2013重庆高考数学(文)真题及答案

合集下载

2013学年高考文科数学年重庆卷

2013学年高考文科数学年重庆卷

2013年普通高等学校招生全国统一考试(四川卷)数学(文史类)答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】{1,2,3}{2,2}{2}-=,故选B. 【提示】找出A 与B 的公共元素即可求出交集. 【考点】集合的交集. 2.【答案】D【解析】先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A ,B ,由正视图和侧视图都是等腰梯形可排除C ,故选D.【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【考点】三视图. 3.【答案】B【解析】设i(,)z a b a b =+∈R ,且0a <,0b >,则z 的共轭复数为i a b -,其中0a <,0b -<故应为B 点.【提示】直接利用共轭复数的定义,找出点A 表示复数z 的共轭复数的点即可. 【考点】复数,复数的代数表示法. 4.【答案】C【解析】命题p 是全称命题:x M ∀∈,()p x ,则p ⌝是特称命题:x M ∃∈,()p x ⌝,故选C. 【提示】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解析】11π212T =图法可知当π12x =【提示】根据函数在同一周期内的最大值、最小值对应的20y x x ⎪-≤⎪⎨≥⎪⎩(步骤1)由图知目标函数(步骤3)(),0, A a B∥又AB OPc==ea b【解析】由向量加法的平行四边形法则,得AB AD AC +=.(步骤+2AB AD AO ∴=. 又+AB AD AO λ=.=2.λ∴【提示】依题意,AB AD AC +=,而2AC AO =,从而可得答案【考点】平面向量. 4(a x a x =(步骤1)又由已知sin2α=π(,π2α∈又π(,π2α∈tan2tanα=坐标即可.cos BA B 解得1c =或7c =-(负值舍去),(步骤6向量BA 在BC 方向上的投影为cos BA B (Ⅱ)利用42a =,结合正弦定理,求出小,然后求解向量BA 在BC 方向上的投影112P =111AC AA=,所以111331 326A QCDE S==11AA 的值,1DE ,运算求【考点】直线与平面垂直的判定,棱柱、棱锥、棱台的体积3)(3,)+∞(3,0)(0,3))∈-24)4-=得3>.3)(3,)+∞上,可设点M 22)k x +,(步骤3,0)(0,3).(步骤23155m =3,0)(0,3)).(步骤12)()x x -即221()x x -即221ln x x +-两切线重合的充要条件是122x =+11 / 11。

2013年高考文科数学重庆卷试题与答案word解析版

2013年高考文科数学重庆卷试题与答案word解析版

2013年高考文科数学重庆卷试题与答案word解析版D20.(2013重庆,文20)(本小题满分12分,(1)小问5分,(2)小问7分.)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.21.(2013重庆,文21)(本小题满分12分,(1)小问4分,(2)小问8分.)如图,椭圆的中e ,过左焦点F1作x轴的垂线交椭圆于A,A′两点,心为原点O,长轴在x轴上,离心率2|AA′|=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.2013年普通高等学校夏季招生全国统一考试数学文史类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.答案:D解析:∵A ∪B ={1,2}∪{2,3}={1,2,3},U ={1,2,3,4}, ∴U (A ∪B )={4},故选D .2.答案:A解析:由全称命题p :∀x ∈D ,p (x )的否定为⌝p :∃x 0∈D ,⌝p (x 0),知选A .3.答案:C解析:由题知220,log 20,x x ->⎧⎨(-)≠⎩解得2,21,x x >⎧⎨-≠⎩即2,3.x x >⎧⎨≠⎩所以该函数的定义域为(2,3)∪(3,+∞),故选C .4.答案:B解析:∵由圆(x -3)2+(y +1)2=4知,圆心的坐标为(3,-1),半径r =2,∴圆心到直线x =-3的距离d =|3-(-3)|=6.∴|PQ |min =d -r =6-2=4,故选B .5.答案:C解析:∵k =1,s =1+(1-1)2=1;k =2,s =1+(2-1)2=2;k =3,s =2+(3-1)2=6;k =4,s =6+(4-1)2=15;k =5,s =15+(5-1)2=31>15.∴k =5.故选C .6.答案:B解析:∵数据总个数n =10,又∵落在区间[22,30)内的数据个数为4, ∴所求的频率为40.410=. 7.答案:A解析:∵由x 2-2ax -8a 2<0(a >0),得(x -4a )(x +2a )<0,即-2a <x <4a ,∴x 1=-2a ,x 2=4a .∵x 2-x 1=4a -(-2a )=6a =15, ∴15562a ==.故选A . 8.答案:D 解析:由三视图知该几何体是底面为等腰梯形的直棱柱,如图所示,S 上=2×10=20,S 下=8×10=80,S 前=S 后=10×5=50,S 左=S 右=12(2+8)×4=20, 所以S 表=S 上+S 下+S 前+S 后+S 左+S 右=240,故选D .9.答案:C 解析:∵21log 10lg2=, ∴lg(log 210)=lg(lg 2)-1=-lg(lg 2).令g (x )=ax 3+b sin x ,易知g (x )为奇函数.∵f (lg(log 210))=f (-lg(lg 2))=g (-lg(lg 2))+4=5,∴g (-lg(lg 2))=1.∴g (lg(lg2))=-1.∴f (lg(lg 2))=g (lg(lg 2))+4=-1+4=3.故选C .10.答案:A 解析:不妨令双曲线的方程为22221x y a b-=(a >0,b >0),由|A 1B 1|=|A 2B 2|及双曲线的对称性知A1,A 2,B 1,B 2关于x 轴对称,如图.又∵满足条件的直线只有一对,∴tan 30°<b a ≤tan 60°,即3b a <≤. ∴22133b a<≤. ∵b 2=c 2-a 2,∴222133c a a -<≤,即43<e 2≤4.∴<e ≤2,即e ∈2⎤⎥⎝⎦.故选A . 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11解析:∵z =1+2i ,∴||z ==12.答案:72解析:设公差为d ,则c -a =2d =9277225142-⨯=⨯=-. 13.答案:23解析:甲、乙、丙三人随机站在一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种.若甲、乙两人相邻而站则有甲乙丙、丙甲乙、乙甲丙、丙乙甲,共4种,故所求的概率为4263=. 14.答案:4解析:∵OA =(-3,1),OB =(-2,k ),∴AB =OB -OA =(-2,k )-(-3,1)=(1,k -1).又OA ,AB 为矩形相邻两边所对应的向量,∴OA ⊥AB ,即OA ·AB =-3×1+1×(k -1)=-4+k =0,即k =4.15.答案:π5π0,,π66⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦解析:不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则有Δ=(8sin α)2-4×8cos 2α=64sin 2α-32cos 2α≤0,即2sin 2α-cos 2α=2sin 2α-(1-2sin 2α)=4sin 2α-1≤0.∴sin 2α≤14. ∴11sin 22α-≤≤. 又0≤α≤π,结合下图可知,α∈π5π0,,π66⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1313n --=12(3n -1). (2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20192⨯×5=1 010. 17.解:(1)由题意知n =10,1180810n i i x x n ====∑,1120210n i i y y n ====∑, 又l xx =221n i i x nx =-∑=720-10×82=80,l xy =1ni i i x y nx y =-∑=184-10×8×2=24,由此得240.380xy xx l b l ===,a y bx =-=2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 18.解:(1)由余弦定理得cos A =222222b c a bc bc +-==-. 又因0<A <π,所以5π6A =. (2)由(1)得sin A =12, 又由正弦定理及a =3得S =12bc sin A =12·sin sin a B A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ).所以,当B =C ,即ππ212A B -==时,S +3cos B cos C 取最大值3. 19.(1)证明:因BC =CD ,即△BCD 为等腰三角形,又∠ACB =∠ACD ,故BD ⊥AC .因为PA ⊥底面ABCD ,所以PA ⊥BD .从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD ⊥平面PAC .(2)解:三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin∠BCD =12×2×2×2πsin 3=由PA ⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =123=. 由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =111384⨯=, 所以V P -BDF =V P -BCD -V F -BCD =17244-=. 20.解:(1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元.又据题意200πrh +160πr 2=12 000π,所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3).因r >0,又由h >0可得r <故函数V (r )的定义域为(0,). (2)因V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(因r 2=-5不在定义域内,舍去).2013 重庆文科数学 第11页 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,时,V ′(r )<0,故V (r )在(5,)上为减函数.由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h =8时,该蓄水池的体积最大.21.解:(1)由题意知点A (-c,2)在椭圆上,则222221c a b (-)+=.从而e 2+24b=1.由2e =得22481b e==-,从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=. (2)由椭圆的对称性,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 02+28116x ⎛⎫- ⎪⎝⎭=12(x -2x 0)2-x 02+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取最小值, 又因x 1∈(-4,4),所以上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 02. 由对称性知P ′(x 1,-y 1),故|PP ′|2=|2y 1|,所以S =1|2y 1||x 1-x 0| =01|2⨯ ==当0x =PP ′Q 的面积S取到最大值.此时对应的圆Q 的圆心坐标为Q(,0),半径||QP ==因此,这样的圆有两个,其标准方程分别为(x2+y 2=6,(x )2+y 2=6.。

2013学年高考文科数学年重庆卷答案

2013学年高考文科数学年重庆卷答案

于是对 i=1,2,,n-1, di=Ai-Bi=ai-ai+1=a1 (1-q)qi-1
因此 di

0且
di 1 di

q
(i=1,2, ,n-2)

即 d1,d2,,dn-1 是等比数列。
(3)设 d 为 d1,d2,,dn-1 的公差。
对1 i n-2 ,因为 Bi Bi+1,d>0 ,
所以 Ai+1=Bi+1+di+1 Bi+di+d>Bi+di=Ai 。
又因为 Ai+1=max{Ai,ai+1},
所以 ai+1=Ai+1>Ai ai 。
从而 a1,a2,,an-1 是递增数列。
因此 Ai=ai (i=1,2,,n-1) 。
又因为 B1=A1-d1=a1-d1<a1 ,
6/8
由于函数 f x 在区间 (-,0) 和 (0,+) 上均单调,所以当 b>1 时曲线 y=f x 与直线 y=b 有且仅有两
个不同交点。
综上可知,如果曲线 y=f x 与直线 y=b 有两个不同交点,那么 b 的取值范围是 (1,+) 。
19.【答案】(1) 2 3
42
16
16.【答案】(1) 6 13
(2) 4 13
【解析】(1)在 3 月 1 日至 3 月 13 日这 13 天中,1 日、2 日、3 日、7 日、12 日、13 日共 6 天的空气质量
优良,所以此人到达当日空气质量优良的概率是 6 。 13
(2)根据题意,事件“此人在该市停留期间只有 1 天空气重度污染”等价于“此人到达该市的日期是 4 日,或
2013 年普通高等学校招生全国统一考试(北京卷)
数学(文科)答案解析
第Ⅰ卷

100题双曲线历年高考真题及解析

100题双曲线历年高考真题及解析
A. B. C.a D.b
【答案】B
【解析】略
28.(2014·天津高考真题(理))已知双曲线 的一条渐近线平行于直线 : ,双曲线的一个焦点在直线 上,则双曲线的方程为
A. B.
C. D.
【答案】A
【解析】
试题分析:由已知得 在方程 中令 ,得 所求双曲线的方程为 ,故选A.
考点:1.双曲线的几何性质;2.双曲线方程的求法.
A. B.
C. D.
【答案】A
【详解】
圆心为 ,渐近线方程为 ,所以半径为 ,所以圆的方程是 ,即 ,选A.
15.(2007·辽宁高考真题(理))设 为双曲线 上的一点, 是该双曲线的两个焦点,若 ,则 的面积为()
A. B. C. D.
【答案】B
【解析】
试题分析:由已知可得 又
是直角三角形 ,故选B.
【解析】
试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出 的值.
的渐近线方程是 ,即 ,又圆心是 ,所以由点到直线的距离公式可得 ,故选A.
考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.
11.(2009·福建高考真题(文))若双曲线 的离心率为2,则 等于( )
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣ ,则p=4,
解:渐近线y=± x.
准线x=± ,
求得A( ).B( ),
左焦点为在以AB为直径的圆内,
得出 ,

b<a,
c2<2a2
∴ ,
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.

2013年高考真题文-重庆卷文科数学试题及答案

2013年高考真题文-重庆卷文科数学试题及答案

2013年普通高等学校招生全国统一考试文科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .存在x 0∈R ,使得x 20<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .对任意x ∈R ,都有x 2<0 答案 A解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选A.3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)答案 C解析 由题意得,⎩⎪⎨⎪⎧x -2>0,x -2≠1,即x >2且x ≠3,故选C.4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6B .4C .3D .2答案 B解析 由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ |的最小值为圆心到直线x =-3的距离减去圆的半径长,所以|PQ |min =3-(-3)-2=4.故选B.5.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6答案 C解析 由题意,得k =1时,s =1;k =2时,s =1+1=2;k =3时,s =2+4=6;k =4时,s =6+9=15;k =5时,s =15+16=31>15,此时输出的k 值为5.6.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )**B .0.4C .0.5D .0.6答案 B解析 10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率为410=0.4.故选B. 7.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.8.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240答案 D解析 由三视图还原的几何体为两底面为梯形的直棱柱,底面梯形的面积为12(2+8)×4=20,梯形的腰长为32+42=5,棱柱的四个侧面的面积之和为(2+8+5+5)×10=200.所以棱柱的表面积为200+2×20=240.9.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5B .-1C .3D .4答案 C解析 lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4= -1+4=3.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 答案 A解析 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).由双曲线的对称性知,直线A 1B 1与A 2B 2关于坐标轴对称,否则不会有|A 1B 1|=|A 2B 2|,设双曲线的两条渐近线的夹角为2θ,由题意知2θ>(60°,120°],否则,若2θ<60°,则不存在满足题意的直线对,若2θ>120°,则直线对不唯一.因此双曲线渐近线的斜率满足关系式tan 60°≥b a >tan 30°,即3≥b a >33,平方得:3≥e 2-1>13,解得e ∈⎝⎛⎦⎤233,2.二、填空题11.已知复数z =1+2i(i 是虚数单位),则|z |=________.答案 5解析 因为z =1+2i ,所以|z |=12+22= 5. 12.若2、a 、b 、c 、9成等差数列,则c -a =________. 答案 72解析 设等差数列2,a ,b ,c,9的公差为d ,则9-2=4d , ∴d =74,c -a =2d =2×74=72.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 答案 23解析 甲、乙、丙三人站成一排,共有甲、乙、丙,甲、丙、乙,乙、甲、丙,乙、丙、甲,丙、甲、乙,丙、乙、甲共6种情况,其中甲、乙丙人相邻而站共4种情况,故 P =46=23.14.OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________. 答案 4解析 AB →=OB →-OA →=(1,k -1), 因OA →⊥AB →,所以OA →·AB →=0, 即-3+k -1=0,所以k =4.15.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围为________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 由题意,得Δ=64sin 2α-32cos 2α≤0, 化简得cos 2α≥12,∵0≤α≤π,∴0≤2α≤2π, ∴0≤2α≤π3或5π3≤2α≤2π,∴0≤α≤π6或5π6≤α≤π.三、解答题16.设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.解 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20·3+20·192·5=1 010.17.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x (单位:千元)与月储蓄y (单位:千元)的数据资料,算得(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y=bx+a;(Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.18.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C ) =3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB = ∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积. (1)证明 因BC =CD ,即△BCD 为等腰三角形, 又∠ACB =∠ACD ,故BD ⊥AC . 因为P A ⊥底面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直, 所以BD ⊥平面P AC .(2)解 三棱锥P -BCD 的底面BCD 的面积 S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故V F -BCD =13·S △BCD ·18P A =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.20.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元. 所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π, 所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V (r )=0,解得r 1=5,r 2=-5(因r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.解 (1)由题意知A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b 2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则 |QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|, 所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| =2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6, 因此,这样的圆有两个,其标准方程分别为 (x +2)2+y 2=6,(x -2)2+y 2=6.。

2013年重庆市高考数学试卷(文科)含答案

2013年重庆市高考数学试卷(文科)含答案
适用范围:适用于有一定词汇基 础的学习者,可以帮助他们快速 扩大词汇量。
优点:通过理解单词的构成,可 以更好地理解单词的含义,并且 有助于记忆和回忆。
学习建议:学习者可以通过学习 常用的词根和词缀,以及理解单 词的构成方式来提高记忆效果。
故事记忆法
定义:将需要记忆的词汇 串联成一个有趣的故事, 通过故事情节的关联来记
尝试多种记忆方法:尝试 不同的记忆方法,如联想 记忆、重复记忆、制作思 维导图等,找到适合自己 的方法。
制定合理的学习计划:制 定合理的学习计划,将优 生词汇分散到不同的时间 段进行记忆,避免一次性 记忆过多造成负担。
结合实际应用:将优生词 汇应用到实际生活中,通 过实践加深记忆,同时也 能更好地掌握词汇的用法 。
优生词汇记忆方法注重个性化学习,根据学生的兴趣和需求进行定制化教学,提高学 习动力。
促进学习方法的创新与改进
优生词汇记忆方 法能够帮助学生 更高效地记忆词 汇,从而提高学
习效率。
优生词汇记忆方 法可以帮助学生 更好地掌握语言 学习的规律,从 而促进学习方法 的创新与改进。
优生词汇记忆方 法可以帮助学生 更好地理解语言 学习的本质,从 而更好地改进学
忆词汇
优点:增强记忆的趣味性, 提高记忆的持久性
适用范围:适用于记忆大 量词汇或需要长期记忆的
知识点
注意事项:故事的设计要 符合逻辑,避免生搬硬套, 同时要经常复习巩固记忆
效果
PART THREE
学习策略的培养
制定学习计划
确定学习目标:明确要掌握的词汇和记忆要求 制定时间表:合理安排每天的学习时间和进度 多样化学习方式:采用多种方式进行词汇记忆,如读写、听、说等 定期复习:定期回顾已学过的词汇,加强记忆

2013年重庆高考语文、数学(文史类)、文综、英语真题及答案解析汇总word版

2013年重庆高考语文、数学(文史类)、文综、英语真题及答案解析汇总word版

2013年重庆高考语文、数学(文史类)、文综、英语真题及答案解析汇总2013年普通高等学校招生全国统一考试(重庆卷)语文试题卷一(本大题共4小题,每小题3分,共12分)1.下列词语中,字形和加点字的读音全都正确..的一项是A.有抱负贸然从事剑出鞘.qiào 如法炮.制páozhiB.充其量身材魁梧独角.戏jué人才济.济jǐC.有文采初日瞳瞳舞翩跹. xiān 古刹.钟声chàD. 消防栓幡然醒悟踮.脚尖 diǎn 春风拂.面 fǘ2.下列词句中,加点词语使用不正确...的一项是A. 终于有充足的时间做早就计划做的事情了,却东摸摸西触触,有意无意的延宕..,如果在一个人的生活中反复出现这种情形,我们就有理由为他担忧了。

B.就是这种敢为人先、喜欢挑战的精神,一直支持着她坚持不懈,不断创新,才让我们看到了她如此惊艳..的技艺。

C.这种全方位的恶性竞争,只可能产生彻底的赢家和输家。

而那些赢家也可能因为谙熟各种潜规则而变成蝇营狗苟....的功利主义者。

D.他的创作风格似乎很难言说,清丽、典雅、豪放、幽默都不足以概括。

在当今文坛上,他的创作可谓独树一帜....。

3.下列句子中,没有语病的一项是A.不管是普及的程度还是比赛的数量和质量,同一些欧美国家相比,中国的盲人足球运动都还相去甚远。

B.在此次重庆市青少年科技创新大赛中,同学们常围在一起相互鼓励并认真总结得失,赢得的远远不只是比赛的胜负。

C. 生态环境关系到每个人的生存,对于生态环境的破坏,只有减少环境污染,践行低碳环保的生活方式,才能逐渐得到改善。

D.闪闪发光的银块,如果加工成及其细小、只有十分之几微米的银粉时,会变成黑色的,这是为什么呢?4.下列选项中,依次填入下面文字中横线处的标点符号,最恰当的一项是《海底两万里》是科幻作家儒勒•凡尔纳创作的一部科幻小说。

小说讲述了法国生物学家阿龙纳斯利用一艘构造奇妙的潜水船鹦鹉螺号在海底旅行的所见所闻,赞美了那深蓝的国度史诗般的海洋。

2013年高考重庆卷文科数学试题及答案

2013年高考重庆卷文科数学试题及答案

2013年普通高等学校招生全国统一考试文科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<0 答案 D解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选D.3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)答案 C解析 由题意得,⎩⎪⎨⎪⎧x -2>0,x -2≠1,即x >2且x ≠3,故选C.4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6B .4C .3D .2答案 B解析 由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ |的最小值为圆心到直线x =-3的距离减去圆的半径长,所以|PQ |min =3-(-3)-2=4.故选B.5.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6答案 C解析 由题意,得k =1时,s =1;k =2时,s =1+1=2;k =3时,s =2+4=6;k =4时,s =6+9=15;k =5时,s =15+16=31>15,此时输出的k 值为5.6.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )1 8 92 1 2 2 7 9 33A.0.2 B .0.4答案 B解析 10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率为410=0.4.故选B.7.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.8.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240答案 D解析 由三视图还原的几何体为两底面为梯形的直棱柱,底面梯形的面积为12(2+8)×4=20,梯形的腰长为32+42=5,棱柱的四个侧面的面积之和为(2+8+5+5)×10=200.所以棱柱的表面积为200+2×20=240.9.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5B .-1C .3D .4答案 C解析 lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 答案 A解析 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).由双曲线的对称性知,直线A 1B 1与A 2B 2关于坐标轴对称,否则不会有|A 1B 1|=|A 2B 2|,设双曲线的两条渐近线的夹角为2θ,由题意知2θ>(60°,120°],否则,若2θ<60°,则不存在满足题意的直线对,若2θ>120°,则直线对不唯一.因此双曲线渐近线的斜率满足关系式tan 60°≥b a >tan 30°,即3≥b a >33,平方得:3≥e 2-1>13,解得e ∈⎝⎛⎦⎤233,2.二、填空题11.已知复数z =1+2i(i 是虚数单位),则|z |=________. 答案5解析 因为z =1+2i ,所以|z |=12+22= 5.12.若2、a 、b 、c 、9成等差数列,则c -a =________. 答案 72解析 设等差数列2,a ,b ,c,9的公差为d ,则9-2=4d , ∴d =74,c -a =2d =2×74=72.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 答案 23解析 甲、乙、丙三人站成一排,共有甲、乙、丙,甲、丙、乙,乙、甲、丙,乙、丙、甲,丙、甲、乙,丙、乙、甲共6种情况,其中甲、乙丙人相邻而站共4种情况,故P =46=23. 14.OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________. 答案 4解析 AB →=OB →-OA →=(1,k -1), 因OA →⊥AB →,所以OA →·AB →=0, 即-3+k -1=0,所以k =4.15.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围为________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 由题意,得Δ=64sin 2α-32cos 2α≤0, 化简得cos 2α≥12,∵0≤α≤π,∴0≤2α≤2π, ∴0≤2α≤π3或5π3≤2α≤2π,∴0≤α≤π6或5π6≤α≤π.三、解答题16.设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.解 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20·3+20·192·5=1 010.17.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y =bx +a 中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x ,其中x ,y 为样本平均值,线性回归方程也可写为y ^=b ^x +a ^. 解 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy = i =1nx i y i -n x y =184-10×8×2=24,由此得b =l xy l xx =2480=0.3,a =y -b x =2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 18.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值. 解 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C ) =3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积. (1)证明 因BC =CD ,即△BCD 为等腰三角形, 又∠ACB =∠ACD ,故BD ⊥AC . 因为P A ⊥底面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直, 所以BD ⊥平面P AC .(2)解 三棱锥P -BCD 的底面BCD 的面积 S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故V F -BCD =13·S △BCD ·18P A =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.20.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元.所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π, 所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V (r )=0,解得r 1=5,r 2=-5(因r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.解 (1)由题意知A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则 |QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|, 所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| =2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2. 此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6,因此,这样的圆有两个,其标准方程分别为 (x +2)2+y 2=6,(x -2)2+y 2=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档