微量氧分析仪分类特点及原理介绍
氧分析仪分析原理ppt课件

碱性 KOH
Байду номын сангаас
固体燃料电池
氧分析仪分析原理
• 优点:①不需外部供电; ②价格相对便宜; ③精度准确度好; ④更换维护方便。
• 缺点:①使用寿命短; ②易受其他气体影响(CO,H2腐蚀性气体),定
期更换 传感器。
氧分析仪分析原理
电解池式:
阴极反应: O2+2H2O+4e-→4OH阳极反应: 4OH-→O2+2H2O+4e-
氧分析仪分析原理
• 优点:成本低,反应速度快,可以测量微量常量氧 • 缺点: ①故障率高,被测气体突发冷热交换,锆片易脱落。
②被测气体中可燃性较高的成分(H2,CO化合物) ③不能测O2浓度高(参比气为空气)空气中O2为 21%
氧分析仪分析原理
• 燃料电池(测微量氧)
燃料电池
酸性 CH3COOH
优点: 由电极反应式可见,阳极未产
生消耗,因此使用中无需更换 电极和电解池,只需适时补充 电解液。
氧分析仪分析原理
• 顺磁式氧分析
任何物质在外界磁场的作用下都会磁化, 呈现磁特性。O2等属顺磁性气体,在磁 场中被吸引(k>0)
顺磁式
热磁对 流式
磁力机 械式
磁压式
氧分析仪分析原理
顺磁式氧分析
任何物质在外界磁场的作用下都会 被磁化,呈现出的磁特性。
气体介质在磁场中被磁化,根据不 同表现分为顺磁性或逆磁性。O2 为顺磁性气体。
M=kH
M——磁化强度
H——外磁场强度
k——物质的体积磁化率
• 热磁对流式 • 磁力机械式 • 磁压力式
氧分析仪分析原理
谢谢您的阅读
氧分析仪分析原理
DeltaF微量氧分析仪()精讲

一、微量氧分析仪在工艺中的作用
1、聚乙烯的精致单元:监测精致单元入口和出口气体是否合 格 PP: rang:0-2ppmv,normal:0.4ppmv,alarm:1ppmv;
2、反应器单元:监测循环气中氧含量和反应器的活度;
3、挤压造粒单元:作用是为对后工段生产的进行安全监测, 在氧气和碳氢含量超标的时候,工艺会采取相应措施去除,防 止产生安全隐患。PP: rang:0-1%, normal: 50ppmv, alarm: 2000ppmv。
3.3
传感器与MIS 1控制器的连接
在MIS 1二次表上最多可装6个通道,可以带12台分析仪,但是 只能带6台氧和6台水表,每一个通道最多只能带一台水表和一台 氧表。
水探头与二次表 连接点
氧池与二次表 连接点
向DCS,PLC,SIS 等系统输送信号
四
预处理
?
箱体内部按要求采用电/蒸汽/热水加热器,保证箱体内冬季温度不低于20℃
8.3、测量值与实际值偏差太大
原因1:管线泄漏 处理方法:检查样品管线气密性
原因2:因子偏差大 处理方法:重新校验 原因3:系统误差偏差大 处理方法:在test菜单里面调节系统误差
谢谢大家!
3.2 微量氧分析仪的使用场合
耗尽型燃料电池式微量氧分析仪针对于一般场合使 用,或在某些特定场合,分析仪比较容易受到损伤的情 况下。而非耗尽型电解法微量氧分析仪一般可用于聚合 反应等比较重要场合; 此外,在一些酸性气体的情况下,当耗尽型燃料电 池式微量氧分析仪无法使用时,也可考虑用非耗尽型电 解法微量氧传感器。
Ambient Temperature 0° to 49°C
•
Sample Requirements
氧分析仪分析原理

顺磁式
热磁对 流式
磁力机 械式
磁压式
顺磁式氧分析
任何物质在外界磁场的作用下都会 被磁化,呈现出的磁特性。
气体介质在磁场中被磁化,根据不 同表现分为顺磁性或逆磁性。 O2为顺磁性气体。
M=kH
M——磁化强度
• 优点:成本低,反应速度快,可以测量微量常量氧 • 缺点: ①故障率高,被测气体突发冷热交换,锆片易脱落。
②被测气体中可燃性较高的成分(H2,CO化合物) ③不能测O2浓度高(参比气为空气)空气中O2为21%
• 燃料电池(测微量氧)
酸性 CH3COOH
燃料电池
碱性 KOH
固体燃料电池
• 优点:①不需外部供电; ②价格相对便宜; ③精度准确度好; ④更换维护方便。
氧分析仪原理
氧分析仪原理分类
• 电化学原理(耐腐蚀性差)
电化学
氧化锆
燃料电池
直插式
抽吸式
低温
中温
高温
电解池式
氧化锆原理:
正极:O2(p0)+4e→2O2负极:2O2-→O2(p1)+4e
在两个电极上由于正负电荷的堆积而形 成一个电势,称之为氧浓差电动势。用导 线连接形成电路,通过测得氧浓差电动势 的大小来算出氧化锆固体电解质两侧气体 中的氧浓度的大小。
• 缺点:①使用寿命短; ②易受其他气体影响(CO,H2腐蚀性气),定期更换 传感器。
电解池式:
阴极反应: O2+2H2O+4e-→4OH阳极反应: 4OH-→O2+2H2O+4e-
优点: 由电极反应式可见,阳极未产 生消耗,因此使用中无需更换 电极和电解池,只需适时补充 电解液。
微氧仪原理

微氧仪原理微氧仪是一种可以检测微量氧气浓度的仪器,它在医疗、生物科学、环境监测等领域有着广泛的应用。
微氧仪的原理是基于氧气在电化学传感器上的反应来实现的,下面我们将详细介绍微氧仪的原理。
首先,微氧仪的核心部件是电化学传感器,它通常由工作电极、参比电极和电解质组成。
当微氧仪处于工作状态时,工作电极上的氧气会与电解质发生氧化还原反应,产生电流信号。
这个信号会被传感器转换成氧气浓度的数据,然后输出给显示屏或者其他设备。
其次,微氧仪的原理基于氧气在电化学传感器上的氧化还原反应。
当氧气分子接触到工作电极时,它会接受电子并与电解质中的离子发生反应,产生氧化还原反应。
这个反应会产生电流,电流的大小与氧气浓度成正比。
因此,通过测量电流的大小,微氧仪就能够准确地检测出氧气的浓度。
另外,微氧仪的原理还涉及到参比电极和电解质。
参比电极通常被设置在与工作电极相同的环境中,它的作用是提供一个稳定的电势参考,使得工作电极的电势可以被准确地测量。
而电解质则是用来传递氧气分子和电子之间的反应,促进氧化还原反应的进行。
总的来说,微氧仪的原理是基于电化学传感器上氧化还原反应的原理,通过测量反应产生的电流来实现对氧气浓度的检测。
这种原理使得微氧仪具有了高灵敏度、高准确度和快速响应的特点,使其在各种领域得到了广泛的应用。
除了以上介绍的原理,微氧仪的工作还受到温度、湿度、压力等环境因素的影响。
因此,在使用微氧仪时,需要对环境因素进行校准和补偿,以确保检测结果的准确性。
总而言之,微氧仪是一种基于电化学传感器原理的氧气浓度检测仪器,它通过测量氧化还原反应产生的电流来实现对氧气浓度的准确检测。
在实际应用中,需要注意环境因素对微氧仪工作的影响,以确保检测结果的准确性和可靠性。
微量氧分析仪

微量氧分析仪微量氧分析仪是一种关键的分析工具,被广泛用于各个领域的气体分析研究和应用。
本文将介绍微量氧分析仪的原理、应用领域以及未来发展趋势。
微量氧分析仪是一种能够精确测量气体中氧含量的仪器。
它主要通过采用基于电化学或光学技术的方法来测量气体中的氧气浓度。
其原理是利用氧气与电极或传感器之间的反应来测量氧气的浓度。
当氧气与电极或传感器发生化学反应时,会产生一定的电位变化,通过测量这个电位变化可以确定气体中氧气的浓度。
微量氧分析仪被广泛应用于环境监测、工业生产、医疗诊断和科学研究等领域。
在环境监测方面,微量氧分析仪可以用于监测大气中的氧气浓度,以评估空气质量和环境变化。
在工业生产中,微量氧分析仪可以用于监测燃烧过程中的氧气浓度,以保证生产过程的安全和效率。
在医疗诊断方面,微量氧分析仪可以用于血氧测量,以评估患者的呼吸功能和血氧饱和度。
在科学研究中,微量氧分析仪可以用于各种实验室实验,以帮助研究人员深入了解氧气在不同环境中的行为和作用。
随着科学技术的不断进步,微量氧分析仪正呈现出一些新的发展趋势。
首先,微量氧分析仪的测量精度正在不断提高。
新的技术和材料的应用使得微量氧分析仪能够更加精确地测量氧气浓度,从而满足更高要求的实验和应用需求。
其次,微量氧分析仪的尺寸正在变得越来越小。
微型化的设计使得微量氧分析仪更加便携和灵活,在现场实验和移动应用中更加方便使用。
此外,微量氧分析仪的可靠性和稳定性也在不断提高,使得其在长期运行和复杂环境下的应用更加可靠和稳定。
未来,随着人们对环境和健康问题的关注不断增加,微量氧分析仪的应用领域还将进一步拓展。
例如,微量氧分析仪可以用于研究氧气在海洋和土壤中的分布和变化,以进一步了解全球气候变化和生态系统的健康状况。
此外,微量氧分析仪也可以用于检测和监测罕见气体和有毒气体,以保障工作场所和生活环境的安全。
总结而言,微量氧分析仪是一种重要的分析工具,已经广泛应用于各个领域的气体分析研究和应用。
氧分析仪的原理

氧分析仪的原理氧分析仪是一种用于测量气体中氧气浓度的设备。
其原理基于氧气与电极表面上的电极催化剂发生氧化还原反应的特性。
以下为氧分析仪的工作原理及相关原理解释:1. 导电板原理:氧分析仪中的电极通常使用导电度高的材料,如铂或金等。
当氧气与电极表面接触时,氧分子会被电极上的催化剂氧化,并释放出电子。
这些电子会通过电极进入导电板,形成电流。
2. 电化学传感器原理:在氧分析仪中,常用的传感器为电化学传感器。
这种传感器通常包含一个工作电极、一个参比电极和一个计数电极。
工作电极上涂有一种催化剂,能够加速氧气的还原反应。
参比电极用于提供一个参考电位,以保持电解液的稳定,计数电极用于测量电流的大小。
3. 极化原理:为了加速氧气与电极的反应,电化学传感器通常需要加入一个外部电势,即极化电势。
这种电势可以通过外部电源(如电池)或内置的电势提供机制产生。
极化电势会使电极表面形成一个电场,加速氧气的还原反应。
4. 氧化还原反应原理:氧气在电极表面发生氧化还原反应,即将氧气分子还原成离子即O2-。
这个反应是可逆的,因此在氧气浓度较高时,产生的电流也较高;而在氧气浓度较低时,产生的电流较低。
5. 电流测量原理:氧分析仪通常会测量电流的大小,通过电流值来表示氧气的浓度。
这可以通过电流表、电压表等设备进行测量。
测量的结果可以通过数码显示器或计算机等设备进行显示和记录。
总结起来,氧分析仪通过利用氧气与电极表面上的催化剂发生氧化还原反应来测量气体中氧气的浓度。
这一原理基于电化学传感器的工作机制,通过测量氧气化合物与电极发生的电流大小来获得氧气的浓度信息。
微量氧分析仪测气体中微量氧-分析方法(2)

微量氧分析仪测定高纯气体中微量氧含量作业指导书一.适用范围本仪器适用于钢瓶或管道N2 、H2 、Ar等气体中微量氧含量的测定,氧含量应在5ppm左右二.质量标准参照国标《GB/T 14602电子工业用气体氯化氢》检测方法。
三.测试原理它是利用氧化锆元件为检测器的关键部件,以它为主体构成测氧电池,包括氧化锆管及涂制在管底部的钼电极和电极引线,电极引线可将信号引出;加热炉用于加热氧化锆管,使它恒定在设定温度(780±10℃)上;标气管用于接通标气,校准探头;热电偶用于测量氧电池中的温度,接入变送器温控系统;接线板设有信号、热电偶和加热炉三对接线柱,其它还有过滤器、安装法兰和探头外壳。
如图1所示,在氧化锆管底的内外表面有两个铂电极,即参比电极和测量电极,分别带有两根铂引线,构成一个氧化锆测氧电池,即氧浓差电池,它在铂电极的反应原理是O2+4e→2O2-;2O2-→O2+4e ,于是,两电极间就形成了电位差,组成了浓差电池。
三.仪器设备美国GPR-1200MS微量氧分析仪四、量程的选择仪表调试. 按MENU菜单,仪器显示如下:MAIN MENU 中文主菜单AUTO SAMPLE 自动样品量程MANUAL SAMPLE 手动样品量程SPAN CALIBRATION 量程标定ZERO CALIBRATION 零点标定DEFAULT SPAN 默认量程DEFAULT ZERO 默认零点仪器面板兰色键是确认键, 黄色键是上﹑下键,绿色键是菜单键.1、自动样品量程:按黄键上﹑下选择AUTO SAMPLE按兰色键确认,显示如下:2、手动样品量程:按黄键上﹑下选择MANUAL SAMPLE按兰色键确认,显示如下:有五档量程,用户根据样气的浓度选择合适的量程的范围。
标定:(注意:测量时的样气压力,流量应与标定时的标气压力,流量一致)五、仪器的标定氧化锆电池老化、积灰、SO2和SO3对电池的腐蚀等许多干扰因素的影响,运行过程中,仪器参数将发生逐渐变化,而给测量带来误差,电池老化表现在内阻升高和本底电势增大两个主要参数上。
微量氧分析仪的原理

微量氧分析仪的原理微量氧分析仪是一种能够快速、准确地检测氧浓度的仪器,广泛应用于医药、食品、气体等领域。
本文将从原理方面介绍微量氧分析仪的工作原理。
氧的检测原理微量氧分析仪能够实现氧的检测,是因为它利用了化学或物理特性与氧浓度之间的关系。
具体来说,微量氧分析仪通过氧与其他化合物发生化学反应,或是利用氧在电极上反应的特性来实现氧的检测。
以利用化学反应实现氧检测的氧化酶法测氧为例。
在氧化酶法测氧中,微量氧分析仪的传感器会使用氧化酶将氧与酶结合,生成氢过氧化物或醛酮,这个过程会产生电信号。
当氧越多,产生的电信号也越强,微量氧分析仪就会获取到较高的氧浓度。
而当氧浓度变低,产生的电信号也会随之减弱。
通过测量产生的电信号来确定氧浓度的变化。
微量氧分析仪的工作原理微量氧分析仪通常包含测量头、信号处理器、显示器等主要部件。
整个系统需要高精度、高速度、低噪声等要求。
测量头测量头是微量氧分析仪中最重要的部件,主要用于检测氧浓度。
测量头通常是一个由多种材料组成的复杂结构,其中包括了灵敏的传感器和化学反应所需要的酶类等物质。
测量头有许多种不同的设计,包括膜式传感器、柱式传感器、电化学氧传感器等等,每一种都有其独特的优势和应用范围。
其中,电化学氧传感器是应用最为广泛的一种,其最为重要的部件是氧化还原电池(Redox Cell)。
氧化还原电池本身由两个半电池(Half Cells)组成,其中一个半电池充满参比电液(Reference Electrolyte),另一个半电池则充满电解质(Electrolyte)。
当氧分子被还原或氧化时,氧化还原电池就会产生电位差,这个电位差会被测量并转换成电信号,最终显示在仪器的显示屏上。
信号处理器微量氧分析仪的信号处理器主要是对测量头产生的电信号进行处理和分析,并将处理后的信号输出到显示器上。
信号处理器可以使用数字或模拟电路来实现,其目的是将获得的电信号转换成更便于分析、计算的形式。
想要得到高精度的氧分析结果,需要使用高质量的信号处理器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微量氧分析仪分类特点及原理介绍
微量氧分析仪主要用于测定氧气含量,是一种非常重要的分析仪器。
经过多年
的发展,微量氧分析仪已经形成了多种分类,每种分类都具有一些自身的特点。
本文将对微量氧分析仪的分类和原理进行介绍。
一、微量氧分析仪分类
1.电化学型
电化学型微量氧分析仪采用电化学传感器测定氧气,将电化学传感器放置在样
品环境中,当氧气分子到达传感器表面时,这些分子会与电化学传感器的电极反应,产生电流。
通过检测电流强度可以确定氧气的含量。
电化学型微量氧分析仪使用方便、响应速度快、准确度高,是最常用的微量氧
分析仪之一。
但是该型号微量氧分析仪价格较高,需要定期校准,无法分析高温和富氧气体等样品。
2.荧光型
荧光型微量氧分析仪利用氧气对感光物质的荧光强度的影响来测定氧气的含量。
荧光型微量氧分析仪可以分析各种气体,是最常用的非电化学传感器微量氧分析仪之一。
该型号微量氧分析仪价格适中,操作简单,可靠性高,但是使用寿命较短,无
法分析灰色气体和高浓度氧气。
3.红外型
红外型微量氧分析仪利用氧气对特定波长红外线的吸收能力,通过测量吸收光
的强度来分析氧气的含量。
该型号微量氧分析仪可分析多种气体,但是灵敏度较低,需要较高的样品流速以确保准确性。
4.恒温型
恒温型微量氧分析仪利用恒定温度下氧气的扩散速率与氧气含量成线性关系的
原理,通过测量氧气分子在样品管中扩散的时间来分析氧气的含量。
该型号微量氧分析仪具有灵敏度高、稳定性好和准确度高等特点,但是对样品温度要求苛刻,需要定期校准以确保准确性。
二、微量氧分析仪原理
微量氧分析仪的原理是根据氧气分子与特定物质的相互作用产生的信号来确定
氧气含量。
这些信号可以是电化学反应、荧光强度、红外吸收或氧气扩散时间等。
一般情况下,微量氧分析仪会设置一个样品室和一个控制仪器。
样品室用来将样品气体与探头接触,探头通常是一根指向样品室的电极,用来感应与样品气体反应后产生的电流或荧光。
控制仪器则用来记录和分析这些信号,并计算出氧气的含量。
三、结论
微量氧分析仪是一种非常重要的分析仪器,它可以分析氧气含量以及相关的数据。
根据不同的使用需求,不同类型的微量氧分析仪具有各自特点和适用场合。
在选择时需要根据具体要求进行选择。
同时,在使用微量氧分析仪前,应该熟悉相关的操作和校准程序,以确保准确性和可靠性。