EMl 滤波器的设计原理

EMl 滤波器的设计原理
EMl 滤波器的设计原理

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

EMI滤波器结构与分类

EMI滤波器结构与分类 一、LC滤波器(也称无源滤波器) LC滤波器是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波。 按滤波器的电抗元件结构区分,有T、L、π型滤波器。 选取的基本出发点是:用滤波器的电感与低的源阻抗或者负载阻抗串联,用滤波器的电容器与一个高的负载阻抗或源阻抗并联。以此保证阻抗最大失配的条件下,使滤波网络实际工作时,即有较大的插入损耗,又有最大的反射损耗,从而实现对EMI 信号的有效抑制。这样,EMI滤波器中的LC电路仍可以维持其谐振滤波特性,同时也能够部分补偿或削弱源阻抗和负载阻抗变

动对滤波器特性的影响。 按滤波器的作用区分,有调谐滤波器和高通滤波器。 ①调谐滤波器 调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率。 ②高通滤波器 高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减

低于某一频率的谐波,该频率称为高通滤波器的截止频率。 二、 T 型滤波器(即LCL 滤波器) 采用L 滤波器时,为了减小电流纹波,不得不增加L ,导致滤波器体积增大;采用LC 滤波器,虽然结构和参数选取简单,但无法抑制输出电流中的高频纹波,容易因电网阻抗的不确定性影响滤波效果。三相LCL 滤波器因其高效的滤波效果受到广泛重 视。 ①整流器侧电感L 设计 ,...3,2) ()(max 0==h h i hw h u L , ②滤波电容C 设计 b sa oe f E P C ω?22*3) (cos 1*-= ③网侧电感Lg 的设计

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

EMI 原理分析

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江 杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t 和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);

EMI滤波元件和滤波器介绍

1)EMI滤波元件与滤波器的种类 滤波器的种类繁多,除了一些传统的电感、电容及其组合外,还有多种新技术产品,其用法各不相同。根据应用场合不同,可把它们分为三大类: ①在交、直流电源部分使用的滤波器:电源滤波器、磁环和磁珠等; ②在信号线上使用的滤波器:信号滤波器、磁环和磁珠、穿心电容、滤波连接器 (即滤波器阵列)等; ③在印刷电路板上使用的滤波器:去耦电容、片状(表面安装式)滤波器、磁珠 等。 3)电感器与电感型滤波器 线圈与其回流部分就可构成一个传统的电感器,通常有单线圈或多线圈式的。电感器可按 其环绕的磁芯来分类,最常见的两种类型是空气磁芯和磁性磁芯。磁性磁芯电感器(简称 磁芯电感)又可按其磁芯是开路或闭路作进一步分类。另外,目前广泛应用的铁氧体磁环(或磁珠),虽然在物理概念上讲起变压器的作用,它也更象一个随频率变化的可变电阻,但是人们通常还是把它当作电感器来考虑。 实际应用中的电感器,其绕制导线中必然含有寄生的串联电阻及绕线间的分布电容,因此 应用中会在某些频率上产生谐振现象。衡量电感器性能的主要参数有:分布电容、有效电感、品质因数Q、自谐振频率和饱和电流等。这些都是应用中应该考虑的。 ①普通线圈式电感器 具有同样体积和匝数的开路磁芯电感比空气芯电感有大得多的电感量和Q值,闭路磁芯情况会更好。电感器的一个重要特性是产生杂散磁场和对杂 散磁场敏感。空气芯或开路磁芯电感器最容易引起干扰。,因为其磁通从电感器扩展到相 当大的距离。就对磁场的敏感度而言,磁芯电感器比空气芯电感器敏感得多,而开路磁芯 是最敏感的,因为磁芯(低磁阻通路)集中了外部磁场并引起更多的磁通流过线圈。 普通电感型滤波器一般只用于低频滤波。在高频条件下,其插入损耗开始降低。这是因为 随着频率的增加,当频率超过电感器的自谐振频率后,寄生电容的阻抗开始降低从而引起 电感器的阻抗降低。这样一来,高频噪声便得不到良好的抑制而通过电感器引起噪声泄漏。 ②铁氧体磁环电感器 空心铁氧体磁环可以套在导线上,而带引线的铁氧体磁珠则串联在导线中。带引线的铁氧 体磁环具有简单的结构,如图6所示,因为通过磁芯可提供一个良好的回流端,从而其寄 生电容较小。不带引线的铁氧体磁环情况一样。所以,铁氧体磁环电感器具有良好的高频 特性,其工作频率可达1GHz或更高。它可以应用在低阻抗电路中的高频滤波和去耦。 4)脉冲电压吸收器 对瞬态脉冲电压(如静电放电、浪涌、脉冲群等)的干扰,可采取滤波或吸收的措施。但 滤波器对幅值较大的瞬态电压抑制能力有限,有效的办法就是采用脉冲电压吸收器。脉冲 电压吸收器有避雷管、压敏电阻和瞬变电压吸收二极管(TVS)。目前市场上已有片状式 的压敏电阻及TVS阵列供应。(因为严格地讲,脉冲电压吸收技术并不属于滤波的范畴,所以这里不再对其做详细介绍。如有需要,请参考相关资料及产品手册。)

EMI电源滤波器基本知识介绍

EMI电源滤波器基本知识介绍 电磁干扰(EMI)电源滤波器(以下简称滤波器)是由电感、电容组成的无源器件。实际上它起两个低通滤波器的作用,一个衰减共模干扰另一个衰减差模干扰。它能在阻带(通常大于10KHz)范围内衰减射频能量而让工频无衰减或很少衰减地通过。EMI电源滤波器是电子设备设计工程师控制传导干扰和辐射电磁干扰 的首选工具 (一)EMI电源滤波器部分技术参数简介 插入损耗 滤波器的插入损耗是不加滤波器时从噪声源传递到负载的噪声电压与接入滤波器时负载上的噪声电压之比。插入损耗衡量EMI电源滤波器电性能的重要参数,用下式表示:Eo IL=20log--- E 式中:Eo------不加滤波器时,负载上的干扰噪声电平。 E------接入滤波器后,同一负载上的干扰噪声电平。 干扰方式有共模干扰和差模干扰两种,其定义为:共模干扰:叠加于火线(P)、零线(N)和地线(E)之间的干扰电压。 差模干扰:叠加于火线(P)和零线(N)之间的干扰电压。 因此插入损耗又分为共模插入损耗和差模插入损耗,插入损耗的测试原理图 如下:

泄漏电流:滤波器的泄漏电流是指在250VAC的电压下,火线和零线与外壳间流过的电流。它主要取决于滤波器中的共模电容。从插入损 耗考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些 医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模 电容的容量。泄漏电流测试电路如下所示 耐压测试 为确保(交流)电源滤波器的质量,出厂前全部进行耐压测试。测试标准为: 火线与地线(或零线与地线)之间施加频率为50Hz的1500VAC高压,时 间一分钟,不发生放电现象和咝咝声。 火线与零线之间施加1450V直流高压,时间一分钟,不发生放电现象和咝 咝声 (二)EMI电源滤波器的选用 根据设备的额定工作电压、额定工作电流和工作频率来确定滤波器的类型。滤波器的额定工作电流不要取的过小,否则会损坏滤波器或降低滤波器的寿命。但额定工作电流也不要取的过大,这是因为电流大会增大滤波器的体积或降低滤波器的电性能,为了既不降低滤波器的电性能,又能保证滤波器安全工作,一般按设备额定电流的1.2倍来确定滤波器的额定工作电流。 根据设备现场干扰源情况,来确定干扰噪声类型,是共模干扰还是差模干扰,这样才能有针对性的选用滤波器。如不能确定干扰类型,可通过实际试探来确定

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

电源滤波器设计与使用原则分析

电源滤波器设计与使用原则分析 中心议题: ?城市轨道交通控制系统和电源系统需要加装滤波器 ?介绍电源滤波器的基本概念、参数选取以及安装原则等几个方面 ?分析电源滤波器得出相关结论 解决方案: ?安装无源EMI滤波器,减少干扰和衰减 ?采用横截面积较大的磁芯绕制成多匝线圈,得到共模电感,减小差模电感 ?串联电感和并联的滤波电容不能选择太大 ?正确安装滤波器,获得预期的衰减特性 引言 为了符合国际电磁兼容标准的要求,使用高频开关器件的电源电子电路必须安装合适的电磁干扰滤波器(以下简称EMI滤波器),以阻止频率范围为150kHz~30MHz的传导干扰侵入电源网络。由于城市轨道交通的特殊性,其共模和差模干扰很容易引起车载设备传导和辐射干扰升高,使其无法达到电磁兼容标准的要求。为此,必须在导线和电子设备之间的供电部分安装一个合适的无源EMI滤波器,将干扰衰减到所要求的程度。 常用设计滤波器的公式和图表是在其源阻抗和负载阻抗匹配情况下得出的。而EMI滤波器存在阻抗失配问题,因此在这种滤波器的实际设计中通常采用试探法。但采用试探法时,由于高频时寄生参数起主导作用以及对噪声源的内阻抗不了解,使得选择正确的设计参数值变得非常困难。对于共模干扰尤其如此,因为其大小在很大程度上就取决于电路的布置和电路的寄生参数。 本文结合研究和设计电源滤波器的实践,在简化电源滤波器设计过程的同时,仍能满足实际应用场合的需要。 电源滤波器中共模扼流圈内磁通的分析 电源滤波器中共模扼流圈的作用,一般采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和”。尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质并非如此。因为根据电磁场理论中的麦克斯韦方程,可以得到以下结果: 假设电流密度J产生磁场H,则附近的另一个电流不会抵消或阻止磁场或由此而产生的电场; 同样一个相邻的电流可以导致磁场路径的改变; 在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。由此而产生的磁场必定在环形磁芯周边上的总和为零,而在其外部的总和则不为零。

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

激光振镜场镜原理(精)

Rdie aarlh doped siide-rrirMte core single-mode signal Multi-mode pumplighrt 光纤激光器原理: 光纤激光器主要由泵浦源,耦合器, 掺稀土元素光纤,谐振腔等部件构成。 泵浦源由一 个或多个大功率激光二极管阵列构成, 其发出的泵浦光经特殊的泵浦结构耦合入作为增益介 质的掺稀土元素光纤, 泵浦波长上的光子被掺杂光纤介质吸收, 形成粒子数反转,受激发射 的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好, 无需 庞大的制冷系统,具有高转换效率,低阈值,光束质量好和窄线宽等优点。并且,光纤激光 器的谐振腔内无光学镜片,具有免调节、 免维护、高稳定性的优点; 超长的工作寿命和免维 护时间,平均免维护时间在 10万小时以上。 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输岀的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如 说10 ns (纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用 t 表示。这种激光器可以发出一 连串脉冲,比如,1秒钟发出10个脉冲,或者有的就发出 一个脉冲。这时,我们就说脉冲重复 (频)率 前 者为10,后者为1,那么,1秒钟发出10个脉冲,它的脉冲重复周期为 0.1秒,而1秒钟发出1个 脉冲,那么,它的脉冲重复周期为 1秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为 E ,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如,E =50 mJ (毫焦),T = 0.1 秒,那么, 平均功率 P 平均=50 mJ/0.1 s = 500 mW 。 如果用E 除以t ,即有激光输出的这段时间内的功率,一般称作峰值功率 (peak power ),例如,在前面的 例子中 E = 50 mJ, t = 10 ns, P 峰值=50 X 10A (-3)/[10 X10A (-9)] = 5 X 10A 6 W = 5 MW (兆瓦),由于脉冲宽度 t 很小,它的峰值功率 很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间 T=1s/2k= ?秒 平均功率 P=E/T=0.001J/0.00005s=20W P 峰值功率 =E/t

电磁干扰(EMI)滤波器电路

电磁干扰(EMI)滤波器电路 1、功能定义 所谓电磁干扰(EMI),是因电磁波造成设备、传输通道或系统性能降低的一种电磁现象。 EMI以辐射和传导两种方式传播。 辐射方式:能量通过磁场或电场耦合,或以干扰源与受扰设备间的电磁波形式传播。 传导方式:能量通过电源线、数据线、公共地线等而产生或接收。 传导干扰有差模(DM对称模式)和共模(CM非对称模式)两种类型。 目前抑制EMI的技术措施有屏蔽、接地(浮地、单点接地和接地网)与滤波。 我这里所说的即为滤波电路,它主要用于高频开关电源和电子镇流器的输入回路及电源的输出回路中中。该电路用于滤除电源的输入和输出的噪声(150kHz~30MHz),消减对直流稳压电源的传导干扰。 2、适用范围 A、CISPR标准(电机、家用电器、照明设备等射频干扰设备) B、VDE0871标准(有目的的高频波发生器的电磁兼容标准)

C、FCC标准(工业、科学、医疗设备的电磁兼容标准) D、VCCI标准(在工业和商业区使用的家用电器及其类似装置) 3、设计规范 3.1 电路原理图及其描述

该电路主要对输入进行滤波,削弱对稳压电源或电子镇流器的输入的传导干扰。其中,C1、C2和C4、C5及Lc用于滤除共模噪声,C3和C6用于滤除差模噪声。输出端一般接一电解电容,负载电流大时还需接高频电容,用于消除负载端对输入的噪声干扰。C1=C2、C4=C5、C3=C6,Lc=(7~30)mH、磁材使用铁氧体材料。 EMI滤波器有C型(纯电容)、L型(一个电感和一个电容)、T型(两只电感和一个电容)、π型(一个电感和两只电容)、双π型(对称绕在同一磁芯上的两个电感和两只电容)等。上图中电路为最常用的电路。 电源的滤波和保护电路 [作者:耗子转贴自:网上转载点击数:1477 更新时间:2004-4-28 文章录入:admin ] 一、滤波电路 1、电磁干扰 电脑电源是把工频交流整流为直流,再通过开关变为高频交流,其后再整流为稳定直流的一种电源,这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声,噪声在输入端泄漏出去就表现为辐射噪声和传导噪声,在输出端泄漏出去就表现为纹波。辐射噪声频率高于30MHZ,会传播到空间中;传导噪声频率在30MHZ以下,主要干扰音频设备,通过电源线传播到电网中。 外部噪声会进入到电网中的其它电子设备中影响电子设备的运行,而供给负载的电源产生的噪声也会泄漏到电源外部,因此,电脑电源必须有阻止这些噪声进出的功能。 在电脑电源的输入端,需要有由电容和电感构成的滤波器,用于抑制交流电产生的EMI。在电源的输出端,工频电源的整流波形畸变引起的噪声,以及开关工作波形产生的噪声呈现为纹波,因此在输出端也需要接入滤波器,用于抑制直流电产生的EMI。 2、输入端第一道EMI滤波电路 第一道EMI滤波电容是由X电容(白盒子)、线圈型电感和两个Y电容构成的,用来抑制输入端的高频干扰,以及PWM自身产生的高频干扰对电网的污染。

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

直流EMI滤波器设计原则

直流电源EMI滤波器的设计原则、网络结构、参数选择 1设计原则——满足最大阻抗失配 插入损耗要尽可能增大,即尽可能增大信号的反射。设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数 p=( ZO- ZI)/( ZO+ ZI) 显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。 负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。 对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则: 如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。 如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。 2 EMI滤波器的网络结构 EMI信号包括共模干扰信号CM和差模干扰信号DM,CM和DM的分布如图1所示。它可用来指导如何确定EMI滤波器的网络结构和参数。 EMI滤波器的基本网络结构如图2所示。 上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题: l)双向滤波功能——电网对电源、电源对电网都应该有滤波功能。 2)能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。 3)最大程度地满足阻抗失配原则。

几种实际使用的电源EMI滤波器的网络结构如图3所示。 3电源EMI滤波器的参数确定方法 a)放电电阻的取值 在允许的情况下,电阻取值要求越小越好,需要考虑以下情况: 第一,电阻要求采用二级降额使用,保证可靠性。降额系数为0.75 V,0. 6 W。根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。 第二,经过雷击浪涌后有残压,其瞬时值一般在1000 V取值;其瞬时功率值不能超过额定功率值的4倍,也可求出R>(Vcy)2/(4Pe)。 两者综合考虑取R值,一般情况下,电阻R的取值为75-200 K之间。功率为2-3 W。金属模电阻。 b)Cx电容的取值 在允许的情况下,容量要求越大越好,其值很难确切地估算出来,一般情况下,要求取值在l-5uf之间(对每个电容)。电容的耐压值必须经过雷击浪涌后取值,有残压,其瞬时值一般在1000V/s时不损坏,按二级降额的原则选取,取值在275 V,频率特性与电容的取值有关,取值越小,频率特性越好。

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计 引言 开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。这样就对EMC提出了更高的要求指标。 分类: 开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。 EMI滤波器介绍 开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 1.开关电源的EMI干扰源 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。 (4)PCB 准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

EMI滤波器应用设计原理

EMI滤波器设计原理 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t 和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop 的衰减); 2)对电网频率低衰减(满足规定的通带频率和通带低衰减); 3)低成本。 1.1 常用低通滤波器模型 EMI滤波器通常置于开关电源与电网相连的前端,是由串联电抗器和并联电容器组成的低通滤波器。如图1所示,噪声源等效阻抗为Z source、电网等效阻抗为Z sink。滤波器指标(f stop和H stop)可以由一阶、二阶或三阶低通滤波器实现,滤波器传递函数的计算通常在高频下近似,也就是说对于n阶滤波器,忽略所有ωk相关项(当k

电源EMI滤波器的PCB设计

5 电源EMI滤波器的PCB设计 5.1 概述 电源EMI滤波器的设计对于实现及改善电子设备和系统的电磁兼容性意义重大,它不但可降低设备产生的传导干扰,而且作为无源二端口网络具有互易性,可增强设备对电网侧的传导噪声,射频辐射干扰,高压噪声,快速瞬变电脉冲群等电磁干扰的抗扰度。正确设计EMI 滤波器的PCB是充分发挥EMI滤波器性能的重要保证。 5.2 EMI滤波器的基本结构 下图为EMI滤波器的基本结构: L N PE L1 C Y1C Y2 L2 L N PE 图63 EMI滤波器的基本结构 L1 ,L2为绕制在同一铁芯上的共模电感,其匝数相等,C Y1,C Y2为共模电容,L1与Cy1 ,L2与Cy2构成共模低通滤波器。 5.3 布局考虑 5.3.1 输入线与输出线的布置 在开关电源中,EMI滤波器的输出接开关整流器,属污染源,输出线上的噪声通过电场藕合或磁场藕合到输入线,会使EMI滤波器的效果大大降低,为了减小影响,要求EMI 滤波器的输入线与输出线间尽量隔离,不能邻近平行走线,以避免上述影响。见下图。

⌒⌒⌒⌒⌒ ⌒● ● ● ● ● ● ● input output ○ ○ ←→ 噪声耦合 C x Cy C x 图64 EMI 滤波器的输入线与输出线布置 5.3.2 多级滤波器级联 多级滤波器级联时,级间距离尽量做到远些,避免级间电感互感藕合。多级滤波器布局的布 局,根据这一原则,选择相应的排列方式,一般是按直线型排列,且相邻两个电感方向互相垂直较好。 5.3.3 EMI 滤波器的位置 图65 EMI 滤波器的位置 EMI 滤波器,一般布置在电源线入口处,远离开关管,输出整流管,变压器,输出电感等产生噪声的源头,使EMI 滤波器有一个比较干净的工作环境。为此,在整体布局时,应将开关管,输出整流管,变压器等污染源布置在尽量远离输入输出端口处。已标准的前面输入输出电源模块为例,比较好的布局如下图所示,A ,B ,C 三处距离尽量远一些。 如果因为结构或其它方面的原因使滤波器与噪声源之间的距离不能缩得很短,则建议在将滤波器用金属罩或其它结构屏蔽起来,并将屏蔽可靠接地。 5.3.4 共模/差模电感的布置 在EMI 滤波器中,共模电感会产生强烈的杂散磁场,这些杂散磁场容易干扰其它器件,因此滤波电容应尽量远离,尤其是电容引线较长时更是如此。其它敏感信号线也要避免从该区域穿过。 共模(差模)电感是由线圈绕在磁芯上组成,电感上的线圈很容易拾取干扰,因此尤其要注意使电感远离开关管变压器等易于产生干扰的地方。下图B 中输出滤波电感产生干扰输入共模电感,使EMI 测试超标,在图A 中,将共模电感移开,并转换摆放方向,EMI 下降明显.

光纤激光器论文

激光器件与技术期中论文 光纤激光器浅谈浅谈光纤激光器以及我国光纤激光器研究现状

摘要: 光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工、激光测距、激光雷达、激光艺术成像、激光防伪和生物医疗等更广阔的领域迅速扩展。本文以下内容概述了光纤激光器的原理、特点、应用及其发展前景。 关键词:光纤激光器应用扩展发展前景 abstract: Fiber laser as a light source in the field of optical communication has been widely used, and as the dual-protection layer of high-power fiber lasers appear, its application is toward to the laser processing, laser ranging, laser radar, laser art of imaging, security and bio-medical laser rapid expansion of a wider area. The following article outlines the principles of fiber lasers, characteristics, applications and prospects for development. Keywords: fiber laser applications development prospects.

相关文档
最新文档