° B .90° C .120° D .135°解析:选B 依题意和正弦定理知,a ∶b ∶c =1∶1∶2,且c 最大.设a =k ,b =k ,c =2k (k >0),由余弦定理得,cos C =k 2+k 2-(2k )22k 2=0,又0°<C <180°,所以C =90°. 2.(2013·山东高考)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1解析:选B 由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c=2.当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.3.(2014·沈阳模拟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394解析:选B 由余弦定理得:(7)2=22+AB 2-2×2AB ·cos 60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin 60°=332.4.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 的形状是( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形解析:选D 由条件得sin Acos B sin C =2,即2cos B sin C =sin A .由正、余弦定理得,2·a 2+c 2-b 22ac·c =a ,整理得c =b ,故△ABC 为等腰三角形.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D ∵A >B >C ,∴a >b >c .又∵a ,b ,c 为连续的三个正整数, ∴设a =n +1,b =n ,c =n -1(n ≥2,n ∈N *).∵3b =20a cos A ,∴3b 20a =cos A ,∴3b 20a =b 2+c 2-a22bc,3n 20(n +1)=n 2+(n -1)2-(n +1)22n (n -1),即3n 20(n +1)=n (n -4)2n (n -1),化简得7n 2-27n -40=0,(n -5)(7n +8)=0,∴n =5⎝⎛⎭⎫n =-87 舍.又∵a sin A =b sin B =c sin C,∴sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.6.在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:选D 由已知及正弦定理得AB sin C =AC sin B ,sin C =AB ·sin B AC =32,C =60°或C =120°.当C =60°时,A =90°,△ABC 的面积等于12AB ·AC =32;当C =120°时,A =30°,△ABC 的面积等于12AB ·AC ·sin A =34.因此,△ABC 的面积等于32或34.7.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin A sin B +b cos 2A =2a ,则ba=________. 解析:由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,即sin B ·(sin 2A +cos 2A )=2sinA ,所以sinB =2sin A .所以b a =sin Bsin A= 2.答案: 28.(2014·深圳模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cosB =513,b =3,则c =________.解析:由题意知sin A =45,sin B =1213,则sin C =sin(A +B )=sin A cos B +cos A sin B =5665,所以c =b sin C sin B =145.答案:1459.在△ABC 中,B =60°,AC =3,则△ABC 的周长的最大值为________.解析:由正弦定理得:BC sin A =AB sin C =AC sin B =3sin 60°,即BC sin A =ABsin C=2,则BC =2sin A ,AB =2sin C ,又△ABC 的周长l =BC +AB +AC =2sin A +2sin C +3=2sin(120°-C )+2sin C +3=2sin 120°cos C -2cos 120°sin C +2sin C +3=3cos C +sin C +2sin C +3=3cosC +3sin C +3=3(3sin C +cos C )+3=2332sin C +12cos C +3=23sin ⎝⎛⎭⎫C +π6+ 3.故△ABC 的周长的最大值为3 3.答案:3 310.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解:(1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin Bsin A·a sin C =3sin B sinC ,因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取得最大值3.11.(2014·杭州模拟)设函数f (x )=6cos 2x -3sin 2x (x ∈R ). (1)求f (x )的最大值及最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,锐角A 满足f (A )=3-23,B =π12,求a 2+b 2-c 2ab的值.解:(1)f (x )=23cos ⎝⎛⎭⎫2x +π6+3. 故f (x )的最大值为23+3,最小正周期T =π.(2)由f (A )=3-23,得23cos ⎝⎛⎭⎫2A +π6+3=3-23, 故cos ⎝⎛⎭⎫2A +π6=-1, 又由0<A <π2,得π6<2A +π6<π+π6,故2A +π6=π,解得A =5π12.又B =π12,∴C =π2.∴a 2+b 2-c 2ab =2cos C =0.12.(2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2 +2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 解:(1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25,tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.①因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B ,即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.[冲击名校]1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan Ctan A+tan Ctan B=________. 解析:∵b a +a b =6cos C ,∴b a +a b =6·a 2+b 2-c 22ab ,化简得a 2+b 2=32c 2,则tan C tan A +tan Ctan B=tan C ·sin B cos A +sin A cos B sin A sin B =tan C sin (A +B )sin A sin B =sin 2C cos C sin A sin B =c 2a 2+b 2-c 22ab·ab =4.答案:4 2. (2013·福建高考)如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上.(1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.解:(1)在△OMP 中,∠OPM =45°,OM =5,OP =22,由余弦定理,得OM 2=OP 2+PM 2-2×OP ×PM ×cos 45°,得PM 2-4PM +3=0,解得PM =1或PM =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得OM sin ∠OPM =OPsin ∠OMP,所以OM =OP sin 45°sin (45°+α),同理ON =OP sin 45°sin (75°+α).故S △OMN =12×OM ×ON ×sin ∠MON =14×OP 2sin 245°sin (45°+α)sin (75°+α)=1sin (45°+α)sin (45°+α+30°)=1sin (45°+α)⎣⎡⎦⎤32sin (45°+α)+12cos (45°+α)=132sin 2(45°+α)+12sin (45°+α)cos (45°+α)=134[1-cos (90°+2α)]+14sin (90°+2α)=134+34sin 2α+14cos 2α=134+12sin (2α+30°).因为0°≤α≤60°,则30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值.即∠POM =30°时,△OMN 的面积的最小值为8-4 3.[高频滚动]1.已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x -y )=( )A.2145 B .-2145C .±2145D .±51428解析:选B ∵sin x -sin y =-23,x ,y 为锐角,∴-π2<x -y <0,又⎩⎨⎧sin x -sin y =-23,①cos x -cos y =23,②①2+②2,得2-2sin x sin y -2cos x cos y =⎝⎛⎭⎫-232+⎝⎛⎭⎫232,即2-2cos(x -y )=89,得cos(x -y )=59,又-π2<x -y <0,∴sin(x -y )=-1-cos 2(x -y )=-1-⎝⎛⎭⎫592=-2149, ∴tan(x -y )=sin (x -y )cos (x -y )=-2145.2.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=sin 2⎝⎛⎭⎫α+π6·cos π4-cos 2⎝⎛⎭⎫α+π6·sin π4=17250. 答案:17250。

2013年高考真题文-重庆卷文科数学试题及答案

2013年高考真题文-重庆卷文科数学试题及答案

2013年普通高等学校招生全国统一考试文科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .存在x 0∈R ,使得x 20<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .对任意x ∈R ,都有x 2<0 答案 A解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选A.3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)答案 C解析 由题意得,⎩⎪⎨⎪⎧x -2>0,x -2≠1,即x >2且x ≠3,故选C.4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6B .4C .3D .2答案 B解析 由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ |的最小值为圆心到直线x =-3的距离减去圆的半径长,所以|PQ |min =3-(-3)-2=4.故选B.5.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6答案 C解析 由题意,得k =1时,s =1;k =2时,s =1+1=2;k =3时,s =2+4=6;k =4时,s =6+9=15;k =5时,s =15+16=31>15,此时输出的k 值为5.6.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )**B .0.4C .0.5D .0.6答案 B解析 10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率为410=0.4.故选B. 7.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.8.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240答案 D解析 由三视图还原的几何体为两底面为梯形的直棱柱,底面梯形的面积为12(2+8)×4=20,梯形的腰长为32+42=5,棱柱的四个侧面的面积之和为(2+8+5+5)×10=200.所以棱柱的表面积为200+2×20=240.9.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5B .-1C .3D .4答案 C解析 lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4= -1+4=3.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 答案 A解析 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).由双曲线的对称性知,直线A 1B 1与A 2B 2关于坐标轴对称,否则不会有|A 1B 1|=|A 2B 2|,设双曲线的两条渐近线的夹角为2θ,由题意知2θ>(60°,120°],否则,若2θ<60°,则不存在满足题意的直线对,若2θ>120°,则直线对不唯一.因此双曲线渐近线的斜率满足关系式tan 60°≥b a >tan 30°,即3≥b a >33,平方得:3≥e 2-1>13,解得e ∈⎝⎛⎦⎤233,2.二、填空题11.已知复数z =1+2i(i 是虚数单位),则|z |=________.答案 5解析 因为z =1+2i ,所以|z |=12+22= 5. 12.若2、a 、b 、c 、9成等差数列,则c -a =________. 答案 72解析 设等差数列2,a ,b ,c,9的公差为d ,则9-2=4d , ∴d =74,c -a =2d =2×74=72.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 答案 23解析 甲、乙、丙三人站成一排,共有甲、乙、丙,甲、丙、乙,乙、甲、丙,乙、丙、甲,丙、甲、乙,丙、乙、甲共6种情况,其中甲、乙丙人相邻而站共4种情况,故 P =46=23.14.OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________. 答案 4解析 AB →=OB →-OA →=(1,k -1), 因OA →⊥AB →,所以OA →·AB →=0, 即-3+k -1=0,所以k =4.15.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围为________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 由题意,得Δ=64sin 2α-32cos 2α≤0, 化简得cos 2α≥12,∵0≤α≤π,∴0≤2α≤2π, ∴0≤2α≤π3或5π3≤2α≤2π,∴0≤α≤π6或5π6≤α≤π.三、解答题16.设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.解 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20·3+20·192·5=1 010.17.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x (单位:千元)与月储蓄y (单位:千元)的数据资料,算得(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y=bx+a;(Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.18.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C ) =3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB = ∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积. (1)证明 因BC =CD ,即△BCD 为等腰三角形, 又∠ACB =∠ACD ,故BD ⊥AC . 因为P A ⊥底面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直, 所以BD ⊥平面P AC .(2)解 三棱锥P -BCD 的底面BCD 的面积 S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故V F -BCD =13·S △BCD ·18P A =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.20.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元. 所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π, 所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V (r )=0,解得r 1=5,r 2=-5(因r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.解 (1)由题意知A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b 2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则 |QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|, 所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| =2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6, 因此,这样的圆有两个,其标准方程分别为 (x +2)2+y 2=6,(x -2)2+y 2=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013重庆高考数学
2013年重庆高考数学试题
2013年重庆高考数学试题备受关注,考生们都希望能够取得好成绩。

以下是2013年重庆高考数学试题的详细内容。

一、选择题(共10小题,每小题5分,共50分)
1. 已知函数 f(x) = x^2 - 3x + 2,那么 f(2)的值为多少?
A. 1
B. 2
C. 3
D. 4
2. 函数 f(x) 在区间 [a, b] 上单调递增,那么下面哪个不等式成立?
A. f(a) < f(b)
B. f(a) > f(b)
C. f(a) = f(b)
D.
a < b
3. 若二次函数 y = ax^2 + bx + c 的图象与 x 轴交于两个不等点,那么必有下面哪个不等式成立?
A. b^2 > 4ac
B. b^2 < 4ac
C. b^2 = 4ac
D. b^2 ≤ 4ac
4. 在平行四边形 ABCD 中,AE 垂直于 AD,AD = 4,AE = 3. 则平行四边形 ABCD 的面积为多少?
A. 9
B. 12
C. 16
D. 36
5. 设函数 f(x) = ln(x^2+1),则 f'(1)的值为多少?
A. 0
B. 1
C. 2
D. -1
6. 在△ABC 中,已知 AB = 3,AC = 4,∠BAC = 90°。

则△ABC 的面积为多少?
A. 6
B. 8
C. 12
D. 24
7. 函数 y = 2^x 定义在 (-∞,+∞) 上,那么函数 y =
2^(x+1) 的图像相对于 y = 2^x 的图像向左平移了多少个单位?
A. 0
B. 1
C. -1
D. 2
8. 已知 y = log2(x+1),则方程 y = 1/2 的解为多少?
A. (0, 3)
B. (1, 3)
C. (-1, 2)
D. (-2, 1)
9. 设直线 l1:x-2y+5=0,l2:2x-y+1=0。

过点 P(2, -1)
的直线与直线 l1 和 l2 的交点分别为 A、B 和 C,那么
△ABC 的面积为多少?
A. 6
B. 8
C. 10
D. 12
10. 定义函数 f(x) = x^3 - 2x^2 - 3x + 2,那么 f(x) = 0 的实根个数为多少?
A. 1
B. 2
C. 3
D. 4
二、填空题(共6小题,每小题5分,共30分)
1. 若函数 f(x) = a(x-1)^2 + 2 在点 (1, 3) 处取得极小值,则 a 的值为______。

2. 若函数 f(x) = x^2 + bx + c 在点 (-2, 1) 处取得极小值,则 b 的值为______。

3. 函数 y = ax^2 + bx + c 的图象与 x 轴交于两个不等点,则 a^2 + b^2 - 2ac 的值为______。

4. 已知直线 l1:y = 2x + 1,直线 l2 与直线 l1 垂直且过点 (1, 2),则直线 l2 的方程为______。

5. 函数 f(x) = x^3 + bx^2 + cx + d 除以 (x+1) 余数为 2,除以 (x-2) 余数为 -1,则 b - c + d 的值为______。

6. 在△ABC 中,已知∠BAC = 60°,AB = 3,AC = 5,则
BC 的长度为______。

三、解答题(共4小题,共70分)
1. 已知公式 Sn=n(a+l)/2,其中 Sn 为等差数列的前 n 项和,
a 为首项,l 为末项。

如果一个等差数列的首项为 2,公差为4,前 20 项和为 640,求此等差数列的末项。

2. 已知函数 f(x) = 2x^3 + ax^2 + bx + c,其中 a、
b、c 均为常数。

如果函数 f(x) 除以 (x-1) 的余数为 0,除以 (x+2) 的余数为 1,且函数 f(x) 在点 (1, 1) 处取得极值,求函数 f(x) 的表达式。

3. 在平面直角坐标系中,已知点 A(2, 0)、B(4, 0)、
P(6, a)。

过点 P 作直线 l1 平行于 x 轴交直线 AB 于点 Q,过点 P 作直线 l2 垂直于 x 轴交直线 AB 于点 R。

如果点 Q 的坐标为 (k, 0),求实数 a 和 k 的值。

4. 设函数 f(x) = x^3 + bx^2 + cx + d,其中 b、c、
d 均为常数。

已知函数 f(x) 除以 (x+1) 的余数为 0,除以(x-2) 的余数为 -1,在点 (2, 1) 处取得极小值。

求函数
f(x) 的表达式。

以上就是2013年重庆高考数学试题的内容。

希望考生们
能够充分准备,取得优异的成绩。

祝愿大家考试成功!。

相关文档
最新文档