分式的基本概念

合集下载

(完整版)华师大版八年级下册数学知识点总结

(完整版)华师大版八年级下册数学知识点总结

八年级华师大版数学(下)第16章分式§ 16.1分式及基本性质一、分式的概念1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子-B 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使-=0的条B件是:A=0, B M 0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

整式单项式分类:有理式整式多项项分式 -单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变用式子表示为:B = B -M = A ^M ,其中M ( M 工0)为整式2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变 分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通 分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同 字母的最高次幕、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先 把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同 因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变 分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、 分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幕;(2) 如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再 约分;(3)约分一定要把公因式约完。

分式的概念及性质

分式的概念及性质

分式的概念及性质一、分式的基本概念:【例1】下列各式2x ,22a b +,a b π+,2x +,1a m +中,分式有( )A .1个B .2个C .3个D .4个【拓1】(1)当x 满足条件_________时,分式21xx -有意义.(2)若分式()11x x +有意义,则x 需满足____________;若分式()1xx x +有意义,则x 需满足_____________.【拓2】当x 为何值时,下列分式的值为0:①31x x + ②2213x x - ③242x x -+ ④212x x x -+-【例2】已知:当x =2时,分式x m x n -+无意义;当x =-6时,分式x mx n-+的值为0,则 m -n =_______.【拓3】当x ________时,分式36x -的值为正数;当x ________时,分式26xx--的值为负数.【拓4】(21广陵期末)关于x 的方程1233x kx x -=+--的解为非负数,则k 的取值范围是___.【拓5】若分式1324x x x x ++÷++有意义,则x 的取值范围为__________.【拓6】(2021·扬州)不论x 取何值,下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .2(1)x +二、分式的基本性质:①x y x y +- ②xy x y - ③22x y x y +- ④2xx y+【拓7】(21邗江期末)把分式2xyx y+中的x 和y 都扩大2倍,分式的值( ) A .不变 B .扩大4倍 C .缩小12D .扩大2倍【拓8】不改变分式的值,把分式的分子和分母系数都化为整数:①0.10.51.5x y x y -+ ②21321334x y x y -+ ③10.3210.55a ba b -+【拓9】(1)不改变分式的值,把分式的分母化为6ab 2:23a b 22a bab+(2)不改变分式的值,把分式的分母化为()()11x x x -+:()11x x x -+ 21xx -【例4】(1)下列等式,从左到右的变形正确的是( )A .1x y x y --=-- B .0.220.50.353x y x yx y x y++=-- C .x a ax b b+=+ D .()2x y x y y x -=-+-(2)将下列格式约分:3439x x =-__________322384a b a b c -=-___________ 23224x x x -=-___________ 2442a a a-+=-_________【拓10】下列分式:2x x ,1m m +,x xπ+,a bb a --中,最简分式的个数有( ) A .4个 B .3个 C .2个 D .1个【拓11】(21扬州期末)当2021a =时,分式293a a --的值是________.【拓12】分式2214a b 与36a bab c+的最简公分母是________.【拓13】通分:①()()112x x --,2121x x -+;②()11a a a -+,21a a -,2221a a ++.【拓14】(18邗江期中)先约分,再求值:32322444a ab a a b ab --+,其中2a =,12b =-.【拓15】(15邗江月考)已知:y z z x x y x y z +++==,其中0x y z ++≠,求x y zx y z+-++的值.三、分式的运算:(1)2222463ab cc a b -⋅ (2)32422ab c ac c ab b ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭(3)()()222142y x x y xy x y x +-÷⋅- (4)23x y x y x y y x x y ++----(5)a b b c ab bc ++- (6)24142x x +-+【拓16】化简,求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m =四、真题演练:1.(21邗江月考)已知:23a b b c c a m cab+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最小的值为y ,则x y +=( ) A .1- B .1 C .2 D .32.(19扬州一模)已知111m n -=,则代数式222m mn nm mn n--+-的值为( ) A .3 B .1 C .1- D .3-3.(19江都期中)已知113x y +=,则分式2322x xy yx xy y-+++的值为( ) A .35 B .9C .1D .不能确定4.(15扬州月考)已知x 为整数,且222218329x x x x ++++--为整数,则所有符合条件的x 值的和为________.5.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(20邗江期末)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是________.7.(21广陵期末)先化简,再求值222124424x x x x x x x ++++÷--,其中2021x =.8.(19宝应期中)已知实数A 、B 使得等式34(1)(2)12x A Bx x x x -=+----成立,求实数A 、B .9.(18高邮期中)已知13x x +=,求221x x+的值.10.(18江都月考)定义,如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”如:112122111111x x x x x x x x +-+-==+=+-----,232252255211111x x x x x x x x -+-+-==+=-+++++,则 11x x +-和231x x -+都是“和谐分式”. (1)下列分式中,属于“和谐分式”的是:________(填序号); ①1x x+;②22x +;③21x x ++;④221y y +(2)将“和谐分式2231a a a -+-化成一个整式与一个分子为常数的分式的和的形为:2231a a a -+=-________+________.(3)应用:先化简22361112x x x x x x x +---÷++,并求x 取什么整数时,该式的值为整数.11.(20仪征期中)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式. 如:1(1)221111x x x x x -+-==-+++. 解决下列问题: (1)分式3x 是____(填“真”或“假”)分式;假分式64x x ++可化为带分式________形式; (2)如果分式42x x --的值为整数,求满足条件的整数x 的值; (3)若分式22251x x ++的值为m ,则m 的取值范围是________(直接写出答案).。

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

第4课 分式及其运算

第4课 分式及其运算

x -3 -3 时,分式 (2)当x=________ 的值为0. x-3 解析:当|x|-3=0,|x|=3,x=±3,
而x-3≠0,x≠3,故x=-3. (3)若分式 A.1

x-2 的值为0,则x的值为( D ) 2 x -1 B.-1 C.±1 D.2
解析:当x-2=0,x=2时,x2-1≠0,故选D.
3.分式的运算法则:
(1)符号法则:分子、分母与分式本身的符号,改变其中 任何两个,分式的值不变. 用式子表示为:a =- a = -a =- -a , b -b -b b - a = a = -a . b -b b (2)分式的加减法: a b a± b ± = 同分母加减法: c c ; c b d bc± ad ± = 异分母加减法: a c ac .
x-2 的值为0. x+2 解析:当x-2=0,x=2时,分母x+2=4,分式的值是0.
2 时,分式 (2)(2011· 泉州)当x=_______
知能迁移1
x 有意义的x的取值范围是________. x≠2 2x-4 解析:当2x-4≠0,x≠2时,分式有意义,
(1)使分式
故x的取值范围是x≠2.
A.x=-2 C.x=1
2x-5 3 = 的解是( C ) 2-x x-2 B.x=2
D.x=1或x=2
1-5= -3=3, 解析:当x=1时,方程左边= 2× 1-2 -1 右边= 3 =3,∴x=1是原方程的解. 2-1
题型分类 深度剖析
题型一 分式的概念,求字母的取值范围 1 【例1】 (1)当x=_______ 时,分式 2 无意义; x-1 解析:当x-1=0,x=1时,分式无意义.
这种变形叫做分式的通分,通分的根据是分式的基本性

分式的性质

分式的性质

分式的性质一、分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.二、分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.三、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.四、分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.五、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变.【方法技巧】利用分式的基本性质可解决的问题1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.六、最简分式最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.七、约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。

分式(分式的概念、性质及计算)

分式(分式的概念、性质及计算)

学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。

②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。

③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。

即当A =0且B ≠0时,0AB =。

【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。

()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。

分子分母中没有公因式的分式叫做最简分式。

③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。

为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。

【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。

分式及其运算

分式及其运算

分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。

分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。

其中,分子是被除数,分母是除数。

二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。

- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。

2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。

3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。

4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。

三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。

分式(基础)知识讲解

分式(基础)知识讲解

分式(基础)知识讲解分式的概念和性质(基础)研究目标】1.理解分式的概念,能够求出使分式有意义、分式无意义、分式值为零的条件。

2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算。

要点梳理】要点一、分式的概念分式是由两个整式相除得到的商式,其中分母中含有字母。

分数是整式,不是分式。

分数的分子、分母中都不含字母。

分式与分数是相互联系的,分数是分式中字母取特定值后的特殊情况。

分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a/πx^2y是整式而不能当作分式。

要点二、分式有意义、无意义或等于零的条件1.分式有意义的条件:分母不等于零。

2.分式无意义的条件:分母等于零。

3.分式的值为零的条件:分子等于零且分母不等于零。

要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变,这个性质叫做分式的基本性质。

用式子表示是:A/M ÷ B/M = A/B,其中M是不等于零的整式。

在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化。

要点四、分式的变号法则在变形后,字母x的取值范围可能变大了。

对于分式中的分子、分母和分式本身的符号,只要改变其中任何两个,分式的值不变;但改变其中任何一个或三个,分式的值会变成原分式的相反数。

要点解释:根据分式的基本性质,我们可以得出上述结论。

同时,根据有理数除法的符号法则,我们可以知道,分式与分子、分母同号,结果为正;异号,结果为负。

分式的符号法则在分式的运算中非常重要。

要点五、分式的约分和最简分式与分数的约分类似,我们可以利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。

要点解释:约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的基本概念
I.定义:整式A 除以整式B ,可以表示成A/B 的形式。

如果除式B 中含有字母,那么称为分式(fraction )。

注:A÷B=A×1/B = = 。

有时把B 写成负
指数即 ,只是在形式上有所不同,而本质里没有区别. II.组成:在分式 中A 称为分式的分子,B 称为分式的分母。

III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。

IV .分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。

注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

1-∙B A 1-∙B A 1-∙B A。

相关文档
最新文档