浅谈对我国长周期光纤光栅的声发射信号检测系统的设计与研究

合集下载

布拉格与长周期光纤光栅及其传感特性研究

布拉格与长周期光纤光栅及其传感特性研究

布拉格与长周期光纤光栅及其传感特性研究随着科技的发展,光纤传感技术在各个领域中得到了广泛应用。

光纤光栅作为一种重要的光纤传感元件,具有较好的实时性、远距离传输能力和高灵敏度等优点,在医学、工程、环境监测等领域中具有广泛的应用前景。

本文将对布拉格光纤光栅和长周期光纤光栅及其传感特性进行研究探讨。

首先,我们来了解布拉格光纤光栅。

布拉格光纤光栅由一种周期性的折射率变化构成,可以将输入的连续光信号分成几个离散的波长成分。

通过调控光纤光栅的参数,如折射率调制和周期调制,可以实现对光信号的各种参数的测量。

布拉格光纤光栅传感器的工作原理是利用光纤光栅对周围环境参数的敏感性,通过监测光纤中散射光的强度变化来获得环境参数的相关信息。

布拉格光纤光栅的传感特性主要包括灵敏度、选择性和可靠性。

灵敏度是指传感器对测量目标的响应能力,通过优化光纤光栅结构可以提高传感器的灵敏度。

选择性是指传感器对目标参数的独立测量能力,通过优化光纤光栅的周期和谐振峰可以实现对不同目标参数的选择性测量。

可靠性是指传感器的稳定性和重复性,通过合理选择光纤材料和加工工艺可以提高传感器的可靠性。

接下来,我们来了解长周期光纤光栅。

长周期光纤光栅是一种周期大于波长的光纤光栅,其中周期通常为微米或毫米量级。

长周期光纤光栅的传感特性与布拉格光纤光栅有所不同。

长周期光纤光栅主要应用于抑制或增强特定频率的光信号,具有压力、温度和湿度等参数的敏感性。

长周期光纤光栅的传感特性主要包括增强系数、复合增强系数和等效折射率。

通过调节长周期光纤光栅的参数,如周期、长度和材料等,可以实现对光信号的不同频率成分的调制和增强或抑制。

最后,我们来探讨布拉格光纤光栅和长周期光纤光栅在传感领域的应用。

布拉格光纤光栅主要应用于光纤传感器、光纤通信和光纤激光等领域。

在光纤传感器领域,布拉格光纤光栅可以实现对温度、压力、应变、湿度等参数的实时测量。

在光纤通信领域,布拉格光纤光栅可以实现光纤传感器的远距离传输和分布式传感。

光纤光栅传感技术与工程应用研究共3篇

光纤光栅传感技术与工程应用研究共3篇

光纤光栅传感技术与工程应用研究共3篇光纤光栅传感技术与工程应用研究1光纤光栅传感技术与工程应用研究光纤光栅传感技术是一种重要的光学测量技术,有着广泛的应用领域。

本文将对光纤光栅传感技术的原理、发展现状、应用场景以及工程应用研究进行探讨。

一、光纤光栅传感技术的原理光纤光栅传感技术是一种基于光纤和光栅原理的测量技术。

它可以通过光纤上的一系列微小光学反射镜对光信号进行处理,将信号转换为电信号输出后,再加以分析。

光纤光栅传感技术主要包括光纤光栅模式(FBG)传感技术和长周期光纤光栅传感技术。

二、光纤光栅传感技术的发展现状近年来,光纤光栅传感技术在光学测量领域得到了广泛的应用。

目前,光纤光栅传感技术的发展呈现出以下几个趋势:1、研究对象普遍化。

光纤光栅传感技术不仅用于研究物理量,还可用于研究化学量和生物量等领域。

研究对象的普遍化拓宽了应用范围,使其更加广泛。

2、研究手段趋于多样化。

目前,光纤光栅传感技术在光学测量领域不仅可以使用光方法进行研究,还可以使用激光、声波等多种手段进行研究。

通过多种方式的研究,光纤光栅传感技术在不同研究场合下的应用效果均能得到充分的发挥。

三、光纤光栅传感技术的应用场景在光学测量领域中,光纤光栅传感技术常常被应用于以下几个场景:1、温度测量。

通过在光纤上安装光纤光栅,可以测量两个光纤光栅之间的长度差,从而得到物体的温度。

2、应力测量。

光纤光栅传感技术可以通过测量光纤的弯曲程度,得到物体的应力情况。

3、矿用传感。

在地下煤矿中,可以通过利用FBG光纤传感技术来监测岩石的应力变化,预防矿山灾害的发生。

4、流体探测。

在航天器中,利用光纤光栅传感技术来监测流体的液位和流量,能够保证物质交流的正常运行。

四、工程应用研究光纤光栅传感技术在工程中的应用已经得到了广泛的关注。

在建筑工程中,光纤光栅传感技术可以应用于结构物的安全监测和健康诊断。

在交通运输工程中,光纤光栅传感技术可以应用于汽车、火车、飞机等交通工具的安全监测和诊断。

《2024年光纤光栅传感技术在结构健康监测中的应用》范文

《2024年光纤光栅传感技术在结构健康监测中的应用》范文

《光纤光栅传感技术在结构健康监测中的应用》篇一一、引言随着科技的不断进步,光纤光栅传感技术作为一项前沿的监测技术,在结构健康监测领域中发挥着越来越重要的作用。

光纤光栅传感技术以其高灵敏度、高可靠性、抗干扰能力强等优点,为结构健康监测提供了新的手段。

本文将详细探讨光纤光栅传感技术在结构健康监测中的应用,分析其技术原理、应用领域及未来发展趋势。

二、光纤光栅传感技术原理光纤光栅传感技术是一种基于光纤光栅的光学传感技术。

其基本原理是通过在光纤中制作光栅结构,实现对光信号的调制和传输。

光纤光栅传感器由光纤光栅、光源和光电检测器等部分组成。

当光纤中的光经过光栅时,会产生特定的布拉格衍射效应,使得光的波长发生改变,进而通过检测光波长的变化来获取被测量的信息。

三、光纤光栅传感技术在结构健康监测中的应用(一)桥梁结构监测桥梁作为重要的交通基础设施,其安全性直接关系到人民的生命财产安全。

光纤光栅传感技术可以实现对桥梁结构的实时监测,包括对桥梁的应力、应变、温度等参数的监测。

通过在桥梁的关键部位布置光纤光栅传感器,可以实时获取桥梁的结构状态,及时发现潜在的安全隐患,为桥梁的维护和加固提供依据。

(二)建筑结构监测建筑结构的健康监测对于保障建筑的安全性和耐久性具有重要意义。

光纤光栅传感技术可以应用于建筑结构的应力、位移、振动等参数的监测。

通过在建筑结构的关键部位布置光纤光栅传感器,可以实时监测建筑结构的变形和损伤情况,及时发现并处理潜在的安全问题。

(三)隧道及地下工程监测隧道及地下工程的施工环境和结构特点复杂,容易出现各种安全问题。

光纤光栅传感技术可以应用于隧道及地下工程的应力、应变、渗流等参数的监测。

通过在隧道及地下工程的关键部位布置光纤光栅传感器,可以实时获取工程的结构状态和变形情况,为工程的施工和维护提供有力支持。

四、光纤光栅传感技术的优势与挑战(一)优势1. 高灵敏度:光纤光栅传感器具有高灵敏度,能够实时准确地获取被测量的信息。

光纤光栅研究

光纤光栅研究

布拉格光栅的研究1 概述光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。

由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。

在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。

在光纤传感领域,光纤光栅也起到了及其重要的作用。

光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。

当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。

由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。

光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。

本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。

2 应变检测原理根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4]Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。

长周期光纤光栅的制作与特性研究

长周期光纤光栅的制作与特性研究

长周期光纤光栅的制作与特性研究智能材料与结构是近年来在世界上兴起并迅速发展的材料技术的一个新领域。

智能材料与结构具有四种主要特性, 即敏感特性、传输特性、智能特性和自适应特性, 它代表着21世纪先进新材料发展的一个方向。

光纤传感器作为智能材料与结构理想的核心部件, 正在受到越来越多的关注, 而其中光纤光栅传感器是目前研究和应用的热点。

自从1995年A. M. vengsarkar等人在光纤中成功地写入长周期光纤光栅(Long-period Fiber Grating以下简称LPG)以来, LPG作为光纤器件在光纤通信和传感领域得到了越来越广泛的研究和应用。

已经证实LPG可以改进掺铒光纤放大器系统, 因此可以用作带阻滤波器和增益平坦滤波器, 另外它也可以用作温度和压力传感器, 还可以用作光纤光栅传感解调器。

LPG的独特之处在于其对包层的灵敏性, 这是LPG一个独一无二的特性, 它的这种包层灵敏性可以用来制作生物化学传感器。

为了能使LPG广泛的应用于光通信和传感领域, 本论文研究了LPG的制作、特性和其在光通信和传感领域的应用情况。

文章首先采用耦合模理论模拟了长短周期光纤光栅的光谱形状基础, 然后进行光纤的载氢增敏实验, 采用普通单模光纤, 经过载氢增敏, 利用振幅掩模法和逐点法制作出LPG, 并对其的传感特性进行了研究。

以三层阶跃折射率波导结构和耦合模理论为基础, 考虑到氢分子引起的折射率变化, 针对氢载LPG提出了一个简单的模型, 对LPG的退火进行了分析和模拟, 所得到的结果与实验符合得很好。

采用LPG实现了RTM工艺中的流动前沿监测。

实验研究了LPG在各种工艺条件下的光谱信号响应情况, 结果表明LPG能可靠地探测中-低纤维体积含量预成型体中的树脂流动前沿, 在高纤维体积含量情况中以及探测三维厚度方向不同深度的树脂流动前沿时的应用受树脂折射率的限制。

采用普通单模光纤设计制作LPG, 在此基础上, 普通单模光纤LPG的双折射效应进行了研究, 获得了很好的横向压力敏感性, 证明这种LPG具有极大的用作高灵敏度的光纤横向压力传感器的潜力。

光纤光栅声发射检测信号分析与源定位技术研究的开题报告

光纤光栅声发射检测信号分析与源定位技术研究的开题报告

光纤光栅声发射检测信号分析与源定位技术研究的
开题报告
一、研究背景
光纤光栅是一种利用光学原理进行测量的传感器技术,在工业、民
用和科研领域都有广泛应用。

特别是在声学传感领域,光纤光栅声发射
探头已经成为一种有效的测量声波信号及其传播性质的工具。

通过对声
波信号的采集、分析和处理,能够实现声源定位、声场诊断、结构物健
康监测等应用。

二、研究目的
本研究旨在探究光纤光栅声发射检测信号的分析与源定位技术,通
过实验验证和数据分析,提高声源定位的精度和可靠性。

三、研究内容
1. 光纤光栅声发射检测信号的采集和分析。

2. 声源定位算法的研究与实现。

3. 实验验证和数据分析,评估算法的有效性和精度。

4. 对算法进行优化和改进,提高声源定位的可靠性和精度。

四、研究方法
1. 理论分析法:分析光纤光栅声发射探头的信号特性、声波传播模
型及声源定位算法。

2. 实验方法:利用实验装置进行声源定位实验,并采集相应的数据。

3. 数据处理方法:利用MATLAB等软件进行数据处理与分析,评估
算法的有效性和精度。

五、研究意义
通过研究光纤光栅声发射检测信号的分析与源定位技术,可以提高声源定位的精度和可靠性,为工业、民用和科研领域提供一种新的声学传感器技术。

同时,在结构物健康监测方面也可以得到广泛应用,为提高结构物安全性和可靠性提供保障。

光纤光栅传感器的研究与应用

光纤光栅传感器的研究与应用

光纤光栅传感器的研究与应用0 引言近年来。

随着光纤通信技术向着超高速、大容量通信系统的方向发展,以及逐步向全光网络的演进.在光通信迅猛发展的带动下,光纤光栅光纤光栅已成为发展最为迅速的光纤无光源器件之一。

光纤在紫外光强激光照射下,利用光纤纤芯的光敏感特性.光纤的折射率折射率将随光强的空间分布发生相应的变化。

这样,在光纤轴向上就会形成周期性的折射率波动,即为光纤光栅。

由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用。

为此。

本文从光纤布拉格光栅、长周期光纤光栅等光纤光栅的原理出发,综述了光纤布拉格光栅对温度、应变同时测量技术的应用。

1 光纤传感器传感器的工作原理1.1 光纤光栅传感器的结构光纤布拉格光栅FBG于1978年发明问世。

它利用硅光纤的紫外光敏性写入光纤芯内,从而在光纤上形成周期性的光栅,故称为光纤光栅。

图l所示是其光纤光栅传感器的典型结构。

在图1所示的光纤光栅传感器结构中,光源为宽谱光源且有足够大的功率,以保证光栅反射信号良好的信噪比。

一般选用侧面发光二极管ELED的原因是其耦合进单模光纤的光功率至少为50~100 μW。

而当被测温度或压力加在光纤光栅上时。

由光纤光栅反射回的光信号可通过3 dB光纤定向耦合器送到波长鉴别器或波长分析器,然后通过光探测器进行光电转换,最后由计算机进行分析、储存,并按用户规定的格式在计算机上显示出被测量的大小。

光纤光栅除了具备光纤传感器的全部优点外.还具有在一根光纤内集成多个传感器复用的特点,并可实现多点测量功能。

1.2 光纤布拉格光栅原理光纤布拉格光栅通常满足布拉格条件式中,λB为Bragg波长,n为有效折射率,A为光栅周期。

当作用于光纤光栅的被测物理量(如温度、应力等)发生变化时,会引起n和A的相应改变,从而导致λB的漂移;反过来,通过检测λB的漂移。

光纤光栅传感器的应用研究及进展

光纤光栅传感器的应用研究及进展

光纤光栅传感器的应用研究及进展光纤光栅传感器(Fiber Bragg Grating Sensor,FBG Sensor)是一种基于光纤光栅的传感器技术,具有高精度、高灵敏度、抗干扰能力强等优点,在工业、医疗、环境监测等领域有着广泛的应用。

本文将从光纤光栅传感器的基本原理、应用领域和近年来的研究进展三个方面进行探讨。

光纤光栅传感器的基本原理是利用了光纤中的光栅结构对光波的折射率和光纤长度进行测量。

光纤光栅是一种周期性调制的折射率分布结构,当光波通过光纤光栅时,会发生布拉格散射,这种散射会使一部分光波反向传播并被光纤光栅再次散射回来,形成布拉格反射。

当光纤光栅受到外界的力、温度、应变等影响时,其折射率和长度会发生变化,从而导致布拉格反射波长的改变。

通过测量布拉格反射波长的变化,可以得到外界的参数信息。

光纤光栅传感器可以应用于多个领域。

在工业领域,光纤光栅传感器可以实现对物体的形变、压力、温度等参数的测量。

例如,在航空航天领域,光纤光栅传感器可以用于飞机机翼的变形监测;在石油化工领域,光纤光栅传感器可以用于管道压力和温度的监测。

在医疗领域,光纤光栅传感器可以应用于心脏瓣膜的监测和血压的测量。

在环境监测领域,光纤光栅传感器可以用于地下水位、土壤湿度等的监测。

近年来,光纤光栅传感器的研究取得了一系列的进展。

一方面,光纤光栅传感器的灵敏度和分辨率得到了提高。

通过改变光纤光栅的结构和优化信号处理算法,可以提高传感器的灵敏度。

另一方面,光纤光栅传感器的应用领域得到了拓展。

传统的光纤光栅传感器主要应用于单一参数的测量,如温度、压力等,而现在的研究主要关注多参数的测量。

例如,通过改变光纤光栅的布局和优化信号处理算法,可以实现对多种参数的同时测量。

此外,光纤光栅传感器还面临一些挑战和问题。

一方面,光纤光栅传感器的制备和安装需要专业的技术和设备,成本较高。

另一方面,光纤光栅传感器的应用受到光纤光栅的长度限制,难以实现对大范围区域的监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈对我国长周期光纤光栅的声发射信号检测系统的设计与
研究
摘要声发射检测是一种对结构或材料内部的潜在缺陷或者处在运动变化过程中的缺陷进行的无损检测。

声发射信号的分类最早是由德国人Kaiser 首先提出的,后来人们随着对声发射认识的加深,正式提出将声发射信号分成突发型与连续型两种。

自然界中能够产生声发射信号的材料很多,声发射源的种类也很繁多,因此声发射波的频率范围很广。

有的声发射信号强度很强,人耳可以直接听到,有的声发射信号在发生过程中应变比较弱导致人耳听不到,这就需要专门的声发射设备才能检测到。

用专用的设备与软件检测声发射信号、分析处理与显示声发射信号、由声发射信号的信息反推声发射源的状况统称为声发射技术本文根据长周期光纤光栅线性滤波解调原理,研究了声发射信号检测的方案。

理论分析和实验结果表明,该方案能够对声发射信号进行检测。

该方法结构简单,准确可靠,可进一步实现FBG 解调系统的集成化、小型化。

本院研究了声发射信号检测的基本原理以及光纤光栅与声发射信号的作用机理,提出了基于长周期光纤光栅的声发射信号检测系统的设计方案。

关键词院声发射;长周期光纤光栅;信号检测
0 引言
声发射(acoustic emission,简称AE)是指材料或结构受外力或内力作用产生变形或断裂,以应力波形式释放出应变能的现象。

声发射检测是一种对结构或材料内部的潜在缺陷或者处在运动变化过程中的缺陷进行的无损检测。

声发射信号的分类最早是由德国人Kaiser 首先提出的,后来人们随着对声发射认识的加深,正式提出将声发射信号分成突发型与连续型两种。

自然界中能够产生声发射信号的材料很多,声发射源的种类也很繁多,因此声发射波的频率范围很广。

有的声发射信号强度很强,人耳可以直接听到,有的声发射信号在发生过程中应变比较弱导致人耳听不到,这就需要专门的声发射设备才能检测到。

用专用的设备与软件检测声发射信号、分析处理与显示声发射信号、由声发射信号的信息反推声发射源的状况统称为声发射技术[1]。

1 传统声发射检测的基本原理当声发射传感器附着到所测结构上后,由于材料内部应力发生变化产生声发射信号,声发射源产生的声发射信号以波的形式在材料中传播,当到达材料表面时声发射波引起材料表面的振动,此时波的能量转换成材料的振动能。

而附着在材料表面的声发射传感器可以感受到材料表面的机械振动,然后将材料的振动转换成电信号,通过后续硬件与软件的釆集、分析与处理,就可以得到声发射信号的有用信息,并以此来推断材料发生声发射的机制与预判声发射信号的发展趋势。

目前声发射检测是一种比较有效的检测材料受到应力作用时动态趋势变化的方法。

声发射检测原理如图1所示。

从图1 可以看出,借助声发射传感器与相关外围设备可以实时获得材料内部产生的声发射信号。

只要对记录与显示在系统中的数据进行有效的分析,便可预判材料内部结构的变化趋势以及下一步需要釆取的针对性防范措施。

传统的声发射传感器大多采用的是谐振式压电传感器,是将被测结构的变化
直接转换成物体谐振频率变化的一种压电传感器。

优点是精度与分辨率比较高,
其主要缺点是:体积大、对制作材料的质量要求比较高、频带窄、必须与被测物
体接触,不能应用在高温、腐烛、高压等极端环境下并且抗电磁干扰能力弱,在
强电场环境下其有效性也受到很大制约。

相比而言光纤光栅声发射传感器具有压
电传感器没有的优点:本身制作材料是光导纤维,其绝缘性好,因此可用到高电压、高电磁干扰的环境中;本身体积小质量轻;安装方式可有多种选择,即可贴
在结构表面也可埋入其中;采用波长解调,抗干扰性强。

因此对于基于光纤光栅
的声发射检测技术的研究具有非常重要的意义。

2 光纤光栅与声发射信号作用机理光纤光栅是一种折射率周期调制的传感器件,光栅光谱的峰值波长被认为是光栅中心波长:
宽带光源经耦合器1 进入传感点———光纤Bragg 光栅(FBG),经FBG 反射
回来的携带传感信息的光信息再经过耦合器1,后接耦合器2 将信号分为2 路,
一路直接进入光电探测器(PD0),另一路则通过一个LPFG 线性滤波器后再进入
PD1 检测。

两路信号相比可以消除光源波动及前面光路连接器等引起的光功率波动,随后对检测的信号进行放大、A/D 转换以及数据采集、滤波处理后,根据解
调算法即可将变化的物理量解调出来。

为了防止光纤的端面反射而影响传感信号,将光纤尾端浸入匹配液(IMG)。

4 结束语
本文根据长周期光纤光栅线性滤波解调原理,研究了声发射信号检测的方案。

理论分析和实验结果表明,该方案能够对声发射信号进行检测。

该方法结构简单,准确可靠,可进一步实现FBG 解调系统的集成化、小型化。

参考文献
[1]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会编,杨明
纬主编.声发射检测[M].北京:机械工业出版社,2005:2-4.。

相关文档
最新文档