导数、微分、不定积分公式
高等数学常用微积分公式

高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
不定积分的基本公式和运算法则直接积分法

不定积分的基本公式和运算法则直接积分法一、不定积分的基本公式和运算法则1.基本公式:- 常数公式:$\int c\,dx = cx + C$,其中c为常数,C为常数。
- 幂函数公式:$\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中n为非零常数,C为常数。
- 指数函数公式:$\int e^x\,dx = e^x + C$,其中C为常数。
- 对数函数公式:$\int \frac{1}{x}\,dx = \ln,x, + C$,其中C为常数。
2.基本运算法则:- 常数倍法则:$\int kf(x)\,dx = k\int f(x)\,dx$,其中k为常数。
- 和差法则:$\int (f(x) \pm g(x))\,dx = \int f(x)\,dx \pm \int g(x)\,dx$。
- 乘法法则:$\int u \cdot v\,dx = \int u\,dv + \int v\,du$。
- 除法法则:$\int \frac{u}{v}\,dx=i\ln,v,+j\int\frac{dv}{v}$。
直接积分法是指根据不定积分的基本公式和运算法则,直接进行积分计算的方法。
下面介绍一些常见的直接积分法:1.用代换法进行积分:-根据被积函数的形式,选择一个合适的代换,使得原函数的形式更简单。
-对原函数进行代换,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
-将上述结果带入到原函数中,得到最终的积分结果。
2.用分部积分法进行积分:-对于被积函数的乘积形式,选择一个函数进行求导,选择另一个函数进行积分。
- 根据分部积分公式$\int u \,dv = uv - \int v \,du$,进行积分计算。
3.用换元法进行积分:-对于被积函数的形式,选择一个新的变量代替原来的变量,使得积分变得更简单。
-对原函数进行换元,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
微积分ab公式

微积分ab公式全文共四篇示例,供读者参考第一篇示例:微积分是数学中非常重要的一个分支,它主要研究函数的极限、连续性、微分和积分等概念。
在微积分的学习过程中,经常会遇到各种各样的公式,其中最为经典的莫过于微积分AB公式。
AB公式是微积分中常用的一组基本公式,它包括导数和积分的基本公式,掌握了这些公式可以帮助我们更好地理解微积分知识,提高解题效率。
接下来,本文将为大家介绍微积分AB公式。
一、微积分AB公式之导数基本公式1.1 常数导数法则若f(x)=C,则f'(x)=0,其中C为常数。
1.2 变量幂函数导数法则若f(x)=x^n,则f'(x)=nx^(n-1),其中n为常数。
1.3 和差法则若f(x)=u(x)+v(x),则f'(x)=u'(x)+v'(x)。
1.4 积法则若f(x)=u(x)v(x),则f'(x)=u'(x)v(x)+u(x)v'(x)。
1.5 商法则若f(x)=u(x)/v(x),则f'(x)=(u'(x)v(x)-u(x)v'(x))/(v(x))^2。
1.6 复合函数法则若f(x)=g(u(x)),则f'(x)=g'(u(x))u'(x)。
以上便是部分导数基本公式,它们在微积分的学习中起着至关重要的作用。
掌握这些基本公式可以帮助我们求解各种函数的导数,进一步推导出更加复杂的微积分问题。
二、微积分AB公式之积分基本公式2.1 不定积分基本公式∫kdx=kx+C∫x^n dx=1/(n+1)x^(n+1)+C,其中n不等于-1∫1/x dx=ln|x|+C∫e^x dx=e^x+C∫a^x dx=(1/ln(a))a^x+C其中k、a为常数,C为常数。
2.2 定积分基本公式∫[a,b]f(x)dx=F(b)-F(a),其中F(x)为f(x)的原函数。
积分基本公式是微积分中另一个重要的内容,它主要用于求函数在某一区间上的面积、弧长等问题。
微积分中的导函数与积分公式

微积分中的导函数与积分公式微积分是数学中的一个重要分支,研究了函数的导数与积分,而其中的导函数和积分公式是微积分中的两个核心概念。
导函数描述了函数的变化率,积分公式则可以用来求解曲线下的面积和计算曲线长度等问题。
本文将介绍导函数的概念、性质以及一些常见的导函数公式,同时也会详细介绍积分公式及其应用。
一、导函数的概念与性质导函数是用来描述函数变化率的概念,通常用符号f'(x)表示。
在微积分中,导函数的定义是函数f(x)在某一点x处的极限值,即:f'(x) = lim (h->0) [f(x+h) - f(x)] / h其中,lim表示极限运算,h表示自变量的一个无限小的增量。
导数的本质是函数在某一点的瞬时变化率,可以用来描述函数的斜率和速度。
导函数具有一些重要的性质,比如导函数的和差规则、常数规则、积法则和商法则等。
这些性质可以用来简化求导过程,并且在实际应用中起到很大的作用。
导函数还具有很多的几何意义,比如导函数的正负可以判断函数在某一点上升或下降,导函数的零点可以确定函数的极值点等。
二、常见的导函数公式在微积分中,有一些常见的函数的导函数公式,下面将列举一些常见的导函数公式及其证明过程。
1. 常数函数对于常数函数f(x)=c,其导数f'(x)=0。
证明过程比较简单,直接应用导数的定义即可。
2. 幂函数对于幂函数f(x)=x^n,其中n为任意实数,其导数f'(x)=n*x^(n-1)。
证明过程需要使用导数的定义和幂函数的性质。
3. 指数函数对于指数函数f(x)=a^x,其中a为常数且不等于1,其导数f'(x)=a^x * ln(a)。
这个公式可以通过对指数函数求导数的定义进行推导。
4. 对数函数对于对数函数f(x)=log_a(x),其中a为常数且大于0且不等于1,其导数f'(x)=1 / (x * ln(a))。
这个公式可以通过对对数函数求导数的定义进行推导。
导数微分不定积分公式

导数微分不定积分公式一、导数1.定义导数是函数在其中一点的变化率,表示函数在该点的切线斜率。
对于函数$f(x)$,在点$x=a$处的导数表示为$f'(a)$或$\frac{{df}}{{dx}}\bigg,_{x=a}$。
导数的几何意义是函数图像在该点处的切线斜率。
2.基本导数公式常见函数的导数公式如下:常值函数的导数为零:$\frac{{d}}{{dx}}(C) = 0$,其中$C$为常数。
幂函数的导数:$\frac{{d}}{{dx}}(x^n) = nx^{n-1}$,其中$n$是实数。
指数函数的导数:$\frac{{d}}{{dx}}(a^x) = a^x \ln{a}$,其中$a>0$。
对数函数的导数:$\frac{{d}}{{dx}}(\log_a{x}) = \frac{{1}}{{x \ln{a}}}$,其中$a>0$且$a\neq 1$。
三角函数的导数:$\frac{{d}}{{dx}}(\sin{x}) = \cos{x}$$\frac{{d}}{{dx}}(\cos{x}) = -\sin{x}$$\frac{{d}}{{dx}}(\tan{x}) = \sec^2{x}$$\frac{{d}}{{dx}}(\cot{x}) = -\csc^2{x}$$\frac{{d}}{{dx}}(\sec{x}) = \sec{x}\tan{x}$$\frac{{d}}{{dx}}(\csc{x}) = -\csc{x}\cot{x}$二、微分1.定义微分表示函数在其中一点附近的变化情况,主要有全微分和偏微分两种。
全微分:对于函数$z=f(x,y)$,在点$(x_0,y_0)$处全微分表示为$dz=\frac{{\partial z}}{{\partial x}}dx+\frac{{\partialz}}{{\partial y}}dy$,其中$\frac{{\partial z}}{{\partial x}}$和$\frac{{\partial z}}{{\partial y}}$分别表示对于$x$和$y$的偏微分。
不定积分计算公式

不定积分计算公式不定积分是微积分中一个重要的概念,它表示函数的原函数。
计算不定积分可以使用一系列的公式和技巧。
下面将介绍一些常用的不定积分计算公式。
1.幂函数不定积分的基本公式之一是幂函数的不定积分公式。
∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)其中C为常数。
例如,∫x^2 dx = x^3/3 + C只有当指数n不等于-1时,幂函数才有原函数。
2.指数函数和对数函数指数函数和对数函数是常用的函数,它们的不定积分可以通过以下公式计算。
∫e^x dx = e^x + C∫ln(x) dx = xln(x) - x + C其中e为自然对数的底数。
3.三角函数三角函数也有常用的不定积分公式。
∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫tan(x) dx = -ln,cos(x), + C∫cot(x) dx = ln,sin(x), + C其中C为常数。
4.反三角函数其不定积分公式如下所示。
∫sec^2(x) dx = tan(x) + C∫csc^2(x) dx = -cot(x) + C∫sec(x)tan(x) dx = sec(x) + C∫csc(x)cot(x) dx = -csc(x) + C其中C为常数。
5.一些特殊函数除了上述常见的函数,还有一些特殊的函数和它们的不定积分公式。
∫1 dx = x + C∫1/x dx = ln,x,+ C (x≠0)∫e^ax sin(bx) dx = (a e^ax sin(bx) - b e^ax cos(bx))/(a^2 + b^2) + C∫e^ax cos(bx) dx = (a e^ax cos(bx) + b e^ax sin(bx))/(a^2 + b^2) + C其中a和b为常数。
6.分部积分法分部积分法是一个常用的计算不定积分的技巧,它基于导数运算和不定积分之间的关系。
积分常用公式(最新整理)

积分常用公式一.基本不定积分公式:1. C x dx +=⎰2. ) 3.111++=⎰αααx dx x 1(-≠αC x dx x+=⎰ln 14.5.C aa dx a xx+=⎰ln )1,0(≠>a a C e dx e xx+=⎰6. 7.C x xdx +-=⎰cos sin C x xdx +=⎰sin cos 8.9.C x dx x xdx +==⎰⎰tan cos 1sec 22Cx dx x xdx +-==⎰⎰cot sin 1csc 2210. 11.C x xdx x +=⋅⎰sec tan sec Cx xdx x +-=⋅⎰csc cot csc 12.(或)C x dx x+=-⎰arcsin 11212arccos 11C x dx x+-=-⎰13.(或)C x dx x +=+⎰arctan 11212cot 11C x arc dx x +-=+⎰14.15.C x xdx +=⎰cosh sinh Cx xdx +=⎰sinh cosh 二.常用不定积分公式和积分方法:1.2.C x xdx +-=⎰cos ln tan Cx xdx +=⎰sin ln cot 3.4.C axa x a dx +=+⎰arctan 122C a x ax a ax dx ++-=-⎰ln 21225. 6.C x x xdx ++=⎰tan sec ln sec C x x xdx +-=⎰cot csc ln csc 7.8.C axx a dx +=-⎰arcsin22Ca x x a x dx +±+=±⎰2222ln 9.C a x a x a x dx x a ++-=-⎰arcsin 222222210.Ca x x a a x xdx a x +±+±±=±⎰2222222ln 2211.第一类换元积分法(凑微分法):Cx F x t x d x f dx x x f dx x g +=='=⎰⎰⎰)]([)(])([)]([)()]([)(ϕϕϕϕϕϕ为为为为为为为为为为为为12.第二类换元积分法(典型代换:三角代换、倒代换、根式代换):Cx F C t F dt t f dt t t g t x dxx g +=+=='=-⎰⎰⎰)]([)()()()]([)()(1ϕϕϕϕ为注:要求代换单调且有连续的导数,且“换元须还原”)(t ϕ13.分部积分法(典型题特征:被积函数是两类不同函数的乘积,且任何一个函数不能为另一个函数凑微分)⎰⎰-=vduuv udv 14.万能置换公式(针对三角有理函数的积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、导数的概念及其计算1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -=' 4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。
二、定积分的概念及其计算(牛顿—莱布尼茨公式)1.定积分(1)概念设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f1=(ξi )△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰badx x f )(,即⎰badx x f )(=∑=∞→ni n f 1lim (ξi )△x 。
这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式定理 若函数)(x f 在],[b a 上连续,且存在原函数)(x F ,则)(x f 在],[b a 上可积,且⎰-=baa Fb F dx x f )()()(这即为牛顿—莱布尼茨公式,也常记为⎰-==baba a Fb F x F dx x f )()()()(。
基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m x m +C (m ∈Q , m ≠-1);⎰x 1dx =ln x +C ;⎰dx e x=x e +C ;⎰dx a x=aa xln +C ;⎰xdx cos =sin x +C ;⎰xdx sin =-cos x +C (表中C 均为常数)(2)定积分的性质 ①⎰⎰=ba badx x f k dx x kf )()((k 为常数);②⎰⎰⎰±=±ba b abadx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=bac abcdx x f dx x f dx x f )()()((其中a <c <b )。
(3)定积分求曲边梯形面积由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积⎰=b adx x f S )(。
如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b(a<b )围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC=⎰⎰-babadx x f dx x f )()(21。
一、基本导数公式:()()()()()()()()()()()()()()()''1'''''''2'2'''''21.2.3.ln 4.15.log ln 16.ln7.sin cos8.cos sin9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 113.arcsin 114.arccos 115.arctan 11n n x xx xa kx kxnx a a a e ex x a x xx x x x x xxx x x x x x x x x x -========-==-==-==-=+()'216.a cot 1rc x =-+二、基本微分公式:()()()()()()()()()()()()()()1221.2.3.ln 4.15.ln 16.log ln7.sin cos8.cos sin9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 113.arcsin 14.arccos n n x x x x a d kx kd x nx dx d a a adx de e dx d x dxx d x dxx ad x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dxd x -========-==-==-=()()221115.arctan 1116.cot 1dxd x dx xd arc x dx x=-=+=-+三、不定积分基本公式:11.2.13.14.ln 15.ln ||6.sin cos7.cos sin8.tan ln |cos |9.cot ln |sin |10.csc ln |csc cot |11.sec ln |sec tan |n n x x xxkdx kx cxx dx cn e dx e c a dx a cadx x c xxdx x c xdx x c xdx x cxdx x cxdx x x cxdx x x c+=+=++=+=+=+=-+=+=-+=+=-+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2232121311xdx x cx dx x cdx cx x =+=+=-+⎰⎰⎰222222222112.c cot sin 113.sec tan cos114.arctan 1115.arcsin16.sec tansec 17.csc cot csc 118.arctan 119.ln ||220.dx cs xdx x cx dx xdx x c xdx x c x dx x cx xdx x c x xdx x cdx x c x a a a dx x a c x a a x a dx ==-+==+=++=+=+=-+=++-=+-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰arcsin 21.ln ||22.ln ||x ca dxx cx c =+=++=++⎰⎰⎰()221ln 112x dx x c x =+++⎰ 21arctan 1dx x c x =++⎰。