伺服系统控制器从单轴到多轴

合集下载

伺服控制系统(设计)

伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。

在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。

机械参数主要包括位移、角度、力、转矩、速度和加速度。

近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。

目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。

1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。

伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。

1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。

它由检测部份、误差放大部份、部份及被控对象组成。

1.1.3 伺服系统性能的基本要求1 )精度高。

伺服系统的精度是指输出量能复现出输入量的精确程度。

2 )稳定性好。

稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。

3 )快速响应。

响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。

4)调速范围宽。

调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。

5 )低速大转矩。

在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。

伺服系统

伺服系统

加减速时间设定
加减速用加减速时间的长短来设定,加减速时间越短,速度变化大, 系统易引起振荡;反之,系统的响应性变慢。加减速有线性加减速和指 数加减速。在线性加减速中,加速度有突变,应根据负载惯量核算最大 可达到的加速度,从而确定加速到最大速度所需要的时间;在指数加减 速中,加速度变化无突变,速度变化平稳,必须设定加减速总时间和加 减速升降速时间。
以移动部件的位置和速度作为控制量的 自动控制系统。
伺服系统
伺服系统组成
机电一体化技术
伺服系统组成
位置控制 + 位置控制 调节器 — 速度控制
+

--
位置 指令
速度控制 调节器
功率 驱动
机械传动机构
实际速度反馈 速度检测 电机 实际位置反馈 位置检测
伺服系统
伺服系统组成
机电一体化技术
基本工作原理
伺服系统
伺服系统参数
机电一体化技术
v、a v a
v、a
v
a
O t O
ta
t1
ta
t2
t
线性加减速
指数加减速
伺服系统
伺服系统参数
机电一体化技术
阻尼
运动中的机械部件易产生振动,其振幅取决于系统的阻尼和固有频率, 系统的阻尼越大,振幅越小,且衰减越快。运动副(特别是导轨)的摩擦阻 尼占主导地位,实际应用中一般将摩擦阻尼简化为粘性摩擦阻尼。系统的粘 性摩擦阻尼越大,系统的稳态误差越大,精度越低。对于质量大、刚度低的 机械系统,为了减小振幅,加速衰减。可增大粘性摩擦阻尼。
位置检测装置将检测到的移动部件的实 际位移量进行位置反馈,与位置指令信号进 行比较,将两者的差值进行位置调节,变换 成速度控制信号,控制驱动装置驱动伺服电 动机以给定的速度向着消除偏差的方向运动,

伺服电机的控制方式和运动控制系统

伺服电机的控制方式和运动控制系统

伺服电机的控制方式和运动控制系统伺服电机是一种能够根据控制信号精确地控制旋转角度、转速和位置的电机,广泛应用于工业自动化领域。

在实际应用中,为了使伺服电机能够实现精准的控制,需要配合合适的控制方式和运动控制系统。

下面将介绍伺服电机的控制方式和运动控制系统。

一、伺服电机的控制方式1. 位置控制位置控制是指通过控制伺服电机的旋转角度或线性位置来控制工件或设备的位置。

在位置控制中,通常需要通过编码器等反馈装置实时监测伺服电机的位置,从而调整控制信号,使电机按照设定的位置参数进行运动。

2. 速度控制速度控制是指通过控制伺服电机的转速来实现控制目标。

通过调节电机的输入电压、电流或脉冲信号,可以实现对电机转速的精准控制。

速度控制广泛应用于需要稳定速度输出的场合,如汽车行驶控制、风机调速等。

3. 力矩控制力矩控制是指通过控制伺服电机的输出扭矩来实现对负载的力矩控制。

在一些需要对工件施加精确力矩的场合,如加工中心、机器人等,力矩控制是非常重要的控制方式。

二、运动控制系统1. 传感器传感器是运动控制系统中的重要组成部分,用于实时监测电机的位置、速度、力矩等参数。

常用的传感器包括编码器、霍尔传感器、压力传感器等,它们可以将实时采集到的数据反馈给控制系统,实现对电机的闭环控制。

2. 控制器控制器是指控制电机运动的核心部件,根据传感器反馈的数据计算出控制信号,并输出给伺服电机,以实现对其位置、速度或力矩的精准控制。

控制器通常可分为单轴控制器和多轴控制器,用于不同数量的电机同时运动的控制。

3. 运动控制算法运动控制算法是指控制系统中用于计算控制信号的算法,包括位置环控制、速度环控制、力矩环控制等。

运动控制算法的设计和优化对系统的性能和稳定性有重要影响,需要根据具体的应用场景选择合适的算法。

综上所述,伺服电机的控制方式和运动控制系统是伺服系统中至关重要的组成部分,直接影响到系统的性能和稳定性。

通过选择合适的控制方式和运动控制系统,可以实现对伺服电机的精准控制,满足不同应用场景的需求。

伺服的历史以及发展

伺服的历史以及发展

伺服的历史以及发展添加时间:2008-8-22 14:40:42浏览次数:652来源:本站1.历史的角度看电机发展1800 年伏特发明电池,是电气出现的开端,电动机的诞生和发展在这之后可以分成几个阶段。

从1820 年一直到整个19 世纪末叶,发现了电磁现象以及相关的各种法则,诞生了交流电机的原型,并确立了电机的工业运用。

从20 世纪开始一直到1970 年代,是电动机的成长和成熟期,有刷直流电机、感应电动机、同步电动机和步进电动机等各种电机相继诞生,半导体驱动技术和电子控制概念引入,带来变频驱动的实用化。

从1970年代到20 世纪末期,计算技术的飞跃发展为发展高性能驱动带来了机会,随着设计、评价、测量、控制、功率半导体、轴承、磁性材料、绝缘材料、制造加工技术的不断进步,电动机本体经历了轻量化、小型化、高效化、高力矩输出、低噪音振动、高可靠、低成本等一系列变革,相应的驱动和控制装置也更加智能化和程序化。

进入21 世纪,在以多媒体和互联网为特征的信息时代,电动机和驱动装置继续发挥支撑作用,向节约资源、环境友好、高效节能运行的方向发展。

永磁无刷直流电机(Brushless DC Motor)就是随着永磁材料技术、半导体技术和控制技术的发展而出现的一种新型电机。

无刷直流电机诞生于20 世纪50 年代,并在60 年代开始用于宇航事业和军事装备,80 年代以后,出现了价格较低的钕铁硼永磁,研发重点逐步推广到工业、民用设备和消费电子产业。

本质上,无刷直流电机是根据转子位置反馈信息采用电子换相运行的交流永磁同步电机,与有刷直流电机相比具有一系列优势,近年得到了迅速发展,在许多领域的竞争中不断取代直流电机和异步电动机。

进入90 年代之后,永磁电机向大功率、高功能和微型化发展,出现了单机容量超过1000KW,最高转速超过300000rpm,最低转速低于0.01rpm,最小体积只有0.8x1.2mm 的品种。

实际上,永磁无刷直流电机和本文重点论述的永磁交流伺服电机都属于交流永磁同步电机。

欧姆龙 SERVO鼠笼式电机变频伺服控制器 说明书

欧姆龙 SERVO鼠笼式电机变频伺服控制器 说明书

Cat No.OEZ-DSCO0101SERVO 鼠笼式电机变频伺服控制器操作手册欧姆龙(中国)有限公司DRAGONOMRON注意事项安全注意事项● 接地端子(E:标牌中的标记)一定要可靠地接地。

未接地的情况下,有可能造成触电、误动作 的可能; 2 (请使用 2MM 以上的电线将装置电源端子台上的(E)端子接地) ● 请使用规定的电源电压,本系列的控制器使用单相 AC220V 电源电压; ● 对伺服控制器的安装、拆卸要在切断电源 5 分钟以后,并确认了 P-N 端子间的电压在 24V 以下 时再进行。

否则会造成触电、故障、误动作。

运行中要注意的键盘操作要点● 修改 QMCL 参数、用户参数时,不要超出规定的范围;否则,会由于误动作而造成装置的损坏和 事故; ● 请由熟悉 QMCL 参数、用户参数的内容及操作方法的技术人员进行参数修改的操作; ● 不要改变 QMCL 参数 NO.71(码盘补偿)的设定;否则,会由于误动作而造成装置的损坏和事 故;请根据电机与码盘的脉冲数设定该项参数。

DRAGON 伺服控制器外形欧姆龙(中国)有限公司1DRAGONOMRON目第一章、硬件部分 1.1 伺服控制器的功能和特点 1.2 伺服控制器型号、外形尺寸 1.3 三相鼠笼式变频感应电机的参数 1.4 伺服控制器技术规格表 1.5DRAGON 伺服控制器各部分说明 1.6 伺服控制器的信号端说明 1.7 关于 CPU 的电池 1.8 关于伺服控制器控制主板上的跳线开关 1.9 开关量输入/输出检查、编码器输入检查 第二章、软件部分 2.1 伺服控制器的运行 2.2 伺服控制器的程序 2.3 系统参数及用户参数 2.4QMCL 语言祥解 2.5 编程中的注意事项 第三章、伺服控制器操作流程 3.1 操作流程 3.2 快速操作说明录3 4 5 6 7 9 9 9 1011 12 14 27 3436 37第四章、应用例子 ---------------------------------------------------------------------------------------------------- 39 第五章、故障分析 5.1 故障信息 5.2DRAGON 系列伺服控制器的保护功能 5.3 故障分析 第六章、维护及检修 6.1 维护、检修 6.2 故障预防40 40 4142 42欧姆龙(中国)有限公司2DRAGONOMRON第一章、硬件部分1-1 伺服控制器的功能和特点 1.1.1 简介 DRAGON 系列伺服控制器是鼠笼式电机变频伺服控制器,可对鼠笼式电机的位置、 转速、加减速和输出转矩通过编程方便地进行控制。

机电设备中伺服系统作用探析

机电设备中伺服系统作用探析
摘 要: 伺服 系统在 机 电设 备 中具 有重要 的地位 , 高性 能的伺 服 系统 可以提供 灵 活 、 方便 、 准确 、 速 的驱 动 。 着技 术的进 步和 整个 快 随 工业 的不 断发展 , 伺服驱 动技 术 也取得 了极 大的进 步 , 伺服 系统 已进入 全 数 字化和 交 流化 的 时代 。拖 动 系统的 发展 趋 势是 用 交流伺 服 驱动 取代 传统 的液压 、 流 、 直 步进 和 A c变频 调速 驱 动 , 以便使 系统性 能 达到 一 个全 新 的水 平 , 包括 更 短 的周 期 、 高的 生产 率 、 更 更 好 的 可靠性 和更 长的 寿命 。
应用 。
2伺服 驱动产 品概况 由于伺服驱动产品在工业生产 中的应用 十 分广泛 , 市场上 的相关 产品种类很 多 , 从普通 电 机 、 电机 、 电机 、 器 、 控制到 运 变频 伺服 变频 伺服 动控制器、 单轴控制器、 多轴控制器、 可编程控 制器 、上位控制单元乃至车 间和 厂级 监控工作 站等一 直俱全。 2 伺服 电机 . 1 随着永磁材料制造工艺的不断完善 。新一 代 的伺 服 电机 大都 采 用 了最新 的 N 2 e4 l d F 1b ( 铁硼 ) , 材料的剩余磁密 、 力和最 铷 材料 该 矫顽 大磁能积均好于其他永磁材料 , 再加 上合理 的 磁极 、 磁路及 电机结构设计 , 大大地提 高 了电机 的性能 , 同时又缩小 了电机的外形尺寸 。 新—代
的伺 服 电机大都 采用 了新 型 的位 置编 码器 , 这 种 位 置 编码 器 的信 号 线数 量 从 9根减 少 到 5 根 , 持增量型和绝对值 型两种类型 , 速 并支 通信 率 达 4 / 通 信 周期 为 6S a数 据 长度 为 1 Ms , 2p , s 2 位, 编码 器分 辨率 为 2bhv 即每转 生成 10 0i- , te 0 万 个脉 冲 , 最高转 速 达 60 d i, 0 0mn编码 器 电 源 电流仅为 1l 。 6 A 伺服 电机按 照容量 可以分 为超 x 小 型 ( I I )小 容量 型 、 MN 型 、 中容量 型和 大容 量 型 。超小 容量型 的功率范 围为 1W 到 2 W, 0 0 小 容量 型的功率范围为 3 W-5W,中容量型 的 0 70 功 率范 围为 30 1K ,大容量 型的功率 范 0W~5 W 围为 2K 5 K 2 W-5 W。伺服 电机 的供电电压范 围 从 io -o v  ̄ 相 ) o v- o ( 4 。 2 2伺服控制单元 为了提高产品的性能 ,新一代 的伺服控 制 器采 用了多种新技术 、 新工 艺 , 主要体现在 以下

机器人伺服系统详解(组成-原理框图-执行元件-发展趋势)

机器人伺服系统详解(组成-原理框图-执行元件-发展趋势)

机器人伺服系统详解(组成/原理框图/执行元件/发展趋势)若说当下的热门科技,机器人绝对算一个。

机器人作为典型的机电一体化技术密集型产品,它是如何实现运作的呢?
机器人的控制分为机械本体控制和伺服机构控制两大类,伺服控制系统则是实现机器人机械本体控制和伺服机构控制的重要部分。

因而要了解机器人的运作过程,必然绕不过伺服系统。

伺服系统
伺服系统是以变频技术为基础发展起来的产品,是一种以机械位置或角度作为控制对象的自动控制系统。

伺服系统除了可以进行速度与转矩控制外,还可以进行精确、快速、稳定的位置控制。

广义的伺服系统是精确地跟踪或复现某个给定过程的控制系统,也可称作随动系统。

狹义伺服系统又称位置随动系统,其被控制量(输出量)是负载机械空间位置的线位移或角位移,当位置给定量(输入量)作任意变化时,系统的主要任务是使输出量快速而准确地复现给定量的变化。

伺服系统的结构组成
机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。

伺服系统组成原理框图
1、比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的电路或计算机来实现。

2、控制器
控制器通常是计算机或PID(比例、积分和微分)控制电路,其主要任务是对比较元件输。

如何通过伺服系统实现多轴控制

如何通过伺服系统实现多轴控制

如何通过伺服系统实现多轴控制伺服系统是一种常用于实现多轴控制的技术,它能够准确控制多个电机坐标轴的运动。

在工业自动化领域中,伺服系统广泛应用于机床、机器人、自动化生产线等设备中。

本文将介绍如何通过伺服系统来实现多轴控制。

一、伺服系统概述伺服系统是指由伺服电机、位置传感器、控制器和运动控制算法组成的控制系统。

伺服电机是通过传感器来测量电机的位置,并将位置信号传回给控制器。

控制器利用这些位置信号进行计算,然后输出控制电压来控制电机的运动。

通过对伺服电机的精确控制,可以实现准确、高速、高精度的多轴控制。

二、伺服系统的工作原理伺服系统的工作原理可以分为三个步骤:反馈、比较和控制。

首先,位置传感器测量电机的实际位置,并将位置信号反馈给控制器。

接下来,控制器将实际位置信号与期望位置信号进行比较,计算出控制误差。

最后,控制器根据误差值输出控制信号,使得电机按照期望位置进行运动。

伺服系统的控制算法主要包括位置控制、速度控制和力控制。

位置控制是指通过控制电机的位置来达到期望位置。

速度控制是指通过控制电机的转速来达到期望速度。

力控制则是通过控制电机的扭矩来达到期望力。

三、伺服系统的多轴控制在实际应用中,常常需要控制多个轴的运动。

通过伺服系统,可以实现多轴之间的协调运动。

多轴控制主要包括点位控制、直线插补和圆弧插补。

1. 点位控制点位控制是指控制多个轴同时到达预定位置的控制方法。

在点位控制中,每个轴都有独立的位置控制器。

通过控制器对每个轴的位置进行计算和调整,可以实现多轴同时到达所需位置。

2. 直线插补直线插补是指通过控制多个轴的协同运动,实现直线路径的控制方法。

在直线插补中,每个轴按照给定的速度和加速度进行调整,以保持运动的平滑性和精度。

3. 圆弧插补圆弧插补是指通过控制多个轴的协同运动,实现圆弧路径的控制方法。

在圆弧插补中,通过控制器对多个轴的速度和位置进行调整,使得轴能够按照给定的半径、角度和方向进行协同运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服系统控制器从单轴到多轴伺服系统概述
伺服系统是一种能够控制特定输出的闭环系统。

它利用传感器反馈
来控制输出并保持其稳定性,并通过调整信号使其符合所需输出值。

伺服系统广泛应用于各种行业中,以实现高精度,高速度和高可靠性。

伺服系统通常由驱动器和控制器两部分组成,其中控制器用于控制驱
动器产生特定的运动控制。

单轴伺服系统
单轴伺服系统是最基本的伺服系统形式,其通常用于控制机械运动,例如包装机械和印刷机械。

伺服驱动器与电动机相连,接收控制信号
并输出电压和电流。

控制器接收传感器反馈信号并根据其输出控制信号,以控制电动机并实现所需的运动。

单轴伺服系统的优点是易于掌握和使用,实现成本较低,对于一些
简单的机械运动控制具有很强的适用性。

然而,单轴伺服系统也存在
很大的局限性,特别是在需要控制多轴系统时,使用单轴伺服系统会
面临很多挑战。

多轴伺服系统
多轴伺服系统是在单轴伺服系统的基础上发展而来的一种伺服系统
形式。

它由多个单轴伺服系统组成,能够同时控制多个电机并实现高
度复杂的机械运动控制。

多轴伺服系统需要使用更复杂的控制器和计
算机算法,并依赖于控制器的同步性和大量数据的传输。

多轴伺服系统的优点是可以控制多个电机和多种运动轨迹,可实现更复杂的机械运动控制,适用于需要高精度和高速度的运动。

然而,多轴伺服系统也存在一些挑战,例如控制器同步性和大量的数据传输可能会导致控制延迟或者数据错乱等问题。

此外,多轴伺服系统的成本也相对较高。

中央控制器
中央控制器是多轴伺服系统中的重要组成部分,它负责控制所有电机和协调它们之间的运动。

通常,中央控制器具有更大的处理能力,并能够控制更多的电机和外设。

中央控制器需要具备很高的同步性和数据处理能力,以确保多轴伺服系统的稳定性和可靠性。

总结
随着工业自动化的发展,伺服系统的应用越来越广泛,从单轴伺服系统到多轴伺服系统,其可以控制的运动方式也逐渐同步增加。

多轴伺服控制器由于其更为灵活、高效的控制方式,更加适用于需要高精度和高速度运动的场合。

虽然多轴伺服系统存在较高的技术门槛和成本,但其优越的性能和广泛的应用前景已经得到了越来越多的认可。

相关文档
最新文档