远探测反射波声波测井方法研究进展ppt
合集下载
《第六章声波测井》PPT课件

第六章 声波测井 (Acoustic log)
声波测井 ➢研究的对象:井孔周围地层或其它介质的 声学性质(速度、能量、频率变化等)
➢物理及地质基础:不同岩石的弹性力学性质 不同,使其声波传播速度、衰减规律不同
➢研究方法:在井内发射声波,使声波在地层
或井内其它介质中传播,测量声波在传播时的 速度或幅度变化
DT T L P3TP4(TP 3TP 1)
2l
T1
T2
2、横波时差 DTs
横波时差的计算方法与纵波相同,关键 是确定横波首波。
(1)确定横波首波初始点出现的时间范围
VP /Vs
2(1) 12
vp vs 1.5~1.8
纵波初始点到达时间为tp,则横波初始点
出现时间的范围是1.5tp ~ 1.8t。p
提取,对横波而言是噪声,波速与横波 相近 (2)幅度不大
(3)有频散,相速度 > 群速度
(4)有截止频率
3、斯通利波(管波) 是沿井轴方向传播的流体纵波与井壁地层 滑行横波相互作用产生的。质点运动的轨 迹也是椭圆,长轴在井轴方向。
1
Vt Vf[1( f b)V (f VS)]2
Vt Vf[12(1)K ( E) ]1 2
令 T'(x)0 则v2clo2sxv1lcsion2xsx
sin x v1 v2
xarcsivn1 *
v2
(2)使滑行波先于直达波到达R —— 加大源距L(第一条件)
A T
B
*
滑行波:
AB BC CD
t1
v1
v2
v1
L
C
*
v2 v1 D R
v1c2ols*
L2ltg*
v2
声波测井 ➢研究的对象:井孔周围地层或其它介质的 声学性质(速度、能量、频率变化等)
➢物理及地质基础:不同岩石的弹性力学性质 不同,使其声波传播速度、衰减规律不同
➢研究方法:在井内发射声波,使声波在地层
或井内其它介质中传播,测量声波在传播时的 速度或幅度变化
DT T L P3TP4(TP 3TP 1)
2l
T1
T2
2、横波时差 DTs
横波时差的计算方法与纵波相同,关键 是确定横波首波。
(1)确定横波首波初始点出现的时间范围
VP /Vs
2(1) 12
vp vs 1.5~1.8
纵波初始点到达时间为tp,则横波初始点
出现时间的范围是1.5tp ~ 1.8t。p
提取,对横波而言是噪声,波速与横波 相近 (2)幅度不大
(3)有频散,相速度 > 群速度
(4)有截止频率
3、斯通利波(管波) 是沿井轴方向传播的流体纵波与井壁地层 滑行横波相互作用产生的。质点运动的轨 迹也是椭圆,长轴在井轴方向。
1
Vt Vf[1( f b)V (f VS)]2
Vt Vf[12(1)K ( E) ]1 2
令 T'(x)0 则v2clo2sxv1lcsion2xsx
sin x v1 v2
xarcsivn1 *
v2
(2)使滑行波先于直达波到达R —— 加大源距L(第一条件)
A T
B
*
滑行波:
AB BC CD
t1
v1
v2
v1
L
C
*
v2 v1 D R
v1c2ols*
L2ltg*
v2
最新声波测井1ppt课件

•
在全球,超声波广泛运用于诊断学、治疗学、工程学、生
物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范
畴。
• (一)工程学方面的应用:水下定位与通讯、地下资源勘查等
• (二)生物学方面的应用:剪切大分子、生物工程及处理种子等
• (三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超 等
• (四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科 等
声波
➢1992年11月24日,桂林上空发生了一起空难, 141人死亡,成为中国民航史上最惨烈的飞机失 事事件。当事件的原因经多方解释而未肯定之时, 中国声学研究所的专家,提出了存在着因“次声 波”的作用而致使飞机坠毁的可能性。
声波
➢ 科学研究表明:人体的内脏,有其固有的振动频率,而这种频率 也在0.01—20赫兹之间,也就是说,它和次声波的频率相似。这 样一来,当外来的次声波不管是自然形成的,还是人为制造的, 一旦它的振动频率与人体内脏的振动频率相同或接近时,就会引 起各种脏器的共振,这一共振便会使人烦躁、耳鸣、头痛、失眠、 恶心、视觉模糊、吞咽困难、肝胃功能失调紊乱;严重时,还会 使人四肢麻木、胸部有压迫感。特别是与人的腹腔、胸腔和颅腔 的固有振动频率一致时,就会与内脏、大脑等产生共振,甚至危 及性命。
声波
超声波的特点: • 1、超声波在传播时,方向性强,能量易于集中 • 2、超声波能在各种不同媒质中传播,且可传播足够远
的距离。 • 3、超声与传声媒质的相互作用适中,易于携带有关传
声媒质状态的信息(诊断或对传声媒质产生效应。(治 疗)
声波
超声波:
• 超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能 量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的
声波测井-声速测井幻灯片PPT

(5)输出的测井曲线 (一条声波时差曲线)
时差 s/m
二 影响时差的因素
1 井径的影响
① R1(处在D增加),R2(位于正常或缩小)井段时,滑行 波到达R1的时间增加,而到达R2的时间不变,因此时 差下降。
② R1位于正常(或缩小井段),R2位于井径扩大,滑行波 到达R1的时间不变,而到达R2的时间增加,因此时差 增加。
R2
V 2 V 1
EC E1 R C2R
t2 t1 t2
V 2 V 1
T2
从图中所知:CR2<BR1,t1<t,ER1>CR2,
t(t1t2) 2
平均后的补偿声速时差值不变。 同理:在井径扩大的顶界面也如此,对仪器的倾斜也有
补偿作用.
四 长源距声波测井
发射器到接收器的距离为8ft、10ft、12ft
对膏岩剖面有很强的分辩力,由于岩盐和无水石膏在时差 曲线上区别很大,很容易识别.
3 计算孔隙度
(1) 体积物理模型 根据测井方法的探测特性和岩石的各种物理性质上的 差异,把岩石体积分成几个部分,然后研究每一部分对 岩石宏观物理量的贡献,并视宏观物理量为各部分贡献 之和。即:
测井参数×总体积=∑测井参数×相应体积
费尔马原理:声波在一般介质中传播时,所经过的 任意两点的传播路径满足所用时间最小的传播条件, 这就是费尔马时间最小原理,这一原理是从光波动 学中借鉴而来的。在介质的声学性质已知的情况下, 可以根据费尔马原理来确定声波在经过介质的任意 两点时所走的路径,还可以确定声波的走时,即声 波经过这两点时所用的时间。
(4)时差的表达式 时差:在介质中声波传播单位距离所用的时间
t t2 t1 (A v 1 B v B 2 D v D 1 ) (A v F 1 B v B 2 C v C 1 ) E
《声波测井》PPT课件

1.76
易吸收,穿透能力小
γ:光子 ,不带电,
质量小,穿透能力强。
放射性测井
3. 射线与物质的相互作用 能在衰变时发射光子的元素称为伽马辐射体。
地层中能发射伽马光子的核素主要是U、Th及其衰变 产物和钾的放射性同位素K-40。伽马光子与物质发
生相互作用的过程中,能量逐渐降低。如果射线的能 量<30Mev, 伽马光子与接触物质间将可能逐级产生
lectron effect occurs, which is first explicitl y explained by Albert Einstein
eγ
放射性测井
3.3 光电效应 : photoelectric effect if energy of γ ray less than 0.51Mev,photoe
Mev
e+
放射性测井
3.1 Electron Pair Effect
e-
Eγ≥1.022Mev
e+
放射性测井
3.2 康普顿效应:Compton effect
With the attenuation of γ energy, the impac tion capability of γ is decayed, when its energy is between 0.51Mev to 1.022Mev, the Computon effec t occurs.
1. 波的传播
入射波
声波测井新技术
入
反
射
射
角
角
反射波
折射角
介质1
介质2 折射波
声波测井新技术
2. 产生滑行波的条件
折射定律: Sin VP1 Sin1 VP2
《声速测井》PPT课件

2
VP
F1 A B
E
C
J1 F’
O’ D’
F
D
J2 E’
O’’ C’
A’
B’
F2
3、双发双收声系
〔2〕可消除深度误差 F1—J1、J2,实际深度点O’
h=-a tg c,实际深度H- a tg c F2—J2、J1,实际深度点O’’
h=a tg c,实际深度H+a tg c 实际O’O’’的中点就是仪器 记录点O,两者一致。即时差 平均值的中点〔岩层CC’的中
《声速测井》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
声波速度测井原理
1、单发单收声系
声波速度测井简称声速测井,测 量地层滑行波的时差△t〔地层纵波速 度的倒数,单位是μs/m或μs/ft〕。 这种下井仪器包括三个局部:声系、 电子线路和隔声体。声系由一个发射 换能器T和一个接收换能器R组成,其 中,发射器和接收器之间的距离称为 源距,声波测井声系的最小源距为1 米。电子线路提供脉冲电信号,触发 发射器T发射声波,接收器R接收声波 信号,并转换为电信号。
E R1
F'
F R2
E'
A' T2
C O'
D' D O'' C'
B'
双发双收声系构造示意图
声波速度测井原理
3、双发双收声系
测井时,上、下发射器交替发射声脉
冲,两个接收器接收T1、T2交替发射产生
声波速度测井PPT课件

井眼因素
井眼大小与形状
井眼的大小和形状对声波速度测井结果有直接影响。井眼过大会使声波在传播 过程中散射,导致速度降低。此外,井眼的形状也会影响声波的传播路径和速 度。
井眼内流体性质
井眼中的流体,如泥浆、水和油气等,对声波速度也有影响。流体的密度和声 波速度有关,密度越大,声波速度越高。
仪器因素
仪器分辨率
应用领域的拓展
随着技术的不断进步和应用需求的增加,声波速度测井技术的应用领域将进一步拓 展。
除了传统的石油和天然气勘探领域,声波速度测井技术还将应用于环境监测、矿产 资源勘探、地质灾害预警等领域。
随着技术的成熟,声波速度测井技术将逐渐成为地质勘查和工程勘察的重要手段之 一。
行业标准的制定与完善
为了规范声波速度测井技术的使用和 推广,相关行业标准和规范将不断完 善。
声波速度测井数据处理
数据预处理
对采集的原始数据进行滤波、 去噪和校准等处理,以提高数
据质量。
声波速度计算
根据测量得到的传播时间和距 离计算声波速度。
地层岩性识别
根据声波速度与地层岩性的关 系,对地层岩性进行识别和分 类。
结果解释与报告编写
将数据处理结果进行解释,编 写测井报告,为地质勘探和油
气开发提供依据。
复杂地质问题中的重要作用和应用前景。
05
声波速度测井的未来发展
技术创新与改进
声波速度测井技术将不断进行技 术创新和改进,以提高测量精度
和可靠性。
新型声波速度测井仪器将采用更 先进的信号处理技术和算法,以
增强对复杂地层的适应性。
未来声波速度测井技术将更加注 重智能化和自动化,减少人为干
预和操作难度。
子和双极子探头等。
7-声波测井PPT课件

由于泥浆声速v1与地层声速v2不同,所 以在泥浆和地层界面(井壁)上将发生声波反 射和折射,由于发射器可以视为点源,可在 较大角度范围内向外发射声波,故必有以临 界角i方向入射到井壁面上的声波,折射产生 沿井壁在地层中传播的滑行波。该滑行波的 传播必然引起泥浆中质点振动,并先后传到 两个接收器Rl、R2上,从而测量出地层的声 波速度。
.
21
2. 声波速度测井 Acoustic velocity logging
1)单发射双接收声速测井仪的测量原理
(1)单发射双接收声速测井仪简介
实际测井时,电子线路每隔一定的时间给发射 换能器一次强的脉冲电流,使换能器晶体受到激发 而产生振动,其振动频率由晶体的体积和形状所决 定。
目前,声速测井所用的晶体的固有振动频率为 20kHz。
.
R1 R2
23
2. 声波速度测井 Acoustic velocity logging
(2)单发射双接收声速测井仪的测量原理 需要指出的是,接收器接收到的声波,除了滑行波外,还有从声源经仪
器外壳和井内泥浆直接到达的直达波,以及由井壁反射而进入接收器的反射 波等,这些波共同构成一个延续的声波波列。为了保证接收器首先接收到滑 行波,就必须消除后面几种波的干扰,即不让这些波在滑行波之前到达。
对于完全线弹性体,正应力只与线应变有关,切应力只与切应变有关。
.
8
1.岩石的声学特性
1)岩石的弹性
(3)弹性力学常用参数
A、杨氏模量E
弹性体发生单位线应变时弹性体产生应力大小,亦即应力与应变之比。
杨氏模量的单位是 N/m2。
B、泊松比
E F A L L
弹性体在单轴外力作用下,当受力方向产生伸长时,自由方向缩小。
.
21
2. 声波速度测井 Acoustic velocity logging
1)单发射双接收声速测井仪的测量原理
(1)单发射双接收声速测井仪简介
实际测井时,电子线路每隔一定的时间给发射 换能器一次强的脉冲电流,使换能器晶体受到激发 而产生振动,其振动频率由晶体的体积和形状所决 定。
目前,声速测井所用的晶体的固有振动频率为 20kHz。
.
R1 R2
23
2. 声波速度测井 Acoustic velocity logging
(2)单发射双接收声速测井仪的测量原理 需要指出的是,接收器接收到的声波,除了滑行波外,还有从声源经仪
器外壳和井内泥浆直接到达的直达波,以及由井壁反射而进入接收器的反射 波等,这些波共同构成一个延续的声波波列。为了保证接收器首先接收到滑 行波,就必须消除后面几种波的干扰,即不让这些波在滑行波之前到达。
对于完全线弹性体,正应力只与线应变有关,切应力只与切应变有关。
.
8
1.岩石的声学特性
1)岩石的弹性
(3)弹性力学常用参数
A、杨氏模量E
弹性体发生单位线应变时弹性体产生应力大小,亦即应力与应变之比。
杨氏模量的单位是 N/m2。
B、泊松比
E F A L L
弹性体在单轴外力作用下,当受力方向产生伸长时,自由方向缩小。
声波测井PPT课件

裸眼井声波测井
第三节 声波测井仪 一、SLT-N系列声波测井仪的组成
声系(SLS) 电子线路短节(SLC) 一、常见的声系结构 二、SLT-N系列声波测井仪的探头结构 三、SLT-N工作原理及过程
SLT-N系列声波测井仪的探头结构
二元阵探头的特点:???
SLT-N工作原 理及过程:
T1
R4
测量原理
声系结构
T
套管波幅度 与水泥胶结 质量的关系
R
影响因素
测井时间的影响 水泥环厚度的影响 井的影响
CBL资料的应用
检查固井质量 确定水泥面位置 判断气层 确定套管断裂位置
声波变密度测井(VDL) (Variable Density Log)
绪论 可能到达接收探头的波 记录方式
Z1 越接近1,声耦合越好,声波易从介质1到
介质2中Z2 去。
§2 声波速度测井
测量及记录的参数 时差的定义 换能器(探头) 声系的设计 单发双收声系测量 原理
问题解答
影响时差曲线的主 要因素
井眼补偿声波测井
声波测井资料的应 用
时差即速度的倒数:t 1 v
时差亦称慢度(Slowness), 其单位是:微秒/米或微秒/英尺.
增益脉冲鉴别和计数电路 作用:对从地面输送下来的增益脉冲进行整
形、鉴别和计数。 电路组成:见P194和P195,主要由滤波、
可变增益放大器、峰值保持器 和电压比较器等组成。
接收放大器电路 作用: 组成:
接收放大器电路
SLT-N地面接口电路
作用 组成: 声波测井模块(SLM) 通用电子线路单元(GEU)
选通门电路 作用:1.7ms(第2相)
4.4ms(第3相)信号门 4.5ms(第3相)GR禁止 构成:见P192,由单稳态、门电路等组成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.如何接收低频波
• • • • • • • 实验方法:在半空间油槽内; 发射探头和激发条件不变,源距3.2m 改变接收探头的谐振频率,两种: 18KHz——谐振频率接近发射探头, 低频端灵敏度高,接收频带窄 40KHz——谐振频率高于发射探头 接收频带宽,灵敏度低(阵列:接收探 头谐振频率约50KHz)
一、如何激发低频波 (约10KHz)
• • • • • 问题 1、现有声学探头: 外径—60~70mm 谐振频率13~17KHz; 2、目的:不增加外 径,激发频率约 10KHz的低频波; • • • • 方法: 高压电脉冲激发, 幅度:4000V, 脉冲宽度:12.5、25、 40us,大于探头谐振 频率的半周期,“强 迫震动”
18KHz探头接收的波列和频谱
40KHz探头接收的波列和频谱
结论
• 较低频的探头接收约10KHz的声波信号 灵敏度高。 • 较高频的探头接收的声波信号的频带宽 • 远探测反射波声波测井的接收探头应该 用谐振频率低的18KHz以下, • 试制约15KHz的,接收低频窄频带信号
三,模拟井中低频声波信号能 传播多远
远探测反射波声波测井是有前 途的方法!
谢谢!
实验(三)源距的影响
• 在半空间油槽内,发射探头、接收探头 不变(13~17KHz发射、18KHz接收) • 激发条件不变:4000v,40us • 源距:2.9m、3.2m
测量记录波列、频谱
结论
• 源距增加,波列幅度(能量)减小; • 源距增加,频谱向低频端移动; • 物理解释:源距增加,复合(频率)波 中,高频成分首先衰减
• 所记录波列的频谱有两个峰值 (12.98KHz及8KHz ) • 源距增加频谱向低频端移动 • 源距越长低频峰值的相对幅度越大
本文结论
• 1,用高电压、宽脉冲可激发出频率接近 10KHz的低频波—可用于远探测反射波声波测 井; • 2,接收探头的谐振频率应该接近发射探头的谐 振频率,但应略高 • 3,在模拟井中可观察到一、二、三、四 • 五次反射波信号,折射传播距离为7~9m。 • 4,源距较长时才能看到反射波 • 远探测反射波声波测井声系:超长源距、低频 发射、低频窄频带接收
实验方法(二)全空间
• 发射探头(13~17KHz)和接收探头(18KHz) 不变; • 激发条件不变(4000v,40us); • 源距3.2m; • 在铝筒(长5.2m,外径102mm)中 • 全空间,
测量记录波列、频谱
结论
• 用高压宽脉冲可激发12.96、8KHz的信号, 其复合信号频率约10KHz —可用于远探 测反射波声波测井; • 激发电脉冲幅度降低(2000v、1000v)时, 波列幅度(能量)降低。
• 一次反射波在约1600us 处出现(负),随源距 增加,反射波到时后延—声学界面垂直 • 二次反射波在1825us处出现(正),与一次反射 波相位相反,(抵消) • 三次反射波在2100us 处出现,与一厂次反射波 同相位 ,(叠加) • 从水泥到水,反射系数为负值 • 一次和二次反射波:时间差250us ,距离0.8m • 地层模块声速3100m/s(时差323us/m) • 323x0.8=258us,与实测结果250us 接近
• • • • • • 实验条件:辽河油田水泥胶结刻度井 地层模块直径0.8m,声学界面:水和 地层模块 发射探头、接收探头、激发条件不变 源距:2.9m3.05m、3.20m、3.35m、 3.50m、3.65m、3.80m、3.95m
实验装置示意图
测量记录波列
频 谱
实验结果分析(到时和相位)
实验结果分析(传播距离)
• • • • • • • 一次反射波:3.88m 二次反射波:3.88+0.8=4.68m 三次反射波:4.68+0.8=5.48m 可看到四、五、六次反射波 水泥和水界面上反射系数-0.66, 按此折算传播距离:二次:7.09m 三次:8.3m;四次:9.51m
实验结果分析(频谱)
实验方法(一)半空间
• • • • • • 在半空间油槽内, 发射探头——13~17KHz, 接收探头——18KHz, 源距——3.35m 激发电脉冲:4000v; 持续时间:12.5、25、40us
所测记录波列
波列的频谱
结 论
1.窄脉冲(12.5us)激发宽频带信号 (10~30KHz) 2.宽脉冲激发窄频带、低频信号 (10KHz左右) 3.在半空间油槽内,测量记录板波、 表面波
远探测反射波声波测井 方法研究进展
楚泽涵、徐凌堂、尹庆文、柴细元
2003年7月
本文背景和目的
• 1、远探测反射波声波测井仪器研制 • —CNPC重点项目(大港测井公司) • 2、理论考察:用低频(约10KHz)波能接收 • 到远处(约10m)的反射波;资料解释有案例 • 3、问题、目的:实验考察 • 如何激发低频波? • 如何接收低频波? • 低频波在模拟井中传播多远?