自由电子与布洛赫电子的区别

合集下载

布洛赫定理 近自由电子近似-山东大学固体物理

布洛赫定理 近自由电子近似-山东大学固体物理

正格基矢
倒格基矢
a1、a 2、a 3 ,
b 1、b 2、b 3
例2:下图是一个二维晶体结构图,画出它的第一、第二、 第三布里渊区。
aa
a1 ai a2 a j
a2 a j
aa
a1 ai
2π ( i j )
ai b j 2π ij
0 (i j)
b1 2π i a 2π
b2 j a
例3:画出下面二维矩形格子的第一和第二布里渊区的
扩展区图和简约区图,设矩形边长分别为 a,b。
解: a1 ai
a2 bj
2π (i j)
ai b j 2π ij
0 (i j)
b1 2π i a
b2 2π j
b
b
倒格仍为矩形。
a2 bj
a1 ai
a

b

a
j
i
第一区
第二区
目N=N1N2N3。在波矢空间内,由于N的数目很大,波矢点的分 布是准连续的。一个波矢对应的体积为:
b1 ( b2 b3 ) Ω* (2π)3 (2π)3 N1 N2 N3 N N Ω VC
一个波矢代表点对应的体积为: (2π)3 VC
电子的波矢密度为:
Vc ( 2 π) 3
下面我们证明
(r
Rn
)
eikRn
(r)
k(r
2 Rn )
k(r) 2
可以认为电子在整个晶体中自由运动。布洛赫函数的平面
波因子描述晶体中电子的共有化运动,而周期函数的因子描述
电子在原胞中运动,这取决于原胞中电子的势场。
5.1.2 k的取值和范围
设晶体在a1、a2、a3方向各有N

固体物理学:第四章 第九节 布洛赫电子在恒定电场中的准经典运动

固体物理学:第四章 第九节 布洛赫电子在恒定电场中的准经典运动

4. 在外加电场,磁场中空穴的准经典运动方程为 空穴的运动方程是带正电荷的粒子的运动方程
五、导体、绝缘体和半导体的能带特征
在一种固体中,存在着未填满的能带,那么它必定 是导体。
如果所有能带中,只有全满带或者全空带,那么它 是绝缘体。
半导体在绝对零度下,所有能带是全满或者全空。 但禁带很窄,在有限温度下有少量的满带电子被激 发到空带中,形成少量空穴的价带和少量电子的导 带。
布洛赫电子的行为则完全不同,因为布洛赫电子 通常都有复杂的能带结构,不能写出v(t) 和 k(t)的 明显关系,但总可以写成下面的函数形式:
因为v(k(t))是倒空间的周期函数,因此速度是时间 的有界函数,当E平行于一个倒点阵矢量时,速度 将随时间振荡。
如果电子在t=0时刻k=0,那么v(k)=0,有效质量m*>0。随着时 间增加,不断被加速,越过A点后,有效质量m*<0,电子被 减速,一直到B点,速度变为0。随着k的继续增加,进入第二 布里渊区C点。在简约能区图式中,C点将折回到第一布里渊 区的等价点C’。这里C和C’相差一个倒格矢,电子在k空间 循环运动。
布洛赫电子的准经典运动过程中,晶格的周期场始终 起了关键的作用,这种作用隐含在E(k)函数中。 一个电子载有的电流比例与它的速度,于是在布洛赫 电子的准经典模型中,直流电场将感生出交变电流, 这种效应成为布洛赫振荡,其周期为:
其中2pi/d是沿着电场方向两个区界的距离。在一维情 况下,就是第一布里渊区的宽度,其振荡频率为:
2.
空穴的能量应该是从满带中失去一个电子,系统能量的变化:
逸失电子在带内位置越低,需要更多的功,系统的能量越 高。如果令价带能量零点位于带顶,并且能带是对称的, 可以构造一个近满带对应的空穴能带,如图所示:

固体电子1---布洛赫理论

固体电子1---布洛赫理论

i k R m
完全不影响本征值(Rm)的值。
为了使k能与(Rm)的值一一对应,可将k限制在倒空间b1、b2、 b3形成的倒格子原胞之中,实际上最方便的办法是选在第一布 里渊区。 k的表达式:
k l l1 l b1 2 b 2 3 b 3 N1 N2 N3
代表k空间均匀分布的点,因为l1、l2、l3由周期性边界条件可知 为整数。每个点对应一个波矢取值,占据的k空间体积为:
如果忽略势能项U(r),上面方程的解就是自由电子的平面 波波函数。 在一般情况下,晶格周期势场 U(r) 的形式比较复杂,求解 单电子薛定谔方程依然是十分困难的。因此在处理实际问题
时需要根据具体的情况采用不同的近似方法。
7
2 2 2 2 1 e2 U ( R , , R , ) U ( r , , r , , R , , R , ) (rj ,, R j ,) E (rj ,, R j ,) j n 0 1 n 1 j 1 n 2 m 2 M 2 4 r n j ' j ' j j 0 j ', j
(r R m ) T (R m ) (r) (R m ) (r)
作为电子波函数,(r)和(r+Rm)都要求满足归一化条件:
2 2 2 2 2 | ( r R ) | dr | ( R ) ( r ) | dr | ( R ) | | ( r ) | dr | ( R ) | 1 m m m m
即:
ei ( Rm Rn ) ei ( Rm ) ei ( Rn )
(R m R n ) (R m ) (R n )
上式仅当与Rn呈线性关系才能得到满足,取:

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别-CAL-FENGHAI.-(YICAI)-Company One1自由电子与布洛赫电子的区别(哈尔滨工业大学 材料科学与工程系1419002班)摘要:在1928年,布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体物理特性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill ,1877年),加斯东·弗洛凯(Gaston Floquet ,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov ,1892年)等独立地提出。

随后表产生了布洛赫电子的概念。

本文主要探讨自由电子与布洛赫电子的区别。

关键词:自由电子;布洛赫电子;区别1 基本概念1.1 自由电子 自由电子(free electron)按照电子的运动范围定义指不被约束在某一个特定原子内部的电子,在化学中是指在分子中与某个特定原子或共价键无关的电子。

当这种电子在受到外电场或外磁场的作用时,能够在物质(晶体点阵)中或真空中运动。

因此自由电子也叫做离域电子。

由金属的电子云模型理论可以确定,金属晶体中存在自由电子。

自由电子的多少会影响晶体的导电性和导热性,自由电子愈多,电传导的能力愈强,而大部分的金属晶体都有较多的自由电子,所以金属都具有良好的导热性和导电性。

1.2 布洛赫定理晶体中电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式其中k 为电子的波矢,Rn 是晶格矢 上述理论称为布洛赫(Bloch)定理。

布洛赫定理的另一种表述为,存在以波矢 使得对属于布拉维格子的所有格矢 成立。

1.3 布洛赫电子用布洛赫函数描述的电子称为布洛赫电子。

)(e )(r u r k rk i k ⋅=ψ)()(r u R r u k n k =+k n R 332211a n a n a n R n ++=)(e )(r R r n R k i n ψψ⋅=+2 区别研究2.1周期性质晶体的平移周期性不仅仅是几何图形的周期性,而且每个原子胞的各种物理化学性质也是一样的,因此,所有单胞内电子的密度分布特性也是一样的。

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别(哈尔滨工业大学 材料科学与工程系1419002班)摘要:在1928年,布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体物理特性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill ,1877年),加斯东·弗洛凯(Gaston Floquet ,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov ,1892年)等独立地提出。

随后表产生了布洛赫电子的概念。

本文主要探讨自由电子与布洛赫电子的区别。

关键词:自由电子;布洛赫电子;区别1 基本概念1.1 自由电子 自由电子(free electron)按照电子的运动范围定义指不被约束在某一个特定原子内部的电子,在化学中是指在分子中与某个特定原子或共价键无关的电子。

当这种电子在受到外电场或外磁场的作用时,能够在物质(晶体点阵)中或真空中运动。

因此自由电子也叫做离域电子。

由金属的电子云模型理论可以确定,金属晶体中存在自由电子。

自由电子的多少会影响晶体的导电性和导热性,自由电子愈多,电传导的能力愈强,而大部分的金属晶体都有较多的自由电子,所以金属都具有良好的导热性和导电性。

1.2 布洛赫定理 晶体中电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式其中k 为电子的波矢,Rn 是晶格矢 上述理论称为布洛赫(Bloch)定理。

布洛赫定理的另一种表述为,存在以波矢 使得对属于布拉维格子的所有格矢 成立。

1.3 布洛赫电子用布洛赫函数描述的电子称为布洛赫电子。

)(e )(r u r kr k i k ⋅=ψ)()(r u R r u k n k =+k n R 332211a n a n a n R n ++=)(e )(r R r n R k i n ψψ⋅=+2 区别研究2.1周期性质晶体的平移周期性不仅仅是几何图形的周期性,而且每个原子胞的各种物理化学性质也是一样的,因此,所有单胞内电子的密度分布特性也是一样的。

布洛赫定理、一维近自由电子近似

布洛赫定理、一维近自由电子近似
同的周期性。
布洛赫定理在固体物理、表面物 理等领域有广泛应用,是理解周
期性结构中粒子行为的基础。
一维近自由电子近似研究现状
1
一维近自由电子近似是一种理论模型,用于描述 一维晶体中电子的运动。
2
在一维近自由电子近似中,电子被视为在周期性 势场中运动的粒子,其波函数具有一维周期性。
3
目前,一维近自由电子近似已被广泛应用于研究 一维晶体中的电子结构和物理性质,如电荷密度 波、自旋密度波等现象。
发展更精确的理论模型和计算方法,以更准确地 描述一维晶体中电子的运动和相互作用。
探索一维近自由电子近似在其他领域的应用,如 光子晶体、表面等离激元等。
感谢您的观看
THANKS
这一定理表明,在周期性势场中,电子的波函数具有与周期性势场相同的周期性 。
布洛赫定理对一维近自由电子近似的影响
一维近自由电子近似是一种理论模型,用于描述在一维空 间中运动的电子的行为。这种近似忽略了电子之间的相互 作用以及更高阶的能量修正。
根据布洛赫定理,一维近自由电子近似中的波函数应该是 具有周期性的。这意味着,在计算电子的能量和波函数时, 需要考虑周期性势场的影响。
布洛赫定理指出,如果一个函数在一个区间内可积,那么这个函数在这个区间内的积分等于该函数在 区间内任意分割的子区间上的积分的极限。这个定理在数学分析、实变函数等领域有着广泛的应用。
02 一维近自由电子近似的基 本概念
1. 布洛赫定理的表述
布洛赫定理表述为:对于周期性势场, 电子运动的波函数具有Bloch函数的周期 性。即,对于晶体中的电子,其波函数 可以表示为:Ψ(r)=u(r)exp(ik·r),其中 u(r)是周期性函数,k是波矢。
一、布洛赫定理

自由电子气和布洛赫电子的异同研究

自由电子气和布洛赫电子的异同研究

自由电子气和布洛赫电子的异同研究张馨予1121900130哈尔滨工业大学 材料学院,材料科学与工程一班(1219001)摘 要:为了研究晶体中电子的运动状态,建立了多种理论和模型。

本文主要介绍自由电子气模型、布洛赫模型及原理的推导及特点,并比较其异同。

关键词:自由电子气模型;布洛赫模型;布洛赫原理1 自由电子气模型1.1 自由电子气模型假设(1)自由电子近似(Free electron approximation ):忽略电子——离子的相互作用 独立电子近似(Independent electron approximation ):忽略电子——电子之间的相互作用(2)电子之间的碰撞是瞬时的,经过碰撞,电子速度的改变也是突然的。

(3)电子在dt 时间所受碰撞的几率正比于dt/τ,τ通常被成为弛豫时间(Relaxation time ),相应的近似被成为弛豫时间近似(Relaxation time approximation )。

(4)电子通过碰撞处于热平衡状态。

电子热平衡的获得被假定通过一个简单的途径达到,即碰撞前后的速度没有关联(电子对自己的速度历史没有记忆)。

电子热平衡分布满足Bolzmann 统计 (经典统计)。

1.2 金属的直流电导 1.2.1电导率由欧姆定律(Ohm ’s law ):R I V ⋅=,欧姆定律更一般的形式(微分形式):E J⋅=σ按照自由电子气模型分析:假定t 时刻电子的平均动量为p(t),经过dt 时间,电子没有受到碰撞的几率为 1-dt/τ,那么这部分电子对平均动量的贡献为])()([1)(dt t F t p dt dt t p+⎪⎭⎫ ⎝⎛-=+τ (1)式中F(t)是电子所受的外力。

对于受到碰撞的电子对平均动量的贡献:这部分电子的比率为dt/τ,它们受到碰撞后无规取向(动量无规取向对平均动量无贡献)。

这部分电子对平均动量的贡献在于受到碰撞前从外场获得的动量,由于碰撞发生在t+dt 时刻或之前,因此对平均动量的总贡献小于dt t F dt ⋅⋅)()/(τ,这里涉及dt 的二次项,是个二阶小量,可以略去。

固体物理基础参考解答

固体物理基础参考解答

当 T > 0 K 时,费米分布函数有

⎪1
f

)
=
⎪ ⎨0
⎪ ⎪
1
⎩2
ε << µ ε >> µ
ε =µ
下图给出了在基态 T=0K 和较低温度下 T > 0 K 时的费米分布函数。
基态和较低温度下的费米分布函数

− ∂f ∂ε
=
1 kBT
1 e(ε −µ ) kBT
1 + 1 e-(ε −µ ) kBT
对于自由电子气体,能量为
εn (k ) =
2k 2 2m
∇kεn (k )
=
2
m
k

k
=
1
(2mε
)
1 2
三维下,对应等能面为球面,所以单位体积的能态密度为:
∫ g (ε ) = 2
n
(2π )3
dsε
=2
4π k 2 =
1
(2m3
)
1 2
ε
1 2
∇k εn (k ) 8π 3 2k / m π 2 3
米波矢、费米能量、费米速度、费米温度等。
5. 如何理解金属自由电子气体的简并性?
答 :在 统 计 物 理 中 ,把 体 系 与 经 典 行 为 的 偏 离 ,称 为 简 并 性 (degeneracy)。在
绝对零度时电子仍有相当大的平均能量,这与经典的结果是截然不同的。按照经
典 的 自 由 电 子 气 体 (Drude)的 模 型 ,电 子 在 T=0 时 的 平 均 能 量 为 零 。因 此 ,在 T=0K
如此对全部电子气来说要出现沿磁感应强度 B 方向的净磁矩,因而,出现了泡利
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由电子与布洛赫电子
的区别
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
自由电子与布洛赫电子的区别
(哈尔滨工业大学 材料科学与工程系1419002班)
摘要:在1928年,布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体物理特性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill ,1877年),加斯东·弗洛凯(Gaston Floquet ,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov ,1892年)等独立地提出。

随后表产生了布洛赫电子的概念。

本文主要探讨自由电子与布洛赫电子的区别。

关键词:自由电子;布洛赫电子;区别
1 基本概念
自由电子
自由电子(free electron)按照电子的运动范围定义指不被约束在某一个特定原子内部的电子,在化学中是指在中与某个特定或无关的。

当这种电子在受到外电场或外磁场的作用时,能够在物质(晶体点阵)中或真空中运动。

因此自由电子也叫做离域电子。

由金属的电子云模型理论可以确定,金属晶体中存在。

自由电子的多少会影响晶体的性和性,自由电子愈多,的能力愈强,而大部分的晶体都有较多的自由电子,所以金属都具有良好的导热性和导电性。

布洛赫定理
晶体中电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式 其中k 为电子的波矢,Rn 是晶格矢 上述理论称为布洛赫(Bloch)定理。

布洛赫定理的另一种表述为,存在以波矢 使得
对属于布拉维格子的所有格矢 成立。

布洛赫电子
)(e )(r u r k
r k i k ⋅=ψk
n R
用布洛赫函数描述的电子称为布洛赫电子。

2 区别研究
周期性质
晶体的平移周期性不仅仅是几何图形的周期性,而且每个原子胞的各种物理化学性质也是一样的,因此,所有单胞内电子的密度分布特性也是一样的。

因此要求布洛赫电子的周期函数的表达形式与布洛赫函数的形式是一样的。

并且由于波函数何以相差任意一个模量为1的复数因子,所以何以确定的是布洛赫电子应当具有和晶体平移周期一致的周期特性。

由于自由电子模型的定义中明确了晶格内部的能量势场对自由电子没有影响效果。

因此自由电子并没有影响其周期性的晶格内在影响因素,即自由电子并没有周期特性。

电子速度
自由电子热运动的平均速度与温度有关,当导体的温度越高时自由电子的热运动速率就越大。

而当导体两端加上电压后,自由电子受电场力作用而定向漂移,由于电场的传播速率等于光速,因此几乎在导体两端加上电压的同时,导体中就建立了电场,导体中的自由电子就受到电场力作用同时做定向移动而形成电流,所以电流的速度等于光速,但电流的速度不代表自由电子的速度。

布洛赫电子在准经典的情况下,电子在正格子中运动的平均速度可以用布洛赫电子的群速度来描述。

与之相关的仅仅只有电子的频率。

当由含有时间变量的布洛赫函数来描述电子的波函数是可以看出电子的平均速度强烈的依赖于其空间等能面的形状。

并且由于晶体的内部的等能面也存在周期性(与晶体的倒格矢成周期性关系)所以布洛赫电子的平均速度也应具备周期性,并且倒格矢G为其周期。

并且速度在空间中会有反演周期性,即K和-K两个状态的电子速度的大小相等,方向相反。

有效质量与惯性质量
有布洛赫波函数以及经典力学中的牛顿第二定律何以定义电子的有效质量。

在准经典近似下,布洛赫电子有效质量是二阶张量,有电子能级在K空间的各向异性决定的,显然不同于电子的有效质量并且有布洛赫波函数的复杂性,有效质量可正可负。

另外加速度的方向与外加力场的方向在一般情况下是不同的。

此影响在于两个方面。

一是布洛赫电子的准动量并不是布洛赫电子的真是动量,直塞电子与其他粒子相互作用是具有的动量的属性。

二是由于电子除了受到外场的作用还会受到晶体内的场的作用,所以布洛赫电子的有效质量是在形式上描述外场作用对布洛赫电子准动量的影响,与经典力学类比的有效质量。

而自由电子则不考虑外场对其的影响作用,所以对于自由电子而言,它的有效质量就等于其惯性质量。

参考文献:
[1]费维栋.《固体物理(Solid State Physics)》 [M].哈尔滨工业大学出版社,2014.。

相关文档
最新文档