氧气分析仪的特点与原理
浅谈几种氧分析仪的检测原理

浅谈几种氧分析仪的检测原理1、磁式氧分析仪与磁力机械式氧分析仪(1)热磁式氧分析仪检测原理。
检测器置于高于环境温度的恒温腔体内,检测器处设有一恒定磁场,当要检测的样品气体从检测器的检测室外流过时,磁场将高磁化率的氧气吸入检测室内,进行检测。
检测室内的检测元件一般为铂丝,铂丝上通有一恒定的加热电流,氧气进入检测室到铂丝上被加热,磁化率迅速变小,之后被新进入的氧气推出检测室。
样品气体中氧含量不同,进入/排出检测室铂丝处的氧气量不同,从铂丝上带走的热量也不同,*终导致铂丝上的电阻值变化,检测铂丝电阻体的阻值即可间接测量气体中的氧含量。
(2)磁力机械式氧分析仪检测原理。
检测器/磁铁组件置高于环境温度的仪表恒温腔体内,检测器中有一对充满氮气的空心玻璃测试体,悬挂在不均匀磁场中的一根铂镍合金丝带上,由于磁悬浮效应,测试体的两个球受到偏转力,产生偏转力矩,这个偏心力矩和包围测试体的气体的体积磁化率成正比。
即和被测气体中氧气的含量成正比。
这两种类型的氧分析仪仪表基础原理都是利用氧气的顺磁性,它们不适用于测量背景气体中含有高磁化率气体(如NO、NO2)的场合。
但这类氧分析仪反应速度快,稳定性好,不消耗被测气体。
2、电化学式氧分析仪电化学式氧分析仪是基于氧气和传感器阴极之间的电化学反应来进行测量的。
它的传感器是一个电解池,外加的直流电加在电解池的阴、阳极之间,电解池内充以电解液,样品气通过扩散板或半透膜到达阴极,并在阴极产生电解反应而被还原,产生相应的电流,电流的大小与样品气体中氧气的浓度成正比关系。
这类仪表的应用范围比较宽,根据结构不同,即可测量气体中的氧含量,也可以测量溶液中溶解氧的氧含量。
缺点是:氧分析仪传感器工作场所温度范围窄、压力不能高,传感器寿命短等。
另外由于电解液一直在消耗,仪表稳定性较差,漂移偏大。
3、氧化锆式氧分析仪氧化锆分析仪的检测原理是氧浓差电池。
在氧化锆材料中添加一定的添加剂后通过高温烧结,在一定的温度下成为氧离子的固体电解质,在元件的内外侧焙烧铂电极就成了氧化锆氧传感器。
激光氧分析仪原理

激光氧分析仪原理
激光氧分析仪是一种利用激光作为光源,基于激光与被测气体分子之间的相互作用来测量氧气浓度的仪器。
其工作原理主要包括光电子传感器、光源和信号处理系统三个部分。
首先,激光氧分析仪通过一个激光器产生一束特定波长的激光光源。
激光光源的波长通常根据待测气体的吸收线选择,以保证光与气体具有较高的吸收率。
然后,激光光源经过透镜等光学装置,形成一束平行光经进样口投射到气体测量室中。
在气体测量室中,待测气体与激光光束相互作用。
当激光光束经过气体时,气体分子中的氧分子吸收激光光束的能量,从而导致光的强度发生衰减。
激光强度衰减的程度与氧气浓度成正比关系。
通过测量激光出射口的光强度变化,就可以间接测量氧气的浓度。
最后,光电子传感器接收激光出射口的光,将光信号转换成电信号。
随后,信号处理系统会对电信号进行放大、滤波等处理,以获得更加精确的氧气浓度值。
通常,信号处理系统还会经过校准和数据处理等步骤,以提高测量精度和可靠性。
总之,激光氧分析仪通过激光光源与待测气体的相互作用,通过测量激光强度的变化来间接测量气体中氧气的浓度。
其工作原理主要基于激光与气体分子的吸收特性,通过光电子传感器和信号处理系统将光信号转换成电信号,并最终得到氧气浓度值。
电化学氧分析仪原理

电化学氧分析仪原理
电化学氧分析仪是一种常用的仪器,用于测量气体或液体中的氧浓度。
其基本原理是利用电化学反应,将被测氧与电极之间发生的氧化还原反应转化为电流信号,从而间接测量氧含量。
电化学氧分析仪中主要包括两个关键组件:工作电极和参比电极。
工作电极通常使用纯铂电极,而参比电极则可以采用银-
银氯化银电极。
两个电极之间的电解质溶液被称为电解液。
当氧气存在于电解液中时,氧气会与纯铂电极发生氧化反应。
在正向电压作用下,纯铂电极上的氧化反应将导致电流的流动。
同时,在参比电极上也会发生相应的反应。
通过测量这两个电极上的电流差异,可以间接得出氧气的浓度。
为了确保测量的准确性和稳定性,电化学氧分析仪通常还设有温度补偿装置。
氧气浓度与温度之间存在一定的关系,因此在测量时需要记录并修正温度变化对测量结果的影响。
总之,电化学氧分析仪通过测量电流差异来间接测量气体或液体中的氧含量。
通过合理设计电化学反应和电极材料,以及进行温度补偿,可以提高测量的准确性和可靠性。
氧分析仪测量原理

氧分析仪测量原理氧分析仪是一种用于测量空气中氧气浓度的仪器,它在许多领域都有着重要的应用,比如环境监测、医疗设备、工业生产等。
那么,氧分析仪是如何进行氧气浓度的测量呢?接下来,我们将详细介绍氧分析仪的测量原理。
首先,氧分析仪的测量原理基于电化学传感器。
电化学传感器是一种利用电化学原理来测量气体浓度的传感器。
在氧分析仪中,常用的电化学传感器是氧气传感器。
氧气传感器内部含有一个氧化还原电极和一个参比电极。
当氧气通过传感器时,氧气分子会在氧化还原电极上发生氧化还原反应,产生电流。
通过测量这个电流的大小,就可以确定氧气的浓度。
其次,氧分析仪的测量原理还涉及到温度和压力的补偿。
由于氧气传感器的工作性能受到温度和压力的影响,因此在测量氧气浓度时需要对温度和压力进行补偿。
通常情况下,氧分析仪会配备温度和压力传感器,用于实时监测环境温度和压力,并对氧气浓度进行相应的修正。
另外,氧分析仪的测量原理还包括校准和线性化。
在使用氧分析仪之前,需要对仪器进行校准,以确保其测量结果的准确性。
校准的过程包括零点校准和量程校准,通过这些校准可以使氧分析仪的测量结果更加可靠。
此外,还需要进行线性化处理,以消除传感器非线性带来的误差,提高测量的精度。
最后,氧分析仪的测量原理还需要考虑氧气浓度的显示和输出。
测量到的氧气浓度需要以数字或者图形的形式显示出来,以便操作人员进行实时监测。
同时,还需要将测量结果输出到控制系统或者数据记录设备中,以便进行进一步的处理和分析。
综上所述,氧分析仪的测量原理涉及到电化学传感器、温度和压力补偿、校准和线性化以及浓度显示和输出等多个方面。
通过对这些原理的理解,可以更好地使用和维护氧分析仪,确保其测量结果的准确性和可靠性。
如何测定空气里氧气含量

如何测定空气里氧气含量测定空气中氧气含量的常用方法是使用氧气分析仪。
氧气分析仪是一种专门用于测量空气中氧气浓度的仪器,在医疗、环境保护、工业等领域有着广泛的应用。
一、传感器原理氧气分析仪的核心部分是氧气传感器,它采用了不同的物理或化学原理来测量氧气浓度。
常见的氧气传感器主要有以下几种:1.电化学氧气传感器:通过电化学反应来测量氧气浓度,其中最常用的是膜式氧气传感器。
它包含一个氧气透气膜和两个电极,当氧气透过膜进入传感器时,会引发电化学反应,产生电流信号,进而计算出氧气浓度。
2.闪光法氧气传感器:利用氧气对光线的吸收特性进行测量。
传感器内部包括一个发光二极管(LED)和一个光敏探头,通过测量光敏探头反射回来的光的强度变化,来计算氧气浓度。
3.催化型氧气传感器:利用催化剂对氧气的催化反应来测量氧气浓度。
传感器内部包含一个催化剂,当氧气通过传感器时,会引发催化反应,产生一定的电流信号,进而计算出氧气浓度。
二、氧气浓度测量步骤使用氧气分析仪测定空气中氧气含量的一般步骤如下:1.操作前准备:首先,将氧气分析仪接通电源,并进行预热。
一般来说,氧气分析仪需要预热一段时间,以达到稳定的测量状态。
2.校正:校正氧气分析仪是保证测量准确性的重要步骤。
校正根据不同的仪器有所不同,但一般需要使用标准氧气浓度气体进行校正。
通过校正,能够消除可能存在的传感器漂移或其他误差。
3.采样:将氧气分析仪的气体进样口放置在待测空气中,保证充分接触,并等待一定时间,使得气体样品充分稳定。
4.读取测量值:通过仪器上的显示屏或输出接口读取测量的氧气浓度值。
不同的氧气分析仪会有不同的显示方式,可以是百分比浓度、毫升浓度等不同单位。
5.数据处理与记录:根据需要,可以进行数据处理和记录,如保存测量数据、计算平均值等。
这可以帮助后续分析和总结。
三、注意事项在进行氧气浓度测量时,需要注意以下几点:1.确保仪器的稳定性和准确性:在使用氧气分析仪之前,要保证仪器运行正常,检查传感器的有效期限是否过期,避免因为仪器本身问题而导致测量误差。
氧气分析仪的工作原理 分析仪工作原理

氧气分析仪的工作原理分析仪工作原理氧气分析仪接受完全密封的燃料池氧传感器。
燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。
在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。
O2+2H2O+4e?4OH?2Pb+4OH?2Pb(OH)2+4eKOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电极不需定期清洗或更换。
样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决议于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量,这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。
通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。
接受此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了很多的样气处理系统。
它比老式“金网—铅”原电池测氧更快速,不需要漫长的开机吹除过程,“金网—铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中,传感器可以特别稳定牢靠的工作很长时间。
事实上,燃料电池氧传感器是完全免维护的。
烟气分析仪的应用和使用注意事项烟气分析仪是利用电化学传感器连续分析测量CO2、CO、NOx、SO2等烟气含量的设备。
紧要用于小型燃油、燃气锅炉污染排放或污染源相近的环境监测手持使用。
烟气分析仪应用:(1)广泛适用于各种工业燃烧设备的维护与监测(如各类锅炉等)(2)燃烧器(燃气热水器、燃气壁挂炉等)的烟气、废气中的有毒有害气体(CO、NOX、SO2)定量检测,以及燃烧装置的燃烧情形分析。
(3)工业应用领域中的维护和修理工程师/锅炉调试人员。
烟气分析仪使用注意事项有:1.烟气分析仪在使用时,对烟气温度和环境温度都有要求,假如温度超出烟气分析仪规定的上限,不仅会影响测量结果,还会损坏温度传感器和相关部件2.为了保护烟气分析仪,严禁将烟气分析仪及其探头与溶剂同放,也不要用干燥剂3.不要将烟气分析仪的手柄和馈线放在70℃的温度场合4.烟气分析仪需在使用前和使用后进行校准,在使用频次较高的时候适当考虑布置期间核查5.仪器显现死机、停电等原因导致仪器重启时,仪器可能会显现无法归零,数据偏移等现象,应现场用标气重新标定后再进行测量,避开数据产生误差。
氧气纯度分析仪

氧气纯度分析仪
氧气纯度分析仪是一种用于检测氧气纯度的仪器。
在工业、制药、医疗等领域,氧气纯度是一个重要的指标,因为氧气纯度的高低直接影响到工业生产、制药质量和医疗效果。
因此,对氧气纯度进行精确、准确的检测是非常重要的。
氧气纯度分析仪的工作原理通常是通过一种传感器来检测氧气纯度。
传感器通常采用电化学或光学传感原理。
电化学传感器是将氧气通过一种特殊的材料,使其与传感器表面上的电极反应,形成一种电信号,通过检测这种电信号的变化来判断氧气纯度。
而光学传感器则是利用氧气分子对特定波长的光线的吸收来测量氧气纯度。
根据不同的使用需求,氧气纯度分析仪可以采用不同的检测原理和技术,并且可以具备多种功能,例如记录数据、显示测量结果、报警等。
同时,氧气纯度分析仪还可以根据具体需求进行不同的配置,例如选择不同的探头、选择不同的显示屏等。
电化学氧分析仪原理

电化学氧分析仪原理电化学氧分析仪(Electrochemical Oxygen Analyzer)是一种用于测量气体中氧气浓度的仪器。
它基于电化学原理,利用电极与气体中的氧气发生氧化还原反应,从而测量气体中的氧气浓度。
电化学氧分析仪的核心部件是氧电极或双极结构,其中一个电极是工作电极(working electrode),另一个电极是对电极(reference electrode)。
工作电极通常采用氧化铂(PtO)或氧化银(AgO)等催化剂材料制成,它能够促进氧气与电子之间的氧化还原反应。
对电极通常采用银氯化银(Ag/AgCl)电极或铂黑电极,用来提供电化学反应的参考电位。
工作电极与对电极之间存在一个电压差,称为工作电位(working potential)。
当氧气进入氧电极时,与工作电极上的催化剂发生反应,发生氧化还原反应,电荷转移导致电流的流动。
该电流与氧气分子的浓度成正比,经过放大和转换后可以得到氧气浓度的数值。
电化学氧分析仪的工作原理基于极化电流(polarization current)和充放电过程。
极化电流是氧电极表面发生的氧化还原反应所产生的电流,它与氧气分子的浓度成正比。
充放电过程是指在工作电位下,氧电极上的催化剂表面上氧气和水反应形成氧化物(如PtO)的过程,以及稍后由氧化物还原为氧气的过程。
这种充放电过程可以通过在电极表面不断施加外加电压的方式进行,从而得到氧气分子的浓度信息。
除了工作电极和对电极外,电化学氧分析仪还包括温度传感器和流量控制装置。
温度传感器用于测量气体的温度,以确保电化学反应在适宜的温度条件下进行。
流量控制装置用于控制气体的流速,以保证气体在电极表面停留的时间足够长,从而提高测量的准确性。
电化学氧分析仪具有快速、灵敏、可靠和经济的特点,广泛应用于空气监测、工业过程控制、环境保护、生物医学研究等领域。
它可用于测量各种气体中的氧气浓度,例如空气中的溶解氧浓度、液体中的氧气浓度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧气分析仪的特点与原理
氧气分析仪具有测量快速、准确、高精度的特点,它采用了先进的燃料池传感器测量氧含量。
由于传感器完全密封,所以传感器是免维护的。
通常使用寿命可达三到五年。
是老一代微氧仪的更新换代产品。
并且与先进的单片机技术,流量控制,温度补偿,压力控制系统想结合,使之具有更好的人机操作平台和广泛的使用性能。
仪器采用独特的过压保护装置,当气体流量突然增大的时候,过压保护动作,气体进入传感器的通道被切断,从而很好的保护了传感器避免过压损坏。
同时由于该仪器设计时采针阀可将传感器在不使用的条件下密封,防止传感器在空气中消耗并且可以达到对进样管路进行吹扫,以达到清扫进样管路的目的,更使它在快速、大量分析作业众发挥重要作用。
仪器工作原理:
氧气分析仪采用完全密封的燃料池氧传感器是当前国际上zui先进的测氧方法之一。
燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。
在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。
O2+2H2O+4e4OH
2Pb+4OH2Pb(OH)2+4e
KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电
极不需定期清洗或更换。
样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量;
这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。
通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。
采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。
它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程;
“金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中;
传感器可以非常稳定可靠的工作很长时间。
事实上,燃料电池氧传感器是完全免维护的。
标签:
氧气分析仪。