直线与平面垂直的判定及其性质测试题

合集下载

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

直线平面平行、垂直的判定及其性质习题

直线平面平行、垂直的判定及其性质习题

直线平面平行、垂直的判定及其性质习题(1)如果直线a平行于平面α,直线b ∥a,点A∈b,则b与α的位置关系是()(A)b∩α=A(B)b∥α或b⊂α(C)b⊂α(D)b∥α(2)下列命题中,真命题是()(A)若直线a∥平面α,且直线b⊂α,则α∥b(B)若直线a∥b,且直线α∥平面α,则b∥α(C)若直线a∥平面α,且直线b∥α,则a∥b(D)若直线α∩β=直线a,直线b⊂β,且b和α没有公共点,则b∥α(3)(2009·浙江高考)设α、β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β(4)(2004年北京,3)设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥βA.①②B.②③C.③④D.①④(5)在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE:EB=CF:FB=1:3,则对角线AC和平面DEF的位置关系是___________.(6)已知:如图1—21,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.(7)(2010·江苏苏北三市模拟)如图,在正方体ABCD-A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证:(1)MN∥平面ABCD;(2)MN⊥平面B1BG.(8)(2009·天津模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,AB =5, cos ∠BAC =35. (1)求证:BC ⊥AC 1;(2)若D 是AB 的中点,求证:AC 1∥平面CDB 1.(9)如图,已知在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =1,AB=2,E 、F 分别是AB 、PD 的中点.(1)求证:AF ∥平面PEC ;(2)求PC 与平面ABCD 所成的角的正切值;(3)求二面角P -EC -D 的正切值.(10)已知直角三角形ABC 中,AB=AC=a ,AD 是斜边BC 上的高,以AD 为折痕使角BDC 成直角。

直线与平面的垂直判定和性质经典例题(教师)

直线与平面的垂直判定和性质经典例题(教师)

典型例题一例1下列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关. 解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影; (2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形. 解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行; (3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直; (4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥. 同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =,∴AC OE ⊥. 在正方体1DB 中易求出:a a a DODD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OBBEOE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=+= ()a a aEB B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OEO D =+,∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB . ∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC . ∵⊂SC 平面SBC ,∴SC AN ⊥, 又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥. 另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ①在Rt △BHD 中有:BHBD =αcos ②在Rt △ABD 中有:BABD =βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离. 分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等. 证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K . ∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE . ∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG ,∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CGHCHG .在Rt △GCH 中,11112=⋅=HGGC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥. ∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥. 又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b . 说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面. ∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥. 说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线? 分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM . ∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH , ∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形. ∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥. 由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥. 由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥. 综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理. 解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =, 可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上. 设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==.在POA ∆中,22cos ==∠PAAO PAO ,∴︒=∠45PAO ,即PA 与α所成角为︒45. 说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形, ∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==,∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥. 又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB . ∵⊂AE 平面ASB ,∴AE BC ⊥. 又∵⊥SC 平面AEFG ,∴AE SC ⊥. ∴⊥AE 平面SBC .又∵⊂SB 平面SBC , ∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥. 同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =, ∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面A C B 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号 (2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF , ∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥, 又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥, 又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a . 已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证. 证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a ab a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥, ∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥, ∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的. 综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线 (1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b 又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥, ∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥, 而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==,∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AOPA PO 3322=-=.因此点P 到平面ABC 的距离a 33.说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂,∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求.过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂,∴E B BC 1⊥.又B B A BC =1 ,∴111BCD A E B 平面⊥.即线段E B 1的长即为所求,在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B , ∴直线11C B 到平面11BCD A 的距离为1360.说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E .∵BC AE //,∴DAE ∠就是AD 、BC 所成的角,︒=∠30DAE .∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = ,∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥.在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。

高三数学 直线、平面垂直的判定及其性质练习题(含答案)

高三数学   直线、平面垂直的判定及其性质练习题(含答案)

直线、平面垂直的判定及其性质建议用时:45分钟一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥αC[A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.] 2.在下列四个正方体中,能得出AB⊥CD的是()A[A选项中,因为CD⊥平面AMB,所以CD⊥AB;B选项中,AB与CD 成60°角;C选项中,AB与CD成45°角;D选项中,AB与CD夹角的正切值为 2.]3.(2019·东北三省三校联考)在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是正方形,且P A=AB=2,则直线PB与平面P AC所成角为()A.π6 B.π4 C.π3 D.π2A[连接BD,交AC于点O.因为P A⊥平面ABCD,底面ABCD是正方形,所以BD⊥AC,BD⊥P A.又因为P A∩AC=A,所以BD⊥平面P AC,故BO⊥平面P AC.连接OP,则∠BPO即为直线PB与平面P AC所成角.又因为P A=AB=2,所以PB=22,BO= 2.所以sin∠BPO=BOPB=12,所以∠BPO=π6.故选A.]4.(2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥ACC[如图.∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B,D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.] 5.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABCD[∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.]二、填空题6.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,若该长方体的体积为82,则直线AC1与平面BB1C1C所成的角为.30°[连接BC1(图略),由AB⊥平面BB1C1C知∠AC1B就是直线AC1与平面BB1C1C所成的角.由2×2×AA1=82得AA1=22,∴BC1=BC2+CC21=23,在Rt△AC1B中,tan∠AC1B=ABBC1=223=33,∴∠AC1B=30°.]7.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则点A1到平面AB1D1的距离是.23[如图,△AB1D1中,AB1=AD1=5,B1D1=2,∴△AB 1D 1的边B 1D 1上的高为(5)2-⎝ ⎛⎭⎪⎫222=322,∴S △AB 1D 1=12×2×322=32,设A 1到平面AB 1D 1的距离为h ;则有S △AB 1D 1×h =S △A 1B 1D 1×AA 1, 即32h =12×2,解得h =23.]8.(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)②③④ [对于①,α,β可以平行,可以相交也可以不垂直,故错误. 对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]三、解答题9.(2018·北京高考)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.[证明](1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,所以AB⊥平面P AD.所以AB⊥PD.又因为P A⊥PD,所以PD⊥平面P AB.因为PD⊂平面PCD,所以平面P AB⊥平面PCD.(3)取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.10.(2019·太原模拟)如图,在直三棱柱ABC-A1B1C1中,D是BC上的一点,AB=AC,且AD⊥BC.(1)求证:A1C∥平面AB1D;(2)若AB=BC=AA1=2,求点A1到平面AB1D的距离.[解](1)证明:如图,连接BA1,交AB1于点E,再连接DE,据直棱柱性质知,四边形ABB1A1为平行四边形,E为AB1的中点,∵AB=AC,AD⊥BC,∴D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)如图,在平面BCC1B1中,过点B作BF⊥B1D,垂足为F,∵D是BC中点,∴点C到平面AB1D与点B到平面AB1D距离相等,∵A1C∥平面AB1D,∴点A1到平面AB1D的距离等于点C到平面AB1D的距离,∴BF长为所求,在Rt△B1BD中,BD=1,BB1=2,B1D=5,∴BF=25=255,∴点A1到平面AB1D的距离为255.1.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部A[连接AC1(图略),由AC⊥AB,AC⊥BC1,AB∩BC1=B,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面的交线AB上.]2.(2019·唐山模拟)如图,在以下四个正方体中,直线AB与平面CDE垂直的是()①②③④A.①②B.②④C.①③D.②③B[对于①,易证AB与CE所成角为45°,则直线AB与平面CDE不垂直;对于②,易证AB⊥CE,AB⊥ED,且CE∩ED=E,则AB⊥平面CDE;对于③,易证AB与CE所成角为60°,则直线AB与平面CDE不垂直;对于④,易证ED⊥平面ABC,则ED⊥AB,同理EC⊥AB,可得AB⊥平面CDE.故选B.] 3.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是.①②③[由BC⊥AC,BC⊥P A可得BC⊥平面P AC,又AF⊂平面P AC,所以AF⊥BC,又AF⊥PC,则AF⊥平面PBC,从而AF⊥PB,AF⊥BC,故①③正确;由PB⊥AF,PB⊥AE可得PB⊥平面AEF,从而PB⊥EF,故②正确;若AE⊥平面PBC,则由AF⊥平面PBC知AE∥AF与已知矛盾,故④错误.] 4.(2019·西宁模拟)已知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰为AC的中点D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1.(1)求证:AC1⊥平面A1BC;(2)求点C到平面A1AB的距离.[解](1)证明:∠BCA=90°得BC⊥AC,因为A1D⊥平面ABC,所以A1D⊥BC,A1D∩AC=D,所以BC⊥平面A1ACC1,所以BC⊥AC1.因为BA1⊥AC1,BA1∩BC=B,所以AC1⊥平面A1BC.(2)作DE⊥AB于点E,连接A1E,作DF⊥A1E于点F.因为A1D⊥平面ABC,所以A1D⊥AB,DE⊥AB,DE∩A1D=D,所以AB⊥平面A1DE,又DF⊂平面A1DE,所以AB⊥DF,由DF⊥A1E,A1E∩AB=E,所以DF⊥平面A1AB,由(1)及已知得DE=22,A1D=3,Rt△A1DE中,DF =A 1D ·DE A 1E =217, 因为D 是AC 中点,所以C 到面A 1AB 距离2217.1.(2019·衡阳模拟)如图,在四面体ABCD 中,AD ⊥BD ,截面PQMN 是矩形,则下列结论不一定正确的是( )A .平面BDC ⊥平面ADCB .AC ∥平面PQMNC .平面ABD ⊥平面ADCD .AD ⊥平面BDCD [由PQ ∥MN ,MN ⊂平面ADC ,PQ ⊄平面ADC ,得PQ ∥平面ADC ,又PQ⊂平面ABC,平面ABC∩平面ADC=AC,∴PQ∥AC,同理QM∥BD,因为PQ⊥QM,∴AC⊥BD,又BD⊥AD,AC∩AD=A,∴BD⊥平面ADC,∴平面BDC⊥平面ADC,平面ABD⊥平面ADC,∴A和C选项均正确;由PQ∥AC,得AC∥平面PQMN,∴B选项正确.∵不能得到AD⊥DC或AD⊥BC,∴不能得到AD⊥平面BDC,故选项D 不一定正确.故选D.]2.(2019·泉州模拟)如图,在直三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,M,N分别是AB,AA1的中点,且A1M⊥B1N.(1)求证:B1N⊥A1C;(2)求M到平面A1B1C的距离.[解](1)证明:如图,连接CM.在直三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,CM ⊂平面ABC , 所以AA 1⊥CM .在△ABC 中,AC =BC ,AM =BM ,所以CM ⊥AB .又AA 1∩AB =A ,所以CM ⊥平面ABB 1A 1.因为B 1N ⊂平面ABB 1A 1,所以CM ⊥B 1N .又A 1M ⊥B 1N ,A 1M ∩CM =M ,所以B 1N ⊥平面A 1CM .因为A 1C ⊂平面A 1CM ,所以B 1N ⊥A 1C .(2)法一:连接B 1M .在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N .所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点,所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2.所以1x =x 22,解得x =2.从而S △A 1B 1M =12S 正方形ABB 1A 1=2,A 1C =B 1C =2 2.在△A 1CB 1中,cos ∠A 1CB 1=A 1C 2+B 1C 2-A 1B 212A 1C ·B 1C =34,所以sin ∠A 1CB 1=74,所以S △A 1B 1C =12A 1C ·B 1C ·sin ∠A 1CB 1=7.设点M 到平面A 1B 1C 的距离为d ,由V 三棱锥M -A 1B 1C =V 三棱锥C -A 1B 1M ,得13S △A 1B 1C ·d =13S △A 1B 1M ·CM ,所以d =S △A 1B 1M ·CM S △A 1B 1C =2217,即点M 到平面A 1B 1C 的距离为2217. 法二:在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N ,所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点, 所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2,所以1x =x22,解得x =2.如图,取A 1B 1的中点D ,连接MD ,CD ,过M 作MO ⊥CD 于O .在正方形ABB 1A 1中,易知A 1B 1⊥MD ,由(1)可得CM ⊥A 1B 1,又CM ∩MD =M ,所以A 1B 1⊥平面CDM .因为MO ⊂平面CDM ,所以A 1B 1⊥MO .又MO ⊥CD ,A 1B 1∩CD =D ,所以MO ⊥平面A 1B 1C ,即线段MO 的长就是点M 到平面A 1B 1C 的距离.由(1)可得CM⊥MD,又MD=2,所以由勾股定理,得CD=CM2+MD2=7.S△CMD=12·CD·MO=12·CM·MD,即12×7×MO=12×3×2,解得MO=2217,故点M到平面A1B1C的距离为221 7.。

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质1.(2009·山东卷·文9, 理5)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2009·浙江卷·文4)设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥3. (2009·福建卷·文·20)如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD(I )求证: AB DE ⊥(Ⅱ)求三棱锥 E ABD -的侧面积.4.(2009·辽宁卷·文19)(本小题满分12分)如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(I )若CD =2,平面ABCD ⊥平面DCEF ,求直线MN 的 长;(II )用反证法证明: 直线ME 与 BN 是两条异面直线.5.(2007广东文6)若l 、m 、n 是互不相同的空间直线,βα,是不重合的平面,则下列命题中为真命题的是 ( )A .若n l n l //,,,//则βαβα⊂⊂B .若βαβα⊥⊂⊥l l 则,,C .若m l n m n l //,,则⊥⊥D .若βαβα⊥⊥则,//,l l6.(2008山东文19)如图,在四棱锥P —ABCD 中平面PAD ⊥平面ABCD ,AB//CD ,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=54.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)求四棱锥P —ABCD 的体积.。

直线、平面垂直的判定及其性质(人教A版)

直线、平面垂直的判定及其性质(人教A版)

直线、平面垂直的判定及其性质(人教A版)一、单选题(共12道,每道8分)1.在空间,下列命题正确的是( )①如果直线a,b都与直线平行,那么a∥b②如果直线a与平面β内的直线b平行,那么a∥β③如果直线a与平面β内的直线b,c都垂直,那么a⊥β④如果平面β内的直线a垂直于平面α,那么α⊥βA.①③B.①④C.②④D.②③2.已知α,β,γ是三个互不重合的平面,是一条直线,下列命题中正确命题是( )A.B.C.D.3.给出下列关于互不相同的直线m,,n,平面α,β及点A的四个命题:①若m⊂α,∩α=A,点A∉m,则与m不共面;②若m,是异面直线,∥α,m∥α,且n⊥,n⊥m,则n⊥α;③若∥α,m∥β,α∥β,则∥m;④若⊂α,m⊂α,∩m=A,∥β,m∥β,则α∥β.其中为假命题的是( )A.①B.②C.③D.④4.如图,在正方体中,点P是CD上的动点,则直线与直线所成的角为( )A.30°B.45°C.60°D.90°5.如图,在三棱锥S-ABC中,底面是边长为1的正三角形,O为△ABC的中心,侧棱长均为2,则侧棱与底面所成角的余弦值为( )A. B.C. D.6.将边长为a的正方形ABCD沿对角线AC折起,使,则三棱锥D-ABC的体积为( )A. B.C. D.7.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是.其中正确命题的个数为( )A.0个B.1个C.2个D.3个8.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=,PA=2,则△PCD的面积为( )A. B.C. D.9.(上接试题8)异面直线BC与AE所成的角的大小为( )A.90°B.60°C.45°D.30°10.如图,四棱锥P-ABCD的底面是边长为4的正方形,侧棱PA垂直于底面,且PA=3,则直线PC与平面ABCD所成角的正切值为( )A. B.C. D.11.(上接试题10)异面直线PB与CD所成角的正切值为( )A. B.C. D.12.(上接试题10,11)四棱锥P-ABCD的表面积为( )A.80B.68C.60D.48。

直线、平面垂直判定及其性质(分类)

直线、平面垂直判定及其性质(分类)

α、β是空间的两个不同的平面,则a ⊥α的一个充分条件是( )A .a ∥β,α⊥βB .a ⊂β,α⊥βC .a ⊥b ,b ∥αD .a ⊥β,α∥β解析:只有选项D ,a ⊥β,α∥β⇒a ⊥α.答案:D2.(2010·烟台模拟)如图在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在( )A .直线AB 上B .直线BC 上C .直线AC 上D .△ABC 内部解析:由AC ⊥AB ,AC ⊥BC 1,得AC ⊥平面ABC 1,AC ⊂平面ABC ,∴平面ABC 1⊥平面ABC ,C 1在面ABC 上的射影H 必在二平面交线AB 上.答案:A3.m 、n 是空间两条不同的直线,α、β是两个不同的平面,下面四个命题中,真命题的序号是________.①m ⊥α,n ∥β,α∥β⇒m ⊥n ;②m ⊥n ,α∥β,m ⊥α⇒n ∥β;③m ⊥n ,α∥β,m ∥α⇒n ⊥β;④m ⊥α,m ∥n ,α∥β⇒n ⊥β.解析:①显然正确;②错误,n 还可能在β内;③错误,n 可能与β相交但不垂直;④正确.ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足__________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:由三垂线定理可知,BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD ,而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .答案:DM ⊥PC (或BM ⊥PC 等)5.(2009·苏北模拟)在四棱锥S -ABCD 中,已知AB ∥CD ,SA =SB ,SC =SD ,E 、F 分别为AB 、CD 的中点.(1)求证:平面SEF ⊥平面ABCD ;(2)若平面SAB ∩平面SCD =l ,求证:AB ∥l .解:(1)证明:由SA =SB ,E 为AB 中点得SE ⊥AB .由SC =SD ,F 为CD 中点得SF ⊥DC .又AB ∥DC ,∴AB ⊥SF . 又SF ∩SE =S ,∴AB ⊥平面SEF .又∵AB ⊂平面ABCD ,∴平面SEF ⊥平面ABCD .(2)∵AB ∥CD ,CD ⊂面SCD ,∴AB ∥平面SCD .又∵平面SAB ∩平面SCD =l ,根据直线与平面平行的性质定理得AB ∥l .6.(2010·岳阳模拟)设a 、b 、c 表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是( )A .c ⊥α,若c ⊥β,则α∥βB .b ⊂α,c ⊄α,若c ∥α,则b ∥cC .b ⊂β,若b ⊥α,则β⊥αD .b ⊂β,c 是a 在β内的射影,若b ⊥c ,则b ⊥a解析:C 选项的逆命题为b ⊂β,若β⊥α则b ⊥α.不正确,因为根据平面垂直的性质定理,如果两个平面垂直,其中一个平面内的直线只有垂直交线的才垂直另一个平面.答案:C7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则下列命题中错误的是( )A .点H 是△A 1BD 的垂心B .AH 垂直于平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°解析:因为三棱锥A -A 1BD 是正三棱锥,故顶点A 在底面的射影是底面的中心,A 正确;平面A 1BD 平面CB 1D 1,而AH 垂直于平面A 1BD ,所以AH 垂直于平面CB 1D 1,B 正确;根据对称性知C 正确. 答案:D8.(文)(2009·天津高考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AD ⊥CD ,DB平分∠ADC ,E为PC 的中点,AD =CD =1,DB =2 2.(1)证明P A ∥平面BDE ;(2)证明AC ⊥平面PBD ;解:(1)证明:设AC ∩BD =H ,连结EH .在△ADC 中,因为AD =CD ,且DB 平分∠ADC ,所以H 为AC 的中点.又由题设,E 为PC 的中点,故EH ∥P A .又EH ⊂平面BDE 且P A ⊄平面BDE ,所以P A ∥平面BDE .(2)证明:因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC .由(1)可得,DB ⊥AC .又PD ∩DB =D ,故AC ⊥平面PBD .(理)(2009·北京高考)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的正弦值;(3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由.解:(1)∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC ,∴BC ⊥平面P AC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面P AC ,垂足为点E ,∴∠DAE 是AD 与平面P AC 所成的角.∵P A ⊥底面ABC ,∴P A ⊥AB .又P A =AB ,∴△ABP 为等腰直角三角形,∴AD =12AB . 在Rt △ABC 中,∠ABC =60°,∴BC =12AB ,∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24, 即AD 与平面P AC 所成角的正弦值为24. (3)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC .又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC .这时,∠AEP =90°,故存在点E 使得二面角A -DE -P 是直二面角.9.(2009·浙江高考)在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90°解析:如图,取BC 中点E ,连结DE 、AE 、AD ,依题意知三棱柱为正三棱柱,易得AE ⊥平面BB 1C 1C , 故∠ADE 为AD 与平面BB 1C 1C 所成的角.设各棱长为1,则AE =32,DE =12,tan ∠ADE =AE DE =3212=3, ∴∠ADE =60°.答案:C10.设P 是60°的二面角α-l -β内一点,P A ⊥α,PB ⊥β,A 、B 分别为垂足,P A =2,PB =4,则AB 的长是________.解析:如图所示,P A 与PB 确定平面γ,与l 交于点E ,则BE ⊥l ,AE ⊥l ,∴∠BEA 即为二面角的平面角,∴∠BEA =60°,从而∠BP A =120°,∴AB=P A 2+PB 2-2P A ·PB cos ∠BP A=4+16+8=27.答案:27。

直线与平面的垂直的判定 性质单元测试题及答案

直线与平面的垂直的判定 性质单元测试题及答案

《直线与平面的垂直的判定、性质》单元测试卷一、 选择题1.如果直线l 和平面α内的无数条直线都垂直,那么( )A.α⊥lB.l 与α相交C.α⊄lD.l 与α的关系不确定2.如图,PA ⊥平面ABC ,△ABC 中,BC ⊥AC ,则图中直角三角形的个数是( )。

A.4 B.3 C.2 D.13.两条异面直线在同一平面内的射影是( ).A.两条平行直线B.两条相交直线C.一个点和一条直线D.以上都有可能4.已知Rt △ABC 中,∠C=90°,点P 在平面ABC 外,且PA=PB=PC, PO ⊥平面ABC 于点O ,则O 是( )A.AC 边的中点B.BC 边的中点C.AB 边的中点D.以上都有可能5.a,b 表示两条直线,α表示平面,给出以下命题,其中正确的命题是( ) ①a ⊥α,b ∥α⇒a ⊥b ②a ⊥α, a ⊥b ⇒ b ∥α③a ∥α, a ⊥b ⇒ b ⊥α ④a ⊥α,b ∥a ⇒b ⊥αA.①②B.②③C.③④D.①④6.已知P 是平面四边形ABCD 所在平面外一点,且P 到这个四边形各边的距离相等,那么这个四边形一定是( )。

A.圆内接四边形B.矩形C.圆外切四边形D.平行四边形7.正方体ABCD-A 1B 1C 1D 1中,E 为A 1C 1的中点,则直线CE 垂直于( )。

A.ACB.BDC.A 1D 1D.AA 18.下列命题中真命题是( )。

A.和平面的斜线垂直的直线也和这条斜线的射影垂直B.和斜线的射影垂直的直线也和斜线垂直C.如果两条直线垂直于同一个平面,那么这两条直线平行D.和斜线的射影不垂直的直线也和斜线不垂直9.从平面α外一点P 作与α相交的直线,使得P 与交点的距离为1,则满足条件的直线条数一定不可能是( ).A.0B.1C.2D.无数个10.已知PA ⊥平面ABCD ,四边形ABCD 是矩形,并且PA=6,AB=3,AD=4,则P 到BD 的距离是( ). A.5296 B.296 C.53 D.132 11. Rt △ABC 的斜边AB 在平面α内,直角顶点C 在平面α外,C 在α上的射影为D (不在AB 上),则△ABD 是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面垂直的判定与性质
一、选择题
1.两异面直线在平面α内的射影()
A.相交直线 B.平行直线
C.一条直线—个点 D.以上三种情况均有可能
2.若两直线a与b异面,则过a且与b垂直的平面()
A.有且只有—个 B.可能存在也可能不存在
C.有无数多个 D.—定不存在
3.在空间,下列哪些命题是正确的()
①平行于同一条直线的两条直线互相平行;
②垂直于同一条直线的两条直线互相平行;
③平行于同一个平面的两条直线互相平行;
④垂直于同—个平面的两条直线互相平行.
A.仅②不正确 B.仅①、④正确 C.仅①正确 D.四个命题都正确
4.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()
A.必相交 B.必为异面直线 C.垂直 D.无法确定
5.下列命题
①平面的每条斜线都垂直于这个平面内的无数条直线;
②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;
③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.
其中,正确的命题有()
A.1个 B.2个 C.3个 n 4个
6.在下列四个命题中,假命题为()
A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直
B.垂直于三角形两边的直线必垂直于第三边
C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内
D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面
7.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD内,若P到这四边形各边的距离相等,那么这个四边形是()
A.圆内接四边形 B.矩形 C.圆外切四边形 D.平行四边形
8.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离等于()A. B. C.3 D.4
二、填空题
9.AB是平面α的斜线段,其长为a,它在平面α内的射影A′B的长为b,则垂线A′A_________. 10.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,mα和m⊥γ,现给出以下四个结论:
①α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”.(写出序号即可)
11.在空间四面体的四个面中,为直角三角形的最多有____________个.
12.如图,正方形ABCD,P是正方形平面外的一点,且PA⊥平面A BCD则在△PAB、△PBC、△PCD、△PAD、△PAC及△PBD中,为直角三角形有_________个.
13.给出以下四个命题
(1)两条平行直线在同一平面内的射影一定是平行直线;
(2)两条相交直线在同一平面内的射影一定是相交直线;
(3)两条异面直线在同一平面内的射影—定是两条相交直线;
(4)一个锐角在平面内的射影一定是锐角.
其中假命题的共有_________个.
14.若一个直角在平面α内的射影是一个角,则该角最大为___________.
三、解答题
15.已知直线a∥平面α,直线b⊥平面α,求证:a⊥b.
16.如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过B l作B1⊥BC1交CC1于E,
交BC1于Q,求证:AC⊥平面EB l D1
17.如图在△ABC中,已知∠ABC=90°,SA⊥△ABC所在平面,又点A在SC和SB上的射影分别是P、Q.
求证:PQ⊥SC.
18.已知在如图中,∠BAC在平面α内,点Pα,PE⊥AB,PF⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF,
求证:∠BAO=∠CAO,
19.已知:点P与直线a,试证;过点P与a垂直的直线共面.
20.四面体ABCD的棱AB⊥CD的充要条件是AC2+BD2=AD2+BC2.
四、思考题
对于一个三角形,它的三条高线总相交于—点,而对于一个四面体,它的四条高线是否总相交于一点呢?若不总相交于一点,则怎样的四面体其四条高线才相交于一点呢?这是一个美丽而非凡的问题,请读者进行研究拓展.
参考答案
一、选择题
1.D 2.B 3.B 4.C 5.A 6.A 7.C 8.D
二、填空题
9. 10.③、④ 11.4 12.5 13.4 14.180°
三、解答题
15.证明:设β为过a的平面,且α∩β=l.
∵a∥α,∴a∥l.
∵b⊥l,∴b⊥a.
16.证明:∵AB⊥面B1C,BC1为AC1在平面B1C上的射影,且B1E⊥BC1,∴由三垂线定理知B1E⊥AC1.
又∵AA1⊥面A1C1,AB=BC,A1C1⊥B1D1,A1C1是AC1在面A1C1上的射影
∴由三垂线定理得AC1⊥B1D1.
又∵B1E∩B1D1=B1,
∴AC1⊥平面EB1D1.
17.证明:∵SA⊥面ABC,BC面ABC,
∴SA⊥BC.
又∵AB⊥BC且SA∩AB=A,
∴BC⊥面SAB,AQ面SAB.
∴BC⊥AQ,又AQ⊥SB,BC∩SB=B.
∵AQ⊥面SBC.
∴PQ是斜线AP在平面SBC上的射影,
又∵AQ⊥SC,
∴由三垂线定理的逆定理可得PQ⊥SC.
18.证明:∵PO⊥α,PE=PF,
∴OE=OF,
又∵PE⊥AB、PF⊥AC,
∴OE⊥AB、OF⊥AC.
故Rt△AOE≌Rt△AOF,
∴∠BAO=∠CAO.
19.证明:如图,在点P和直线a所在的平面β内,过点P作直线a的垂线b,设垂足为A.设过点P与β垂直的直线为c,则必有c⊥a,再设由b、c确定的平面为α,则必有a⊥α.
设l是过点P与a垂直的直线,下证:lα.
若lα,设由l与c确定的平面为α′,
则由a⊥l,a⊥c,l∩c=P,
∴a⊥α′,这样平面α与α′都是过点P与直线a垂直的平面.这是一个错误的结论,因此,假设不成立,故必有lα,也就是说过点P与a垂直的直线均在平面α内,于是本题获证.
20.证明:先证必要性:过B作CD的垂线,垂足E,连AE,
∵CD⊥AB,
∴CD⊥平面ABE,
∴CD⊥AE.
∴AC2=AE2+CE2、BD2=BE2+DE2;
又有AD2=AE2+DE2、BC2=BE2+CE2.
∴AC2+BD2=AE2+BE2+CE2+DE2,
而AD2+BC2=AE2+BE2+CE2+DE2.
∴AC2+BD2=AD2+BC2.
再证充分性:过A点作CD的垂线,垂足设为F,于是有:
AD2=AF2+DF2、BC2=BE2+CE2;
AC2=AF2+CF2、BD2=BE2+DE2;
∵AD2+BC2=AC2+BD2;
∴AF2+DF2+BE2+CE2=AF2+CF2+BE2+DE2
∴DF2+CE2=CF2+DE2,
∴DF2―CF2=DE2―CE2,
∴(DF+CF)(DF-CF)=(DE+CE)(DE-CE),
∴DF-CF=DE-CE.
∴DF+CE=DE+CF.
∴E、F只能重合于一点,故有CD⊥平面ABE,
∴CD⊥AB.
四、思考题
我们称:三对对棱分别互相垂直的四面体为对棱垂直的四面体.
可以证明:对棱垂直的四面体的四条高线相交于一点,反过来,若一个四面体,若它的四条高线相交于一点,则该四面体一定是对棱垂直的四面体.。

相关文档
最新文档