2013年重庆市高考数学试卷(理科)答案与解析
2013重庆高考试卷

2013年重庆高考理综物理试题:层次分明难度适中1.试题总的印象
2013年重庆高考物理试题不偏不倚、堂堂正正。题目情景比较新颖,试题内容与生产、生活实际以及学生学习联系紧密,关注科技热点,很好地体现了新课程理念,倡导学生的探究学习,融入研究性学习的过程和方法,注重“知识与技能”、“过程与方法”、“情感态度与价值观”多方面检测考生的科学素养。试题难易适中,对学生能力的考查,对各个层次学生的区分做得相当好,体现教育评价的科学性,可以说是一套比较出彩的高考题。
3.体现了新课程理念,注重过程与方法,倡导学生的探究学习
如第4、5、6、7、8题,试题选材有伽利略斜面实验的多角度分析、我国科学家在实验上观察到的反常霍尔效应的量子化、舰载机着陆时阻拦索的研究性学习课题、电热毯故障检测的研究性学习课题、测量磁感应强度的研究性学习课题、关于“子母球”的研究性学习课题等等,这些素材来源于教材、学生生活和生产实践,注重物理学与科学技术与社会生活的联系,注重对学生建模能力的培养,提倡科学探究,注重学习中的过程与方法,回归了物理学研究的本源、物理学主要的研究方法以及研究精神等。在考查学生对物理知识的掌握的同时,了解物理学的发生与发展过程,恰当地体现了新课标要求。
4.试题层次分明,体现选拔功能
今年高考物理试题科学严谨,符合课标和考纲的要求。试题起点较低,层次分明,难易适中,整卷阶梯明显,有主要考查1个考点的简单题目,也有考查了多个考点的复杂题目,较复杂的题目又搭建了台阶,让考生易于入手,对不同层次的考生都有较好的区分度。这些题目既考查了学生进一步学习物理所必备的基础知识,同时又能考查学生学习物理的基本素养,充分体现了试题的选拔功能,有利于高等学校选拔人才,也有利于学校新课程改革的顺利推进。
2007年重庆市高考数学试卷(理科)及解析

2007年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.62.(5分)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤﹣1 B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1 D.若x≥1或x≤﹣1,则x2≥13.(5分)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分4.(5分)若(x+)n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.1205.(5分)在△ABC中,AB=,A=45°,C=75°,则BC=()A.B.C.2 D.6.(5分)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为()A.B. C.D.7.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为()A.B.C.D.8.(5分)设正数a,b满足,则=()A.0 B.C.D.19.(5分)已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f (x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)10.(5分)如图,在四边形ABCD中,++=4,•=•=0,•+•=4,则(+)•的值为()A.2 B.C.4 D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)复数的虚部为.12.(4分)已知x,y满足,则函数z=x+3y的最大值是.13.(4分)若函数的定义域为R,则实数a的取值范围是.14.(4分)设{a n}为公比q>1的等比数列,若a2004和a2005是方程4x2﹣8x+3=0的两根,则a2006+a2007=.15.(4分)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有种.(以数字作答)16.(4分)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为.三、解答题(共6小题,满分76分)17.(13分)设f(x)=6cos2x﹣sin2x,(1)求f(x)的最大值及最小正周期;(2)若锐角α满足f(α)=3﹣2,求tanα的值.18.(13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列与期望.19.(13分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C﹣ABDA1与直三棱柱的体积之比为3:5.(1)求异面直线DE与B1C1的距离;(2)若BC=,求二面角A1﹣DC1﹣B1的平面角的正切值.20.(13分)已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.21.(12分)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.22.(12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.2007年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•重庆)若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.6【分析】根据等差数列的前n项和公式,结合已知条件,先求出d,再代入通项公式即可求解.【解答】解:∵S3=9且a1=1,∴S3=3a1+3d=3+3d=9,解得d=2.∴a2=a1+d=3.故选A.2.(5分)(2007•重庆)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤﹣1 B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1 D.若x≥1或x≤﹣1,则x2≥1【分析】根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.【解答】解:原命题的条件是““若x2<1”,结论为“﹣1<x<1”,则其逆否命题是:若x≥1或x≤﹣1,则x2≥1.故选D.3.(5分)(2007•重庆)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分【分析】画出图形,用三线表示三个平面,结合图形进行分析.【解答】解:可用三线a,b,c表示三个平面,其截面如图,将空间分成7个部分,故选C.4.(5分)(2007•重庆)若(x+)n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.120【分析】根据二项式的展开式的二项式系数是64,写出二项式系数的表示式,得到次数n的值,写出通项式,当x的指数是0时,得到结果.【解答】解:∵C n°+C n1+…+C n n=2n=64,∴n=6.T r+1=C6r x6﹣r x﹣r=C6r x6﹣2r,令6﹣2r=0,∴r=3,常数项:T4=C63=20,故选B.5.(5分)(2007•重庆)在△ABC中,AB=,A=45°,C=75°,则BC=()A.B.C.2 D.【分析】结合已知条件,直接利用正弦定理作答.【解答】解:∵AB=,A=45°,C=75°,由正弦定理得:,∴.故选A.6.(5分)(2007•重庆)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为()A.B. C.D.【分析】由题意知本题是一个古典概型,满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出的三张门票的价格均不相同5×3×2=30种取法,试验发生的所有事件总的取法有C103,用对立事件概率得到结果.【解答】解:由题意知本题是一个古典概型,∵满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出的三张门票的价格均不相同5×3×2=30种取法,试验发生的所有事件总的取法有(10×9×8)÷(3×2×1)=120种,三张门票的价格均不相同的概率是=,∴至少有2张价格相同的概率为P=1﹣=.故选C.7.(5分)(2007•重庆)若a是1+2b与1﹣2b的等比中项,则的最大值为()A.B.C.D.【分析】由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得.【解答】解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤===∵∴,∴.故选B.8.(5分)(2007•重庆)设正数a,b满足,则=()A.0 B.C.D.1【分析】由题目中的已知式化简,得到a,b的关系,再代入化简求值.【解答】解:∵=4⇒4+2a﹣b=4⇒2a=b,∴.∴故选B.9.(5分)(2007•重庆)已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)【分析】根据y=f(x+8)为偶函数,则f(x+8)=f(﹣x+8),即y=f(x)关于直线x=8对称.又f(x)在(8,+∞)上为减函数,故在(﹣∞,8)上为增函数,故可得答案.【解答】解:∵y=f(x+8)为偶函数,∴f(x+8)=f(﹣x+8),即y=f(x)关于直线x=8对称.又∵f(x)在(8,+∞)上为减函数,∴f(x)在(﹣∞,8)上为增函数.由f(8+2)=f(8﹣2),即f(10)=f(6),又由6<7<8,则有f(6)<f(7),即f(7)>f(10).故选D.10.(5分)(2007•重庆)如图,在四边形ABCD中,++=4,•=•=0,•+•=4,则(+)•的值为()A.2 B.C.4 D.【分析】先根据++=4,•+•=4,求出+=2,,再由•=•=0,确定∥,再由向量的点乘运算可解决.【解答】解:∵++=4,•+•=4,∴+=2,,由已知•=•=0,知⊥⊥,∴∥,作如图辅助线∴=+=,即三角形AEC是等腰直角三角形,∠CAE=45°|,∴(+)•=||cos∠CAE=2×=4,故选C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2007•重庆)复数的虚部为.【分析】把复数整理变形,先变分母,再分子和分母同乘以分母的共轭复数,分子上要进行复数的乘法运算,最后写出代数形式,指出虚部【解答】解:.故答案为:.12.(4分)(2007•重庆)已知x,y满足,则函数z=x+3y的最大值是7.【分析】先画出可行域,再把目标函数变形为直线的斜截式,由截距的最值即可求得.【解答】解:画出可行域,如图所示解得C(1,2),函数z=x+3y可变形为,可见当直线过点C 时z取得最大值,所以z max=1+6=7.故答案为:7.13.(4分)(2007•重庆)若函数的定义域为R,则实数a 的取值范围是0≤a≤1.【分析】利用被开方数非负的特点列出关于a的不等式,转化成x2﹣2ax+a≥0在R上恒成立,然后建立关于a的不等式,求出所求的取值范围即可.【解答】解:函数的定义域为R,∴﹣1≥0在R上恒成立即x2﹣2ax+a≥0在R上恒成立该不等式等价于△=4a2﹣4a≤0,解出0≤a≤1.故实数a的取值范围为0≤a≤1故答案为:0≤a≤114.(4分)(2007•重庆)设{a n}为公比q>1的等比数列,若a2004和a2005是方程4x2﹣8x+3=0的两根,则a2006+a2007=18.【分析】通过解方程可以求出a2004和a2005的值,进而求出q,根据等比数列的通项公式,a2006+a2007=a2004q2+a2005q2=(a2004+a2005)q2,从而问题得解.【解答】解:∵a2004和a2005是方程4x2﹣8x+3=0的两根,∴或.∴q=3或,∵q>1,∴q=3;∴a2006+a2007=a2004q2+a2005q2=(a2004+a2005)×9=18.故答案为:18.15.(4分)(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有25种.(以数字作答)【分析】从7门课程中选修4门,其中甲、乙两门课程不能都选,可从反面解决,分别求出从7门课程中选修4门的种数和两门都选的方法种数,做差即可;也可按分类原理分为两类:一类甲、乙两门课程都不选,另一类只选一门.【解答】解:所有的选法数为C74,两门都选的方法为C22C52,故共有选法数为C74﹣C22C52=35﹣10=25.故答案为:2516.(4分)(2007•重庆)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为.【分析】先由点斜式写出直线方程,设出两个交点坐标,再由弦长公式计算,作出解答.【解答】解:∵,.∴.代入x2﹣y2=4得:.设P(x1,y1),Q(x2,y2).⇒x1+x2=.又|FP|=,|FQ|=,∴==,故答案为:.三、解答题(共6小题,满分76分)17.(13分)(2007•重庆)设f(x)=6cos2x﹣sin2x,(1)求f(x)的最大值及最小正周期;(2)若锐角α满足f(α)=3﹣2,求tanα的值.【分析】(I)利用三角函数的二倍角公式及公式化简为只含一个角一个函数名的三角函数,利用有界性及周期公式求出最大值最小正周期.(II)列出关于α的三角方程,求出α,求出正切值.【解答】解:(Ⅰ)===故f(x)的最大值为;最小正周期(Ⅱ)由得,故又由得,故,解得.从而.18.(13分)(2007•重庆)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列与期望.【分析】(1)设A k表示第k辆车在一年内发生此种事故,k=1,2,3、由题意知A1,A2,A3之间相互独立,正难则反,该单位一年内获赔的对立事件是A1,A2,A3都不发生,用对立事件的概率做出结果.(2)由题意知ξ的所有可能值为0,9000,18000,27000,看出这四个数字对应的事件,做出事件的概率,写出分布列,求出期望,概率在解时情况比较多,要认真.【解答】解:(1)设A k表示第k辆车在一年内发生此种事故,k=1,2,3,由题意知A1,A2,A3独立,且P(A1)=,P(A2)=,P(A3)=∵该单位一年内获赔的对立事件是A1,A2,A3都不发生,∴该单位一年内获赔的概率为.(Ⅱ)ξ的所有可能值为0,9000,18000,27000,===,===,P(ξ=27000)=P(A1A2A3)=P(A1)P(A2)P(A3)=,综上知,ξ的分布列为ζ090001800027000P设ξk表示第k辆车一年内的获赔金额,k=1,2,3,则ξ1有分布列ζ109000P∴同理得,综上有Eξ=Eξ1+Eξ2+Eξ3≈1000+900+818.18=2718.18(元)19.(13分)(2007•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C﹣ABDA1与直三棱柱的体积之比为3:5.(1)求异面直线DE与B1C1的距离;(2)若BC=,求二面角A1﹣DC1﹣B1的平面角的正切值.【分析】(1)因B1C1⊥A1B1,且B1C1⊥BB1,进而可推断B1C1⊥面A1ABB1,进而推断B1E是异面直线B1C1与DE的公垂线,设BD的长度为x,则四棱椎C﹣ABDA1的体积V1为,里用体积公式表示出V1,表示出四棱椎C﹣ABDA1的体积V1,同时直三棱柱ABC﹣A1B1C1的体积V2,根据V1:V2=3:5求得x,从而求得B1D,直角三角形A1B1D中利用勾股定理求得A1D进而利用三角形面积公式求得B1E.(2)过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1.由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角,先利用勾股定理求得C11D,进而求得BF,进而可求tan求得∠A1FB1.【解答】解:(Ⅰ)因B1C1⊥A1B1,且B1C1⊥BB1,故B1C1⊥面A1ABB1,从而B1C1⊥B1E,又B1E⊥DE,故B1E是异面直线B1C1与DE的公垂线设BD的长度为x,则四棱椎C﹣ABDA1的体积V1为而直三棱柱ABC﹣A1B1C1的体积V2为由已知条件V1:V2=3:5,故,解之得从而在直角三角形A1B1D中,,又因,故(Ⅱ)如图1,过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1.由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角在直角△C1B1D中,,又因,故,所以.20.(13分)(2007•重庆)已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.【分析】(1)因为x=1时函数取得极值得f(x)=﹣3﹣c求出b,然后令导函数=0求出a即可;(2)解出导函数为0时x的值讨论x的取值范围时导函数的正负决定f(x)的单调区间;(3)不等式f(x)≥﹣2c2恒成立即f(x)的极小值≥﹣2c2,求出c的解集即可.【解答】解:(1)由题意知f(1)=﹣3﹣c,因此b﹣c=﹣3﹣c,从而b=﹣3又对f(x)求导得=x3(4alnx+a+4b)由题意f'(1)=0,因此a+4b=0,解得a=12(2)由(I)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1当0<x<1时,f'(x)<0,此时f(x)为减函数;当x>1时,f'(x)>0,此时f(x)为增函数因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞)(3)由(II)知,f(x)在x=1处取得极小值f(1)=﹣3﹣c,此极小值也是最小值,要使f(x)≥﹣2c2(x>0)恒成立,只需﹣3﹣c≥﹣2c2即2c2﹣c﹣3≥0,从而(2c﹣3)(c+1)≥0,解得或c≤﹣1所以c的取值范围为(﹣∞,﹣1]∪21.(12分)(2007•重庆)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.【分析】(1)先根据题设求得a1,进而根据a n+1=S n+1﹣S n整理得(a n+1+a n)(a n+1﹣a n﹣3)=0求得a n+1﹣a n=3,判断出{a n}是公差为3,首项为2的等差数列,则数列的通项公式可得.(2)把(1)中的a n代入可求得b n,进而求得前n项的和T n,代入到3T n+1﹣log2(a n+3)中,令,进而判断出f(n+1)>f(n),从而推断出3T n+1﹣log2(a n+3)=log2f(n)>0,原式得证.【解答】解:(1)由,解得a1=1或a1=2,由假设a1=S1>1,因此a1=2,又由,+a n)(a n+1﹣a n﹣3)=0,得(a n+1即a n﹣a n﹣3=0或a n+1=﹣a n,因a n>0,故a n+1=﹣a n不成立,舍去+1﹣a n=3,从而{a n}是公差为3,首项为2的等差数列,因此a n+1故{a n}的通项为a n=3n﹣1(2)证明:由可解得;从而因此令,则因(3n+3)3﹣(3n+5)(3n+2)2=9n+7>0,故f(n+1)>f(n)特别地,从而3T n+1﹣log2(a n+3)=log2f(n)>0即3T n+1>log2(a n+3)22.(12分)(2007•重庆)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.【分析】(Ⅰ)设椭圆方程为,由题意知a=6,,故所求椭圆方程为.(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),假设,且,,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3).由此入手能够推导出++为定值,并能求出此定值.【解答】解:(Ⅰ)设椭圆方程为因焦点为F(3,0),故半焦距c=3又右准线l的方程为,从而由已知,因此a=6,故所求椭圆方程为(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),不失一般性,假设,且,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3)解得=(i=1,2,3)因此++=,而=,故++为定值.。
2013年重庆高考数学试题理科10题

磕. 若I — O P l < , 则 I l 的 取 值
由
上A B 2 得 一[ ( c o s 0 1 +c 0 s 2 ) c o s 0+
( s i n 0 1 +s i n 0 2 ) s i n 0 ] R十C O S ( 0 l 一0 2 ) =0 ①.
2 0 1 3 年 重庆 高考数学试题理科 1 O 题
重庆 市 第八 中学校 4 0 0 0 3 0 郑军委 陶兴模
题目 在平面 上, 上 磕, I — O B 1 I = l — O B 2 I
: 1, :A — BI +
A B 2 =( C O S 0 2一R e o s 0 , s i n 0 2一R s i n 0 ) .
代入 ② 得 ,
O — — B ・ O — — B , =O —} A・ ( O — — P +O — — A)一o — — a
=O — — — A — ■ ・ 0 — — — p③. 即O — — — B 0 ・ O — — — B — + ,=O — — — A・ — }O — — — P — - } .
将 ① 式平方得
—— — —— ——’ ————
+
+2 一 0 P. =
解法 3 不等式法
根 据条件 知 , B , P, B :
构成一个 矩形 A B 。 P B : ,以
口2 — P
+ OB. +2 DB ・D B,
即
+
=2 , 由 0≤I
.
( , ) , 则 点 P的坐标 为 ( 口 , 6 ) , 由J O — B I = I
1得
解i n 0 ) , P ( r c o s , r s i n ) , B t ( C O S 0 1 , s i n 0 1 ) , B 2 ( C O S 0 2 , s i n 0 2 ) . 由题 意 可 知 : 0
重庆市高考数学试卷(理科)答案与解析

2011年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=()A.B.C.D.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数====故选C【点评】题考查复数代数形式的混合运算,考查计算能力,是基础题.2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.【解答】解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.【点评】本题考查充分条件、必要条件和充要条件的应用.3.(3分)(2011•重庆)已知,则a=()A.1 B.2 C.3 D.6【考点】极限及其运算.【专题】计算题.【分析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.【解答】解:原式==(分子分母同时除以x2)===2∴a=6故选:D.【点评】关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.4.(3分)(2011•重庆)(1+3x )n (其中n ∈N 且n≥6)的展开式中x 5与x 6的系数相等,则n=( ) A .6 B .7 C .8 D .9 【考点】二项式系数的性质. 【专题】计算题.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x 5与x 6的系数,列出方程求出n . 【解答】解:二项式展开式的通项为T r+1=3r C n r x r ∴展开式中x 5与x 6的系数分别是35C n 5,36C n 6 ∴35C n 5=36C n 6 解得n=7 故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.(3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【考点】对数函数的单调性与特殊点.【分析】根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.【解答】解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6.(3分)(2011•重庆)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1 D.【考点】余弦定理.【专题】计算题;解三角形.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab 即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.【点评】本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【考点】基本不等式.【专题】计算题.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C【点评】本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则.8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.【考点】圆的标准方程;两点间的距离公式.【专题】数形结合;直线与圆.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B.【点评】此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.学生做题时注意对角线垂直的四边形的面积等于对角线乘积的一半.9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A. B. C.1 D.【考点】点、线、面间的距离计算;球内接多面体.【专题】计算题;压轴题.【分析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD 的中心与顶点S之间的距离.【解答】解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O 的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1 故选C【点评】本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13【考点】二次函数的性质.【专题】计算题;压轴题.【分析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.【解答】解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.【点评】此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.二、填空题(共5小题,每小题3分,满分15分) 11.(3分)(2011•重庆)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= 74 . 【考点】等差数列的性质. 【专题】计算题.【分析】根据等差数列的性质所有下标之和相同的两项之和相等,看出第三项与第七项的和等于第四项与第六项的和等于第二项与第八项的和,得到结果.【解答】解:等差数列{a n }中,a 3+a 7=37, ∵a 3+a 7=a 2+a 8=a 4+a 6=37 ∴a 2+a 4+a 6+a 8=37+37=74, 故答案为:74【点评】本题考查等差数列的性质,这是经常用到的一个性质的应用,注意解题要灵活,不要出现数字运算的错误是一个送分题目.12.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|=.【考点】平面向量数量积的坐标表示、模、夹角. 【专题】计算题.【分析】利用向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模.【解答】解:===5﹣4cos60°=3∴故答案为【点评】本题考查求向量的模常利用向量模的平方等于向量的平方、考查向量的数量积公式.13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.【考点】n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括三种情况,正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,写出概率,得到结果.【解答】解:由题意知本题是一个n次独立重复试验中恰好发生k 次的概率,正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,∴正面出现的次数比反面出现的次数多的概率是++==故答案为:【点评】本题考查n次独立重复试验中恰好发生k次的概率,考查互斥事件的概率,是一个基础题,解题的关键是看清题目所给的条件符合什么规律,在按照规律解题.14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为﹣.【考点】二倍角的余弦;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.【解答】解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣【点评】此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点(2,0).【考点】圆与圆锥曲线的综合.【专题】计算题;压轴题.【分析】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.【解答】解:抛物线y2=8x的焦点F(2,0),准线方程为x+2=0,故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,所以F在圆上.故答案为:(2,0).【点评】主要考查知识点:抛物线,本小题主要考查圆与抛物线的综合、抛物线的定义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.【专题】计算题.【分析】利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.【解答】解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;【点评】本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【专题】计算题;压轴题.【分析】(I)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C222,得到概率.4(II)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.【解答】解:(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C2224∴根据等可能事件的概率公式得到P==(II)由题意知ξ的可能取值是1,2,3P(ξ=1)=,P(ξ=2)=,P(ξ=3)=∴ξ的分布列是:ξ 1 2 3P∴Eξ=【点评】本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;综合题;转化思想.【分析】(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.【解答】解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.19.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;综合题;数形结合.【分析】(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积;(Ⅱ)利用三垂线定理找出二面角C﹣AB﹣D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD 与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值.【解答】解:(I)设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=,在Rt△ABC中,因AC=2AF=2,AB=2BC,由勾股定理易知BC=,AB=.故四面体ABCD的体积V==.(II)设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB,又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB,所以∠DEF为二面角C﹣AB﹣D的平面角,由题设知∠DEF=60°.设AD=a,则DF=AD•sin∠CAD=,在Rt△DEF中,EF=DF•cotDEF==,取BD的中点M,连EM,FM,由中位线定理得,∠MEF为异面直线AD,BC所成的角或其补角,EM=FM=,由余弦定理得cos∠MEF===.【点评】此题是个中档题.考查棱锥的体积公式和异面直线所成角问题,求解方法一般是平移法,找二面角的平面角时注意三垂线定理及其逆定理的应用,体现了数形结合和转化的思想.20.(12分)(2011•重庆)如图,椭圆的中心为原点O ,离心率e=,一条准线的方程为x=2. (Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P 满足,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为﹣.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值.若存在,求F 1,F 2的坐标;若不存在,说明理由.【考点】椭圆的简单性质;椭圆的定义.【专题】计算题;压轴题.【分析】(Ⅰ)根据离心率和准线方程求得a 和c ,则b 可得,则椭圆的方程可得.(Ⅱ)设出P ,M ,N 的坐标,根据题设等式建立等式,把M ,N 代入椭圆方程,整理求得x 2+2y 220+4(x 1x 2+2y 1y 2),设出直线OM ,ON 的斜率,利用题意可求得x 1x 2+2y 1y 2=0,进而求得x 2+2y 2的值,利用椭圆的定义可推断出|PF 1|+|PF 2|为定值求得c ,则两焦点坐标可得.【解答】解:(Ⅰ)由e==,=2,求得a=2,c=∴b==∴椭圆的方程为:(Ⅱ)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由,得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x=x 1+2x 2,y=y 1+2y 2, ∵点M ,N 在椭圆上,所以,故x 2+2y 2=(x 12+4x 22+4x 1x 2)+2(y 12+4y 22+4y 1y 2)=20+4(x 1x 2+2y 1y 2) 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =﹣∴x 1x 2+2y 1y 2=0 ∴x 2+2y 2=20所以P 在椭圆上;设该椭圆的左,右焦点为F 1,F 2,由椭圆的定义可推断出|PF 1|+|PF 2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.21.(12分)(2011•重庆)设实数数列{a n }的前n 项和S n 满足S n+1=a n+1S n (n ∈N *).(Ⅰ)若a 1,S 2,﹣2a 2成等比数列,求S 2和a 3.(Ⅱ)求证:对k≥3有0≤a k ≤. 【考点】数列与不等式的综合;数列递推式.【专题】综合题;压轴题.【分析】(Ⅰ)由题意,得S 22=﹣2S 2,由S 2是等比中项知S 2=﹣2,由此能求出S 2和a 3.(Ⅱ)由题设条件知S n +a n+1=a n+1S n ,S n ≠1,a n+1≠1,且,,由此能够证明对k≥3有0≤a n ﹣1≤. 【解答】解:(Ⅰ)由题意,得S 22=﹣2S 2, 由S 2是等比中项知S 2≠0,∴S 2=﹣2.由S 2+a 3=a 3S 2,解得. (Ⅱ)证明:因为S n+1=a 1+a 2+a 3+…+a n +a n+1=a n+1+S n ,由题设条件知S n +a n+1=a n+1S n ,∴S n ≠1,a n+1≠1,且,从而对k≥3 有a k ===①因,且, 要证,由①,只要证即证,即,此式明显成立,因此.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.。
2013年四川省高考数学试卷(理科)答案与解析

2013年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本答题共有10小题,每小题5分.在每小题给出的四个选项中,只有一个是符合题目要求的.22.(5分)(2013•四川)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()3.(5分)(2013•四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()B4.(5分)(2013•四川)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,5.(5分)(2013•四川)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()BT=时取得最大值,得到+.由此即可得到本题的答案.时取得最大值,x==﹣==x=+,可得+=﹣6.(5分)(2013•四川)抛物线y2=4x的焦点到双曲线的渐近线的距离是()B±,化成一般式得:,可得=1又∵双曲线的方程为b=±±x.d=7.(5分)(2013•四川)函数的图象大致是()B8.(5分)(2013•四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,,所以从,种排法,,9.(5分)(2013•四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔B=10.(5分)(2013•四川)设函数(a∈R,e为自然对数的底数),若曲时,,此是一个增函数,且函数值恒非负,故只研究是一个增函数,可得出>时,此函数是一个增函数,=0二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2013•四川)二项式(x+y)5的展开式中,含x2y3的项的系数是10(用数字作答).x的项的系数是=1012.(5分)(2013•四川)在平行四边形ABCD中,对角线AC与BD交于点O,,则λ=2.依题意,+,而=2,从而可得答案.+==2+=2+λ,13.(5分)(2013•四川)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.,,=,,=故答案为:14.(5分)(2013•四川)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是(﹣7,3).15.(5分)(2013•四川)设P1,P2,…P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…P n的距离之和最小,则称点P为P1,P2,…P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A、B、C、D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是①④(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2013•四川)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项,公差及前n项和.=17.(12分)(2013•四川)在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.,,(Ⅱ)由正弦定理,,所以,B=在方向上的投影:.18.(12分)(2013•四川)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(I)分别求出按程序框图正确编程运行时输出y的值为i的概率p i(i=1,2,3);(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.=;===的概率为的概率为,输出的;输出y值为1的频率输出y值为2的频率输出====,,0 2 3=19.(12分)(2013•四川)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(Ⅰ)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.AP=,====,可得=的余弦值等于20.(13分)(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(Ⅰ)求椭圆C的离心率:(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.的坐标表示出:(.=2e==…的方程为,设点)=…①中,得(>=,><(﹣,[,(﹣,(21.(14分)(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.时,∵,即时,∵,即.处的切线重合的充要条件是得.∵函数在。
(完整版)2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的1.(5分)(2012•重庆)在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7B.15 C.20 D.25考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质,可得a2+a4=a1+a5=6,再利用等差数列的求和公式,即可得到结论.解答:解:∵等差数列{a n}中,a2=1,a4=5,∴a2+a4=a1+a5=6,∴S5=(a1+a5)=故选B.点评:本题考查等差数列的性质,考查等差数列的求和公式,熟练运用性质是关键.2.(5分)(2012•重庆)不等式≤0的解集为()A.B.C.D.考点:其他不等式的解法.专题:计算题.分析:由不等式可得,由此解得不等式的解集.解答:解:由不等式可得,解得﹣<x≤1,故不等式的解集为,故选A.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.3.(5分)(2012•重庆)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.(5分)(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1D.3考点:两角和与差的正切函数;根与系数的关系.专题:计算题.分析:由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.解答:解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选A点评:此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:函数的性质及应用;简易逻辑.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:∵f(x)是定义在R上的偶函数,∴若f(x)为[0,1]上的增函数,则f(x)为[﹣1,0]上是减函数,又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[﹣1,0]相差两个周期,∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D.点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)考点:函数在某点取得极值的条件;函数的图象.专题:计算题.分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.解答:解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选D.点评:本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)考点:异面直线的判定;棱锥的结构特征.专题:计算题;压轴题.分析:先在三角形BCD中求出a的范围,再在三角形AED中求出a的范围,二者相结合即可得到答案.解答:解:设四面体的底面是BCD,BC=a,BD=CD=1,顶点为A,AD=在三角形BCD中,因为两边之和大于第三边可得:0<a<2 (1)取BC中点E,∵E是中点,直角三角形ACE全等于直角DCE,所以在三角形AED中,AE=ED=∵两边之和大于第三边∴<2得0<a<(负值0值舍)(2)由(1)(2)得0<a<.故选:A.点评:本题主要考察三角形三边关系以及异面直线的位置.解决本题的关键在于利用三角形两边之和大于第三边这一结论.10.(5分)(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.考点:二元一次不等式(组)与平面区域;交集及其运算.专题:计算题;压轴题.分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可解答:解:∵⇔或其表示的平面区域如图,(x﹣1)2+(y﹣1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,由于圆和y=均关于y=x对称,故阴影部分面积为圆的面积的一半,即故选:D.点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由条件可得a+bi=1+3i,根据两个复数相等的充要条件求出a和b的值,即可求得a+b 的值.解答:解:∵(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,∴a+bi=1+3i,∴a=1,b=3,∴a+b=1+3=4,故答案为4.点评:本题主要考查两个复数代数形式的乘除法,两个复数相等的充要条件,属于基础题.12.(5分)(2012•重庆)=.考点:极限及其运算.专题:计算题.分析:把要求的式子化为,即,再利用极限及其运算法则求得所求式子的值.解答:解:由于====,故答案为:.点评:本题主要考查极限及其运算法则的应用,把要求的式子化为,是解题的关键,属于基础题.13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.考点:余弦定理;正弦定理.专题:计算题.分析:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c 的值.解答:解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:点评:此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.解答:解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:点评:解决此类问题的关键是熟练掌握抛物线的定义,以及掌握直线与抛物线位置关系,并且结合准确的运算也是解决此类问题的一个重要方面15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).考点:等可能事件的概率.专题:概率与统计.分析:三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为,若两个空中只插入1节艺术课,则排法种数为•(•)•=216,三门文化课中相邻排列,则排法种数为=144,而所有的排法共有=720种,由此求得所求事件的概率.解答:解:把语文、数学、外语三门文化课排列,有种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为=72,②若两个空中只插入1节艺术课,则排法种数为•(•)•=216,③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为为一个整体,然后和三门艺术课进行排列,则排法种数为=144,而所有的排法共有=720种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=,故答案为.点评:本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(Ⅱ)由(Ⅰ)知,(x>0),=,确定函数的单调性,即可求得函数f(x)的极值.解答:解:(Ⅰ)求导函数可得∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.∴f′(1)=0,∴,∴a=﹣1;(Ⅱ)由(Ⅰ)知,(x>0)=令f′(x)=0,可得x=1或x=(舍去)∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增∴x=1时,函数f(x)取得极小值为3.点评:本题考查导数知识的运用,考查导数的几何意义,函数的单调性与极值,正确求导是关键.17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P(),利用互斥事件的概率公式即可求解;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3,求出相应的概率,即可得到ξ的分布列与期望.解答:解:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=×+=;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3P(ξ=1)=P(A1)+P()=P(ξ=2)=P()+P()== P((ξ=3)=P()==ξ的分布列为ξ 1 2 3P期望Eξ=1×+2×+3×=.点评:本题考查互斥事件概率的求解,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,理解变量取值的含义,属于中档题.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域;正弦函数的单调性.专题:计算题;转化思想.分析:(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域;(II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值.解答:解:f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π)=4(cosωx+sinωx)sinωx+cos2ωx=2cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx=sin2ωx+1,∵﹣1≤sin2ωx≤1,所以函数y=f(x)的值域是[](II)因y=sinx在每个区间[],k∈z上为增函数,令,又ω>0,所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数又有题设f(x)在区间上为增函数所以⊆[,],对某个k∈z成立,于是有.解得ω≤,故ω的最大值是.点评:本题考查三角恒等变换的运用及三角函数值域的求法,解题的关键是对所给的函数式进行化简,熟练掌握复合三角函数单调性的求法,本题考查了转化的思想,计算能力,属于中等难度的题19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题;点、线、面间的距离计算.专题:综合题;转化思想.分析:(I)由题意,由于可证得CD⊥平面A1ABB1.故点C到平面的距离即为CD的长度,易求;(II)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y 轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.解答:解:(I)由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.故CD⊥平面A1ABB1.所以点C到平面A1ABB1的距离为CD==(II)解法一:如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB 互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,从而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),从而=(4,0,h),=(2,,﹣h)由AB1⊥A1C,可得8﹣h2=0,h=2,故=(﹣2,0,2),=(0,0,2),=(0,,0)设平面A1CD的法向量为=(x1,y1,z1),则有⊥,⊥∴•=0且•=0,即,取z1=1,则=(,0,1)设平面C1CD的法向量为=(x2,y2,z2),则⊥,⊥,即且=0,取x 2=1,得=(1,0,0),所以cos<,>===,所以二面角A1﹣CD﹣C1的平面角的余弦值点评:本题考查二面角的求法及点到面距离的求法,点到面的求法一般是作垂线,垂线段的长度即所求,二面角的余弦值的求法有两种,一种是几何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二种方法是现在比较常用的方法向量法,其特征是思维量小,计算量大,作题时对这两种方法要根据题设灵活选用20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程.解答:解:(Ⅰ)设椭圆的方程为,F2(c,0)∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16=0①设P(x1,y1),Q(x2,y2),∴,∵,∴=∵PB2⊥QB2,∴∴,∴m=±2所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形的面积计算,综合性强.21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.考点:数列与不等式的综合;等比数列的前n项和;等比关系的确定;数列与函数的综合.专题:综合题;压轴题.分析:(Ⅰ)根据S n+1=a2S n+a1,再写一式,两式相减,即可证得{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立,设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为(n≥3),即证(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论.解答:证明:(Ⅰ)∵S n+1=a2S n+a1,①∴S n+2=a2S n+1+a1,②②﹣①可得:a n+2=a2a n+1∵a2≠0,∴∵S n+1=a2S n+a1,∴S2=a2S1+a1,∴a2=a2a1∵a2≠0,∴a1=1∴{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立设n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1,,所以要证的不等式可化为(n≥3)即证(n≥2)a2=1时,等号成立当﹣1<a2<1时,与同为负;当a2>1时,与同为正;∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1.点评:本题考查等比数列的证明,考查不等式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.。
2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的(2.(5分)(2012•重庆)不等式≤0的解集为()....由不等式可得,解得﹣的解集为224.(5分)(2012•重庆)的展开式中常数项为()B的展开式通项公式中,令的展开式通项公式为=0=5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为==6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()B,以及|=,==)且⊥,∥,则有,故|=7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的,,,AE=ED=.10.(5分)(2012•重庆)设平面点集B∵或y=故阴影部分面积为圆的面积的一半,即二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.12.(5分)(2012•重庆)=.把要求的式子化为,即,再利用极限及其运算法===,故答案为:.把要求的式子化为13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.cosA=,cosB==,sinB===sinAcosB+cosAsinB=×+×==得:==故答案为:14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.,+x|BF|=,所以)x+|AF|==故答案为:15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).节艺术课,则排法种数为()=216三门文化课中相邻排列,则排法种数为=720解:把语文、数学、外语三门文化课排列,有••=144而所有的排法共有=三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.由(Ⅰ)知,(,确定函数的单调性,即可求得函,∴由(Ⅰ)知,(17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.=(((=(((×+;()(=(=×+2×+3×=.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.)在区间﹣cos sin[][所以,解不等式得=[)在区间上为增函数⊆[.解得,故的最大值是19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.CD===2D==2,,从而,,h=2=,=2,的法向量为,则有⊥,⊥••,即,取=,的法向量为,则⊥,⊥,即=0=<,>=,20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.,为直角,从而|B||OA|=(Ⅰ)设椭圆的方程为,∴S=∴椭圆标准方程为;=,∴21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.时,等号成立,设(,∴等号成立,,所以要证的不等式可化为(时,时,与(即,等号成立的充要条件是。
2009年重庆市高考数学试卷(理科)及答案

2009年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.(5分)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.(5分)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.1604.(5分)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.5.(5分)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)6.(5分)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.7.(5分)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.8.(5分)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.69.(5分)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或210.(5分)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π二、填空题(共5小题,每小题5分,满分25分)11.(5分)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B=.12.(5分)若f(x)=a+是奇函数,则a=.13.(5分)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).14.(5分)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=.15.(5分)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是.三、解答题(共6小题,满分75分)16.(13分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.17.(13分)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.18.(13分)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.19.(12分)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.20.(12分)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.21.(12分)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.2009年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•重庆)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【分析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.【解答】解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B2.(5分)(2009•重庆)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【分析】由题意求出复数z,代入,复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,可得选项.【解答】解:因为由条件知z=﹣1+2i,则=,故选A.3.(5分)(2009•重庆)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.160【分析】利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.【解答】解:设含x3的为第r+1,则Tr+1=C6r x6﹣r•2r,令6﹣r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.4.(5分)(2009•重庆)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.【分析】利用向量的运算法则及向量模的平方即是向量的平方求出,再利用向量的数量积公式求出向量的夹角余弦,求出向量夹角.【解答】解:∵==2.又,∴=3.即cos<a,b>=3=1×6cos<a,b>,得cos<a,b>=,∴a与b的夹角为,故选项为C.5.(5分)(2009•重庆)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)【分析】利用绝对值的几何意义,求出|x+3|﹣|x﹣1|的最大值不大于a2﹣3a,求出a的范围.【解答】解:因为|x+3|﹣|x﹣1|≤4对|x+3|﹣|x﹣1|≤a2﹣3a对任意x恒成立,所以a2﹣3a≥4即a2﹣3a﹣4≥0,解得a≥4或a≤﹣1.故选A.6.(5分)(2009•重庆)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.【分析】本题考查的知识点是古典概型,我们计算出总的滔法种类,再计算满足条件“从中任意舀取4个汤圆,则每种汤圆都至少取到1个”所包含的基本事件个数,然后代入古典概型公式计算,即可得到答案.【解答】解:因为总的滔法C154,而所求事件的取法分为三类,即芝麻馅汤圆、花生馅汤圆、豆沙馅汤圆,取得个数分别按1,1,2;1,2,1;2,1,1三类,故所求概率P==.故选C.7.(5分)(2009•重庆)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.【分析】利用向量的坐标表示可求=1+cos(A+B),结合条件C=π﹣(A+B)可得sin(C+=,由0<C<π可求C【解答】解:因为=又因为所以又C=π﹣(B+A)所以因为0<C<π,所以故选C.8.(5分)(2009•重庆)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.6【分析】先通分得,然后由极限的性质知,由此可以求出a﹣b的值.【解答】解:∵已知==2,∴,∴a=2,b=﹣4;∴a﹣b=6.故选D.9.(5分)(2009•重庆)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或2【分析】三个互不重合的平面把空间分成六个部份有两种情形:一是其中两个平面平行,第三个平面都与它们相交;二是三个平面交于一条直线,考虑到两类即可解决.【解答】解:分两类:①当两个平面平行,第三个平面与它们相交时,有两条交线;②当三个平面交于一条直线时,有一条交线,故选D10.(5分)(2009•重庆)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π【分析】首先由题目中已知三角函数f(x)=sin2x﹣cos2x求周期,需要把函数化为标准型,然后根据周期公式求解即可得到答案.【解答】解:因为f(x)=sin2x﹣cos2x=,所以函数的周期T=,故答案选择B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•重庆)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B={x|0<x<3} .【分析】要求A与B的交集,先要求出两个集合的区间,解出绝对值不等式得到集合A,根据指数函数的增减性得到集合B,然后取两集合的公共部分即可得到交集.【解答】解:由|x|<3解得﹣3<x<3;由2x>1=20,根据指数函数y=2x为增函数得到x>0∴A={x|﹣3<x<3},B={x|x>0},则A∩B={x|0<x<3}.故答案为:{x|0<x<3}12.(5分)(2009•重庆)若f(x)=a+是奇函数,则a=﹣.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.13.(5分)(2009•重庆)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有36种(用数字作答).【分析】由题意知将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,需要先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果.【解答】解:∵将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,∴先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,共有C24A33=36.故答案为:3614.(5分)(2009•重庆)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=2n+1.【分析】由题设条件得b n====2b n,由此能+1够导出数列{b n}的通项公式b n.【解答】解:由条件得:b n====2b n+1且b1=4所以数列{b n}是首项为4,公比为2的等比数列,则b n=4•2n﹣1=2n+1.故答案为:2n+1.15.(5分)(2009•重庆)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是(1,).【分析】不防设点P(x o,y o)在右支曲线上并注意到x o>a.利用正弦定理求得,进而根据双曲线定义表示出|PF1|和|PF2|代入求得e 的范围.【解答】解:不防设点P(x o,y o)在右支曲线上并注意到x o>a.由正弦定理有,由双曲线第二定义得:|PF1|=a+ex o,|PF2|=ex o﹣a,则有=,得x o=>a,分子分母同时除以a2,易得:>1,解得1<e<+1故答案为(1,)三、解答题(共6小题,满分75分)16.(13分)(2009•重庆)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.【分析】(1)利用两角差的正弦公式及二倍角公式及化简三角函数;再利用三角函数的周期公式求出周期.(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g(x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为17.(13分)(2009•重庆)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.【分析】(1)甲两株中活一株符合独立重复试验,概率为,同理可算乙两株中活一株的概率,两值相乘即可.(2)ξ的所有可能值为0,1,2,3,4,分别求其概率,列出分布列,再求期望即可.【解答】解:设A k表示甲种大树成活k株,k=0,1,2B l表示乙种大树成活1株,1=0,1,2则A k,B l独立.由独立重复试验中事件发生的概率公式有P(A k)=C2k()k()2﹣k,P(B l)=C21()l()2﹣l.据此算得P(A0)=,P(A1)=,P(A2)=.P(B0)=,P(B1)=,P(B2)=.(1)所求概率为P(A1•B1)=P(A1)•P(B1)=×=.(2)解法一:ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0•B0)=P(A0)•P(B0)=×=,P(ξ=1)=P(A0•B1)+P(A1•B0)=×+×=,P(ξ=2)=P(A0•B2)+P(A1•B1)+P(A2•B0)=×+×+×=,P(ξ=3)=P(A1•B2)+P(A2•B1)=×+×=.P(ξ=4)=P(A2•B2)=×=.综上知ξ有分布列ξ01234P从而,ξ的期望为Eξ=0×+1×+2×+3×+4×=(株).解法二:分布列的求法同上,令ξ1,ξ2分别表示甲乙两种树成活的株数,则ξ1:B(2,),ξ2:B(2,)故有Eξ1=2×=,Eξ2=2×=1从而知Eξ=Eξ1+Eξ2=.18.(13分)(2009•重庆)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.【分析】(Ⅰ)因为”函数在x=0处取得极值“,则有f'(0)=0,再由“曲线y=f(x)在(1,f(1))处的切线与直线x﹣2y+1=0相互垂直”,则有f'(1)=2,从而求解.(Ⅱ)由(Ⅰ)可得到:,令g'(x)=0,有x2﹣2x+k=0,因为还有参数k,由一元二次方程,分三种情况讨论,(1)当△=4﹣4k<0,函数g (x)在R上为增函数,(2)当△=4﹣4k=0,g(x)在R上为增函数(3)△=4﹣4k>0,方程x2﹣2x+k=0有两个不相等实根,则由其两根来构建单调区间.【解答】解:(Ⅰ)因f(x)=ax2+bx+k(k>0),故f'(x)=2ax+b又f(x)在x=0处取得极值,故f'(x)=0,从而b=0,由曲线y=f(x)在(1,f(1))处的切线与直线x+2y+1=0相互垂直可知该切线斜率为2,即f'(1)=2,有2a=2,从而a=1(6分)(Ⅱ)由(Ⅰ)知:、令g'(x)=0,有x2﹣2x+k=0(8分)(1)当△=4﹣4k<0,即当k>1时,g'(x)>0在R上恒成立,故函数g(x)在R上为增函数(10分)(2)当△=4﹣4k=0,即当k=1时,,K=1时,g(x)在R上为增函数(12分)(3)△=4﹣4k>0,即当0<k<1时,方程x2﹣2x+k=0有两个不相等实根当是g'(x)>0,故g(x)在上为增函数当时,g'(x)<0,故g(x)在上为减函数当时,g'(x)>0,故g(x)在上为增函数(14分)19.(12分)(2009•重庆)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.【分析】(Ⅰ)根据线面平行的判定定理可知AD∥平面BCS,则从而A点到平面BCS的距离等于D点到平面BCS的距离,从而DS为点A到平面BCS的距离,在Rt△ADS中求出DS即可;(Ⅱ)过E点作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,根据二面角平面角的定义可知∠EGH为二面角E﹣CD﹣A的平面角,过E点作EF ∥BC,交CS于点F,连接GF,在Rt△FEG中,求出此角即可.【解答】解:(Ⅰ)因为AD∥BC,且BC⊂平面BCS,所以AD∥平面BCS,从而A点到平面BCS的距离等于D点到平面BCS的距离.因为平面CSD⊥平面ABCD,AD⊥CD,故AD⊥平面CSD,从而AD⊥SD,由AD∥BC,得BC⊥DS,又由CS⊥DS知DS⊥平面BCS,从而DS为点A到平面BCS的距离,因此在Rt△ADS中(Ⅱ)如图,过E电作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,故∠EGH为二面角E﹣CD﹣A的平面角,记为θ,过E点作EF∥BC,交CS于点F,连接GF,因平面ABCD⊥平面CSD,GH⊥CD,易知GH⊥GF,故.由于E为BS边中点,故,在Rt△CFE中,,因EF⊥平面CSD,又EG⊥CD故由三垂线定理的逆定理得FG⊥CD,从而又可得△CGF~△CSD,因此而在Rt△CSD中,,在Rt△FEG中,可得,故所求二面角的大小为20.(12分)(2009•重庆)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.【分析】(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b >0).设,由准线方程.由此能够求出椭圆方程.从而得到点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(Ⅱ)设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+y y=4.因为,(1﹣x Q﹣y Q)•(1﹣x N﹣y n)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.由此可导出动点P的轨迹方程为.【解答】解:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b>0).设,由准线方程得.由得,解得a=2,c=,从而b=1,椭圆方程为.又易知C,D两点是椭圆的焦点,所以,|MC|+|MD|=2a=4从而|MC|•|MD|,当且仅当|MC|=|MD|,即点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(II)如图(20)图,设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+(y M)2=4 ①因为,(1﹣x Q,﹣y Q)•(1﹣x N,﹣y N)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.②记P点的坐标为(x P,y P),因为P是BQ的中点所以2x P=x Q+x B,2y P=y Q+y B由因为x N2+y N2=1,结合①,②得===故动点P的轨迹方程为21.(12分)(2009•重庆)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.【分析】(1)利用等比数列的性质,用a1、d表示出a2009、a2008,结合已知,列方程即可解出a1、d,进而求出a n.(2)通过探求数列的周期性或利用反证法求解.【解答】解:(I)因a1,a2009,a2008,a1006是公比为d的等比数列,从而a2009=a1d,a2008=a1d2,由S2009=S2007+12a1得a2008+a2009=12a1,解得d=3或d=﹣4(舍去).∴d=3,又S3=3a1+3d=15.解得a1=2从而当n≤1005时,a n=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1当1006≤n≤2009时,由a1,a2009,a2008,a1006是公比为d的等比数列得a n=a1d2009﹣(n﹣1)=a1d2010﹣n(1006≤n≤2009)因此(II)由题意a n2=a n﹣12a n+12(1<n<m),a m2=a m﹣12a12,a12=a m2a22得有①得④由①,②,③得a1a2a n=(a1a2a n)2,故a1a2a n=1.⑤又,故有.⑥下面反证法证明:m=6k若不然,设m=6k+p,其中1≤p≤5若取p=1即m=6k+1,则由⑥得a m=a6k+1=a1,而由③得,得a2=1,由②得,而④及⑥可推得a n=1(1≤n≤m)与题设矛盾同理若P=2,3,4,5均可得a n=1(1≤n≤m)与题设矛盾,因此m=6k为6的倍数由均值不等式得由上面三组数内必有一组不相等(否则a1=a2=a3=1,从而a4=a5═a m=1与题设矛盾),故等号不成立,从而a1+a2+a3++a6>6又m=6k,由④和⑥得a72++a m2=(a72++a122)++(a6k﹣52++a6k2)=(k﹣1)(a12++a62)=因此由⑤得a1+a2+a3++a6+a72++a m2>6+6(k﹣1)=6k=m=ma1a2a3a m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)(2013•重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)(2013•重庆)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.解答:解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8考点:茎叶图.专题:概率与统计.分析:求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.解答:解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.点评:本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240考点: 由三视图求面积、体积. 专题: 空间位置关系与距离. 分析:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积. 解答:解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选C .点评: 由三视图正确恢复原几何体是解题的关键. 6.(5分)(2013•重庆)若a <b <c ,则函数f (x )=(x ﹣a )(x ﹣b )+(x ﹣b )(x ﹣c )+(x ﹣c )(x ﹣a )的两个零点分别位于区间( ) A . (a ,b )和(b ,c )内 B . (﹣∞,a )和(a ,b )内 C . (b ,c )和(c ,+∞)内 D . (﹣∞,a )和(c ,+∞)内考点: 函数零点的判定定理. 专题: 函数的性质及应用. 分析: 由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点;又函数f (x )是二次函数,最多有两个零点,即可判断出. 解答: 解:∵a <b <c ,∴f (a )=(a ﹣b )(a ﹣c )>0,f (b )=(b ﹣c )(b ﹣a )<0,f (c )=(c ﹣a )(c ﹣b )>0,由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点; 又函数f (x )是二次函数,最多有两个零点, 因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 故选A . 点评: 熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键. 7.(5分)(2013•重庆)已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A . 5﹣4 B . 1 C . 6﹣2 D .考点: 圆与圆的位置关系及其判定;两点间的距离公式. 专题: 直线与圆. 分析: 求出圆C 1关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆C 2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.解答:解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:=5﹣4.故选A.点评:本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)(2013•重庆)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9考点:程序框图.专题:图表型.分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.解答:解:根据程序框图,运行结果如下:S k第一次循环log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.点评:本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)(2013•重庆)4cos50°﹣tan40°=()A.B.C.D.2﹣1考点:两角和与差的正弦函数;同角三角函数间的基本关系;诱导公式的作用;二倍角的正弦.专题:三角函数的求值.分析:原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.解答:解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C点评:此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)(2013•重庆)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]考点:向量在几何中的应用;平面向量的基本定理及其意义.专题:压轴题;平面向量及应用.分析:建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.解答:解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选D.点评:本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)(2013•重庆)已知复数z=(i是虚数单位),则|z|=.考点:复数求模.专题:计算题.分析:通过复数的分子与分母同时求模即可得到结果.解答:解:|z|===.故答案为:.点评:本题考查复数的模的求法,考查计算能力.12.(5分)(2013•重庆)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=64.考点:等差数列的前n项和;等比数列的前n项和.专题:计算题;压轴题;等差数列与等比数列.分析:依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.解答:解:∵{a n}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.点评:本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)(2013•重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).考点:排列、组合及简单计数问题.专题:压轴题;概率与统计.分析:不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.解答:解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种故答案为:590.点评:本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC 的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.考点:与圆有关的比例线段.专题:直线与圆.分析:利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.解答:解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.点评:熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)(2013•重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.考点:点的极坐标和直角坐标的互化;两点间的距离公式;参数方程化成普通方程.专题:压轴题;直线与圆.分析:先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.解答:解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.点评:本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].考点:绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.解答:解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].点评:本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.考点:利用导数研究函数的单调性;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.解答:解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.点评:本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值解答:解:(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元点评:本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.考点:用空间向量求平面间的夹角;点、线、面间的距离计算;二面角的平面角及求法.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..解答:解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD 的法向量为=(x 1,y 1,z 1),平面FAB 的法向量为=(x 2,y 2,z 2), ∵•=0且•=0,∴,取y 1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos <,>===因此,二面角B ﹣AF ﹣D 的正弦值等于=点评:本题在三棱锥中求线段PA 的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题. 20.(12分)(2013•重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+ab=c 2. (1)求C ; (2)设cosAcosB=,=,求tan α的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数. 专题:解三角形. 分析: (1)利用余弦定理表示出cosC ,将已知等式变形后代入求出cosC 的值,由C 为三角形的内角,利用特殊角的三角函数值即可求出C 的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B 的度数求出sin (A+B )的值,进而求出cos (A+B )的值,利用两角和与差的余弦函数公式化简cos (A+B ),将cosAcosB 的值代入求出sinAsinB 的值,将各自的值代入得到tan α的方程,求出方程的解即可得到tan α的值.解答:解:(1)∵a 2+b 2+ab=c 2,即a 2+b 2﹣c 2=﹣ab , ∴由余弦定理得:cosC===﹣,又C 为三角形的内角, 则C=;(2)由题意==,∴(cosA ﹣tan αsinA )(cosB ﹣tan αsinB )=,即tan 2αsinAsinB ﹣tan α(sinAcosB+cosAsinB )+cosAcosB=tan 2αsinAsinB ﹣tan αsin (A+B )+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin (A+B )=,cos (A+B )=cosAcosB ﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan 2α﹣tan α+=,即tan 2α﹣5tan α+4=0,解得:tan α=1或tan α=4.点评: 此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P'Q ,求圆Q 的标准方程.考点:圆锥曲线的综合.专题:压轴题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.解答:解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)(2013•重庆)对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.考点:集合中元素个数的最值;子集与交集、并集运算的转换.专题:集合.分析:(1)对于集合P7 ,有n=7.当k=4时,根据P n中有3个数与I n={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,P n不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.解答:解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,P n={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,P n对应有7个数,当k=3时,m=1,2,3…,7,P n对应有7个数,当k=4时,P n={|m∈I n,k∈I n}=P n={,1,,2,,3,}中有3个数(1,2,3)与k=1时P n中的数重复,当k=5时,m=1,2,3…,7,P n对应有7个数,当k=6时,m=1,2,3…,7,P n对应有7个数,当k=7时,m=1,2,3…,7,P n对应有7个数,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.假设当n≥15时,P n可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=P n⊇I n .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.点评:本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。