石墨烯量子点所含基团
石墨烯量子点 电催化二氧化碳还原-概述说明以及解释

石墨烯量子点电催化二氧化碳还原-概述说明以及解释1.引言1.1 概述石墨烯量子点是一种新型的碳基纳米材料,具有优异的电化学性能和光学性质。
电催化二氧化碳还原是一种清洁能源转化技术,可以将二氧化碳转化为有机物或燃料,有望减缓全球变暖和能源危机。
本文将重点介绍石墨烯量子点在电催化二氧化碳还原中的应用,探讨其在提高反应效率和选择性方面的潜力,以期为相关领域研究提供新的思路和方法。
概述部分的内容"1.2 文章结构": {本文分为引言、正文和结论三个部分。
在引言部分,将概述石墨烯量子点和电催化二氧化碳还原的背景和意义,介绍本文的目的并概括文章结构。
正文部分将分为三个小节,分别讨论石墨烯量子点的特性、电催化二氧化碳还原的重要性以及石墨烯量子点在电催化二氧化碳还原中的应用。
最后,在结论部分将总结石墨烯量子点在电催化二氧化碳还原中的作用,展望未来石墨烯量子点在这一领域的发展,并得出结论。
整个文章结构清晰,层次分明,将全面介绍石墨烯量子点在电催化二氧化碳还原中的重要性和应用前景。
"1.3 目的本文旨在探讨石墨烯量子点在电催化二氧化碳还原中的应用以及其在此领域的潜在作用。
通过对石墨烯量子点的特性和电催化二氧化碳还原的重要性进行分析,我们将深入了解石墨烯量子点在这一领域中的作用机制,并探讨其在实际应用中的可行性和发展前景。
通过本文的研究,我们希望为促进石墨烯量子点在电催化二氧化碳还原中的应用提供更多的启发和理论支持,推动其在环境保护和能源转化领域的进一步发展和应用。
2.正文2.1 石墨烯量子点的特性石墨烯量子点是一种新型的碳纳米材料,具有许多独特的物理和化学性质。
其主要特性包括:1. 威胁:石墨烯量子点是一种非常小的材料,其尺寸通常在1-10纳米之间。
这使得石墨烯量子点具有巨大的比表面积,有利于增强其催化活性和电化学性能。
2. 量子效应:由于其小尺寸,石墨烯量子点表现出量子尺寸效应,导致其电子结构和光学性质具有离散化的特点。
发光石墨烯量子点的应用及未来展望

发光石墨烯量子点的应用及未来展望摘要作为石墨烯家族的最新成员,石墨烯量子点(graphene quantum dots,GQDs)除了具有石墨烯优异的性能之外,还因其明显的量子限域效应和尺寸效应而展现出一系列新颖的特性,吸引了各领域科学家们的广泛关注。
在这篇论文中,我们主要综述了石墨烯量子点的制备方法以及潜在应用,此外还说明了石墨烯量子点的发光机制以及对于其的展望。
关键词:石墨烯量子点,发光材料,应用1 引言碳是地球上储量最丰富的元素之一,一次又一次得带给我们各种明星材料。
1985年,克罗托、科尔和斯莫利三位科学家发现了富勒稀(C60)。
1996年获得诺贝尔化学奖,这是零维碳材料的首次出现。
而1991年碳纳米管的发现则成了一维碳材料的代表。
1947年就开始了石墨烯的理论研究,用来描述碳基材料的性质,迄今有60多年历史。
直到2004年,Novoselov和Geim (英国曼彻斯特大学教授)利用微机械剥离法使用胶带剥离石墨片,首次制得了目前最薄的二维碳材料—石墨稀,仅有一个原子厚度,2010年他们获得了诺贝尔物理奖,从此石墨稀成了物理学和材料学的热门研究对象。
石墨烯量子点(GQDs),一种新型的量子点,当GQDs尺寸小于100 nm时,就会拥有很强的量子限制效应和边缘效应,当尺寸减小到l0nm时,这两个效应就更加显著,会产生很多有趣的现象,这也引发了广大科学家的研究兴趣。
GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。
GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。
GQDs的合成方法不同,尺寸和含氧量不同,使紫外可见吸收峰位置不同。
不同的合成方法使GQDs的光致发光性质不同,光致发光依赖于尺寸、激发波长、pH以及溶剂等。
有些GQDs 还表现了明显的上转换发光特性,GQDs不仅拥有光致发光性质还有优越的电致化学发光性能。
石墨烯量子点调研报告

石墨烯调研报告(石墨烯量子点)零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。
GQDs的制备GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。
GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。
GQDs的制备方法有自上而下法(top-down)与自下而上法(bottom-up)两种。
top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法。
水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比VH2SO4/VHNO3 =1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割。
反应机理如图3所示,Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。
光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。
图3. 水热法制备GQDs反应机理Fig. 3 mechanism for the preparation of GQDs by hydrothermal methodJin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。
该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。
石墨烯量子点的制备及应用进展

杨玉梅/文石墨烯量子点的制备及应用进展【摘要】石墨烯量子点作为零维纳米材料,以其优异的电学、光学、热学等特性而备受关注。
石墨烯量子点不仅具有石墨烯的特性,同时还具备量子点的特殊结构特征。
石墨烯量子点表现出的很多新颖的特性,引起了越来越多的科研工作者的关注。
本文综述了石墨烯量子点的主要制备方法以及相关领域的研究进展,最后对石墨烯量子点的应用前景进行了展望。
【关键词】石墨烯量子点;制备方法;应用石墨烯量子点作为一种新型的零维碳纳米材料,同时具备石墨烯和量子点的特性。
因其众多优异的理化性质,石墨烯量子点的应用逐渐被研究者们重视,其在电子器件、太阳能光伏电池和生物医学等方面均具有重要的潜在应用价值。
但是,目前大量获取均匀尺寸和特定边缘形状的石墨烯量子点仍是个难题。
1.石墨烯量子点简介众所周知,石墨烯是一种稳定的二维材料,碳原子以SP2杂化方式构成。
石墨烯因其特殊的蜂窝状结构以及垂直于分子平面的π键,而具有很好的电学性质、优异的光学性质、超高的热导率和良好的透气性。
但是二维石墨烯具有特殊的零带隙结构,没有能带间隙,无法产生荧光,在普通溶剂中不易分散,这些都限制了石墨烯在光电子器件领域、生物成像方面的应用。
[1]量子点(quantum dot)其实是一种纳米级别的半导体,通过对这种纳米半导体材料施加一定的电场或光压,它们便会发出特定频率的光,而发出的光的频率会随着这种半导体的尺寸的改变而变化,因而通过调节这种纳米半导体的尺寸就可以控制其发出的光的颜色。
由于这种纳米半导体拥有限制电子和电子空穴(electron hole)的特性,这一特性类似于自然界中的原子或分子,因而被称为量子点。
因其电子、空穴均被量子限域从而表现出很多特殊性质,已经在发光二极管、生物标记、太阳能电池等领域得到很好的应用。
石墨烯量子点作为量子点家族中的一员,不仅具有石墨烯优良的电学性质、低毒性、优异的机械强度等特性,同时克服了传统量子点的电子传输性能较差2.石墨烯量子点的制备方法石墨烯量子点的制备主要分为扩大法和缩小法(也称“自下而上”和“自上而下”法)。
酰胺化的石墨烯量子点 解释说明概述及场景

酰胺化的石墨烯量子点解释说明概述及场景1. 引言1.1 概述随着纳米科技的快速发展,石墨烯量子点作为一种新兴材料,引起了广泛的关注。
石墨烯量子点具有高比表面积、可调控能带结构和优异的电化学性能等特点,使其在生物医学应用、光电器件和催化剂领域展示出巨大的潜力。
然而,由于石墨烯量子点本身具有较强的亲水性和极性基团,它们往往在非极性溶剂中不稳定并易于团聚。
为了改善这些缺点,并进一步扩展其应用领域,酰胺化成为一种广泛采用的方法。
通过将酰胺基团引入到石墨烯量子点表面,可以改变其表面性质、稳定性和相容性,从而提高其在各个领域中的应用潜力。
1.2 文章结构本文将首先介绍石墨烯量子点及其特点、制备方法和表征技术。
接着详细讲解酰胺化反应的原理与机制,并阐述常用的酰胺化方法和条件。
在解释说明概述及场景部分,将重点探讨酰胺化对石墨烯量子点性质的影响、在生物医学应用中的潜力以及在光电器件中的应用前景。
最后,结论部分总结了酰胺化的石墨烯量子点的重要性和发展趋势,并展望了未来发展方向和挑战。
1.3 目的本文旨在系统地介绍酰胺化的石墨烯量子点,并深入探讨其在不同领域中的应用潜力和前景。
通过对相关研究成果进行综述和分析,希望能够为科学家们进一步理解和利用酰胺化的石墨烯量子点提供指导,促进该领域的发展与创新。
此外,本文也旨在为读者提供一个全面深入了解酰胺化技术及其应用场景的框架,并为未来进一步开展相关研究提供思路和启示。
2. 酰胺化的石墨烯量子点2.1 石墨烯量子点的介绍石墨烯量子点是一种具有纳米尺寸的二维材料,由于其特殊的结构和性质,在材料科学、化学和物理学领域引起了广泛关注。
石墨烯量子点具有优异的光电性能、可调控的能带结构以及较大的比表面积等特点,使其在能源存储、生物医学、光电器件等领域具有广阔的应用前景。
2.2 酰胺化反应原理与机制酰胺化是指将含有羧基(-COOH)的物质与胺基(-NH₂)发生缩合反应形成酰胺键(C=O-NH-)。
石墨烯量子点的合成和应用研究

石墨烯量子点的合成和应用研究一、石墨烯量子点简介石墨烯量子点(Graphene Quantum Dots,GQDs)是一种新型的碳基纳米材料,由面积小于100nm的单层石墨烯片段组成。
与传统的无机半导体量子点相比,GQDs具有良好的光学、电子、热学和力学性能,以及优异的荧光发射性质。
因此,GQDs成为了当前热门的化学研究领域,广泛应用于生物检测、光电器件、催化剂、传感器等领域。
二、石墨烯量子点的合成方法1. 化学氧化还原法化学氧化还原法是制备GQDs的最常见方法之一,通过对石墨烯材料的还原反应,使其产生高度裂解,从而形成GQDs。
该方法的优点在于具有高产率、易控制、可大规模生产等特点。
但缺点是会产生杂质,并且需要高温和压力,对环境造成污染。
2. 电化学剥离法电化学剥离法是一种廉价、环保的制备GQDs的方法,将石墨烯材料放入电极溶液中,通过电极化来剥离单层石墨烯。
该方法优点是简单易行,不会产生杂质和高温高压等条件,但其缺点是低产率且需要较长时间。
3. 模板法模板法是制备GQDs的一种新型方法,此法将GQDs作为表面活性剂利用外模板自组装成群并进行互致有序,从而得到具有高还原度和高荧光强度的GQDs。
该方法优点是高度可控,不依赖于高温和化学剂。
三、石墨烯量子点的应用研究1. 生物医学GQDs在生物医学领域中有广泛的应用,例如荧光显微镜、生物成像、传感器等诊断系统,已成为高灵敏、高选择性的标记物。
2. 光电器件GQDs与半导体器件结合具有良好的电学特性、光电转换性能,因此在发光二极管、太阳能电池、场效晶体管、光电探测器等方面有广泛的应用前景。
3. 催化剂GQDs具有良好的催化性能和稳定性,因此在电化学、光催化和化学反应方面有广泛的应用前景,如电化学传感和反应、二氧化碳还原等。
4. 传感器GQDs作为一种新型的生物传感器材料,可以用于快速、灵敏的检测疾病和环境污染。
例如,在食品安全领域中,GQDs可以用于检测食品中的致癌物质如苯并芘、多环芳烃等。
石墨烯量子点材料及在电源中的应用

石墨烯量子点材料及在电源中的应用谢观水;郝凡;路凯峰;张坚【摘要】介绍石墨烯量子点(GQD)材料的几种合成方法:电化学法、酸氧化法、水热/溶剂热法、微波/超声波法和溶液化学法等.综述GQD材料在燃料电池、超级电容器、有机太阳电池和染料敏化太阳电池等电源中的应用,展望GQD材料在电源中的应用前景.%The synthesis methods of graphene quantum dot (GQD) such as electrochemical scissoring,acid oxidation cutting,hydrothermal and solvothermal cutting,microwave and ultrasonic shearing,synthesis by chemistry solution were introduced.The applications of GQD in fuelcell,supercapacitors,organic solar cells and dye-sensitized solar cells were reviewed.The prospect of GOD applied in power source was suggested.【期刊名称】《电池》【年(卷),期】2017(047)006【总页数】4页(P370-373)【关键词】石墨烯量子点;合成;电源;燃料电池;超级电容器;太阳能电池【作者】谢观水;郝凡;路凯峰;张坚【作者单位】桂林电子科技大学材料科学与工程学院,广西桂林541004;桂林电子科技大学材料科学与工程学院,广西桂林541004;桂林电子科技大学材料科学与工程学院,广西桂林541004;桂林电子科技大学材料科学与工程学院,广西桂林541004【正文语种】中文【中图分类】TM533;TM911.4;TM914.4石墨烯量子点(GQD)材料是在石墨烯的二维结构基础上,降低维度形成的一种准零维材料,具有石墨烯材料导电速度快[1]、导热能力好[2]、力学强度大和比表面积大[3]等优点,同时,具有量子点特有的可调谐的光学特性、发光效率较高等优点,在生物传感器、分子探针、光催化、太阳电池和柔性光电材料等[4]领域具有广阔的应用前景。
木质素磺酸钙-石墨烯复合量子点的制备及性能

2016年第35卷第11期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·3595·化工进展木质素磺酸钙-石墨烯复合量子点的制备及性能许利娜1,黄坤1,李守海1,李梅1,夏建陵1,2(1中国林业科学研究院林产化学工业研究所,生物质化学利用国家工程实验室,国家林业局林产化学工程重点开放性实验室,生物质能源与材料重点实验室,江苏南京 210042;2中国林业科学研究院林业新技术研究所,北京 100091)摘要:木质素磺酸盐是造纸工业主要副产物之一,本文利用木质素磺酸钙和柠檬酸为原料通过绿色简便的原位反应制备木质素磺酸钙/石墨烯复合量子点,利用荧光光谱、紫外可见光谱和透射电镜等研究了复合量子点的光学性能、结构模型和对金属离子的选择性吸附性能,结果表明该复合量子点的荧光强度是石墨烯量子点的4倍多,并且复合量子点可以选择性识别Fe3+,在10~500μmol/L范围内,Fe3+的浓度与复合量子点溶液的荧光强度有良好的线性关系,可应用于Fe3+的检测。
此荧光探针制备简便,成本低廉,检测铁离子速度快,准确性高,选择性好,在离子检测方面有潜在的应用价值。
关键词:木质素磺酸钙;石墨烯量子点;荧光探针;三价铁中图分类号:S 713;O 661.1 文献标志码:A 文章编号:1000–6613(2016)11–3595–05DOI:10.16085/j.issn.1000-6613.2016.11.032Synthesis and properties of lignin/graphene quantum dots composites asfluorescent sensorXU Lina1,HUANG Kun1,LI Shouhai1,LI Mei1,XIA Jianling1,2(1Institute of Chemical Industry of Forestry Products,CAF;National Engineering Lab. for Biomass Chemical Utilization;Key and Lab. on Forest Chemical Engineering,SFA;Key Lab. of Biomass Energy and Material,Nanjing 210042,China; 2 Institute of Forest New Technology,Chinese Academy of Forestry,Beijing 100091,China)Abstract:Ligninsulfonates are byproducts of the sulfite-pulping procedure. In this paper,we prepared CSL/GQDs composites by uni-form modification the GQDs with lignosulfonate calcium(CSL)via in-situ reaction in a green and facile preparative route. This article uses fluorescence spectroscopy、UV−vis spectra and TEM to investigate the optical properties,the molecular structure and the ion detection of composites. The composites exhibit strong fluorescence emission and nice selectivity which is dramatically enhanced as high as four times that of the free GQDs. The prepared sensor allows high sensitivity and specificity toward Fe3+ analysis and presents a good linearity in range of 10—500μmol/L. Furthermore,this fluorescent probe preparation is simple,low cost,and highly sensitive and specific toward Fe3+ analysis.Key words:lignosulfonate calcium;graphene quantum dots;fluorescent sensor;Fe3+目前,煤、石油和天然气等传统化石资源在现代能源结构中扮演重要的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯量子点所含基团
石墨烯量子点是一种由石墨烯构成的新型晶体材料,具有高表面积、较好的光学和电学性质,因此在纳米电子学领域和生物医学领域中有广泛的应用。
石墨烯量子点的含基团主要包括以下几种:
1. 羧基:石墨烯量子点中最常见的基团之一,其化学结构为-COOH。
羧基使石墨烯量子点表面带有负电荷,增加了其亲水性和生物相容性。
2. 氨基:氨基是另一种常见的基团,其化学结构为-NH2。
氨基可使石墨烯量子点表面呈现出正电荷,提高了其吸附氨基酸等生物分子的能力。
3. 磷酸基:磷酸基是一种含有磷元素的羧基,其化学结构为-COOPO3H2。
磷酸基可提高石墨烯量子点的稳定性和生物相容性,使其在生物医学领域的应用更加广泛。
4. 硫基:硫基是一种含有硫元素的基团,其化学结构为-SH。
硫基使石墨烯量子点表面带有负电荷,可以与金属离子形成络合物,具有良好的催化性能。
5. 烷基:烷基是一种不带电荷的有机基团,其化学结构为-CH2-。
石墨烯量子点中常见的烷基有甲基、乙基等。
烷基可以改变石墨烯量子点表面的化学性质,从而影响其与其它分子的相互作用。
7. 端基:端基是指石墨烯量子点表面的未饱和原子,如末端的氢原子、氧原子等。
端基可影响石墨烯量子点的形态、稳定性和生物相容性。
总之,石墨烯量子点的含基团决定了其表面性质和生物活性,对其在不同领域中的应用有着重要的影响。
未来对石墨烯量子点含基团的研究将有助于进一步发展其应用和解决其相关问题。