第四章-根轨迹法

合集下载

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章根轨迹法.

自动控制原理第四章根轨迹法.

(s z j ) pi )
m
lim
sm s
n
s
lim
1
s s nm
0
即其余的 n-m 条根轨迹终止于无穷远处,即终止于系 统的n-m个无穷大零点。
回章首 回节首
18
4-2-5 实轴上的根轨迹 实轴上根轨迹的判别方法。 在实轴上选取实验点si, 如果实验点 si 的右方实轴上的开环 零点数和极点数的总和为奇数,则 实验点 si 所在的实验段是根轨迹, 否则该实验段不是根轨迹。 图中, [-1,0]段和[-∞,-5]段是根轨迹。 而(-5,-1)段和(0,+∞)段不是根轨迹。
第四章 根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹图的基本法则 §4-3 控制系统根轨迹的绘制
§4-4 控制系统的根轨迹法分析
退出
.R.Evans)提出了一种在复平面上由系 统的开环极、零点来确定闭环系统极、零点的图 解方法,称为根轨迹法。 意义:可以分析系统的性能,确定系统应有的结 构和参数,也可用于校正装置的综合。
回章首 回节首
22
分离点或会合点位置的计算
(1) 重根法 数条根轨迹在复平面上某点相遇又分开,该点 必为特征方程的重根。 如两条根轨迹相遇又分开,该点为二重根。 三条根轨迹相遇又分开,该点为三重根等等。 重根的确定可以借助于代数重根法则。
回章首
回节首
23
代数重根法则
已知n次代数方程为
f ( x) x n an1x n1 ... a1x a0 0

根轨迹法是一种简便的图解方法,在控制工 程上得到了广泛的应用。
回章首
2
§4-1 根轨迹法的基本概念

第4章 根轨迹法

第4章 根轨迹法

• 4.4
应用MATLAB绘制根轨迹图
• 使用rlocus命令可以得到连续的单输入单输
出系统的根轨迹。 • (1)Rlocus(num,den)或rlocus(num,
den,k)
• (2)sgrid或sgrid(zeta,wn)
• 解 在图4.11中画出ξ=0.5的射线,与根轨 迹相交得闭环极点的要求位置s0。再画出 Gk(s)的极点到s0的三个向量——
• 得 • 由向量幅值
• 换句话说,如果取K*的值为65,则1+Gk (s) 的一个根将位于s0,另一个根当然是和s0共 轭的。第3个根在何处呢?由根轨迹知道, 第3条根轨迹在负实轴上,在一般情况下, 可以取一试探点,计算相应的K*值,然后 修正试探点直到找出和K*=65相应的点为止。
• ②方法2 根据式(4.14),求出闭环系统特 征方程。
• 由上式可得
• ③方法3
根据式(4.15)有
• d1在根轨迹上,即为所求的分离点,d2不在根 轨迹上,则舍弃。此系统根轨迹如图4.4。
图4.4
• 以上介绍了9条绘制根轨迹的一般规则。为 了熟练应用上述9条规则,并能绘制复杂系 统根轨迹,下面再举一例说明如何绘制一 个复杂系统的完整根轨迹图。
第4章
• 4.1
• 4.1.1
ቤተ መጻሕፍቲ ባይዱ
根轨迹法
根轨迹的基本概念
根轨迹的定义
• 系统参数(如开环增益K *)由零增加到∞ 时,闭环特征根在S平面移动的轨迹称为该 系统的闭环根轨迹。
• 4.1.2
根轨迹方程
• 既然根轨迹是闭环特征根随参数变化的轨迹,
则描述其变化关系的闭环特征方程就是根轨 迹方程。 • 则根轨迹方程(系统闭环特征方程)为: (4.2)

第四章根轨迹法.

第四章根轨迹法.

9
4.2.1 绘制根轨迹的基本法则 法则 1 根轨迹的分支数和对称性 : 1. 根轨迹对称于实轴(实数根或者复数根) 根轨迹对称于实轴(实数根或者复数根) 2. n阶系统有 条根轨迹 阶方程有 个确定的根,当根由始点 阶系统有n条根轨迹 阶方程有n个确定的根 阶系统有 条根轨迹(n阶方程有 个确定的根, 向终点移动时,必定形成一条根轨迹) 向终点移动时,必定形成一条根轨迹)
24
法则 8 根之和 : 当 n m ≥ 2 时 , 特征方程第二项系数与 K* 无关 , 无论 K* 取 何值 , 开环 n 个极点之和总是等于闭环特征方程 n 个根之和
∑s = ∑ p
i =1 i i =1
n
n
i
(4-25)
25
画出了几种常见的开环零, 在图 4-15 中 , 画出了几种常见的开环零,极点分布及其相应 的根轨迹 , 供绘制概略根轨迹时参考 .
3
4.1.1 根轨迹概念 一, 根轨迹概念 根轨迹简称根迹 , 它是开环系统某一参数从零变到无穷时 , 闭 环系统特征方程的根(闭环极点 在 环系统特征方程的根 闭环极点)在 s 平面上变化的轨迹 . 闭环极点 设控制系统如图4-1所示 设控制系统如图 所示 , 其 闭环传递函数为 C ( s) 2K φ ( s) = = 2 R( s ) s + 2 s + 2 K 显然 , 其特征根为 s1, 2 = 1 ± 1 2 K 其特征根变化如图4-2所示 令 K = 0 → ∞, 其特征根变化如图 所示 . "×"---------表示开环传递函数的极点 × 表示开环传递函数的极点 "°"---------表示开环传递函数的零点 表示开环传递函数的零点 箭头的指向-------表示 增大是根的移动方向 表示K增大是根的移动方向 箭头的指向 表示

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

第四章根轨迹法

第四章根轨迹法

系统得闭环根轨迹图。
j
已知负反馈系统开环零极点 分布如图示。
2 p2
在s平面找一点s1 ,
1
画出各开环零、极点到 z1
s1
1
p1 0
s1点得向量。
3
检验s1就是否满足相角条件: p3
(s1 z1) [(s1 p1) + (s1 p2) + (s1 p3)]
= 1 1 2 3 = (2k+1) ??
点,称为根轨迹得分离点(会合点)。
Kg=0 p1
j
j1
Kg A
Kg z1
0
p2 Kg=0
分离点得性质:
1)分离点就是系统闭环重根; 2)由于根轨迹就是对称得,所以分离点或位于实轴上,或 以共轭形式成对出现在复平面上; 3)实轴上相邻两个开环零(极)点之间(其中之一可为无穷 零(极)点)若为根轨迹,则必有一个分离点;
n
m
(s p j ) K g (s zi ) 0
j 1
i 1
d
ds
n j 1
(s
pj)
Kg
d ds
m
(s zi ) 0
i 1
d n
ds j1
n
(s
pj)
dm
ds i1
m
(s zi )
(s pj ) (s zi )
j 1
i 1
(lnV ) V V
n
m
d ln (s pj ) d ln (s zi )
如果s1点满足相角条件,则就是根轨迹上得一点。寻找
大家学习辛苦了,还是要坚持
继续保持安静
在s 平面内满足相角条件得所有s1 点,将这些点连成光滑曲 线,即就是闭环系统根轨迹。

第4章 根轨迹法

第4章 根轨迹法

Kr(s2+2s+2) G(s)H(s)= s(s+1)(s+2) 解: 开环零、极点分布: 两条根轨迹终止于开环传 z1 递函数的两个零点,另一条 p1= 0 p2= -1 p3= -2 趋于无穷远。z = -1-j z1= -1+j 2 p3 p
2

1 p
1 0
系统的三条根轨迹起始 于三个开环传递函数的极 点。
红河学院自动化系
自动控制原理
实轴上的根轨迹段 系统开环零、极点分布为: 共轭开环零、极点构 υ 1 p3 设实轴上任意点s1 成的相角正负抵消 θ 3 θ 1 p1 θ 2 s1与开环零、极 s1 0 σ p2 实轴上根轨迹段右侧 点之间的矢量: θ 4 的开环零、极点个数之和 s1的相角方程为: υ 2 p4 4 2 为奇数。 z2 ∑ (s1-zi) -∑ (s1–pj)
一、根轨迹
二、根轨迹方程
红河学院自动化系
自动控制原理
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。
(2)适用于研究当系统中某一参数 变化时,系统性能的变化趋势。 (3)近似方法,不十分精确。
§4.1 根轨迹法的基本概念 根轨迹:系统某一参数由0 → ∞变化时,l在
s平面相应变化所描绘出来的轨迹。
红河学院自动化系
自动控制原理
例1 系统结构图如图所示,分析 l 随开环增益K 变化的趋势。 K K * 2K 解. G( s) s(0.5 s 1) s( s 2) K : 开环增益 K*: 根轨迹增益 ∞ ↑ K* s2 K*=0 1 -1 -2 K* ∞ ↑
ω j
1 s1 0 σ -1
红河学院自动化系

第四章控制系统的根轨迹法

第四章控制系统的根轨迹法
9
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档