导数积分公式

合集下载

高等数学微积分公式

高等数学微积分公式

高等数学微积分公式高等数学微积分公式微积分是数学中的一个重要分支,它研究的是函数的变化规律。

在微积分的学习中,我们需要掌握许多公式,在处理函数的变化过程中起到了非常重要的作用。

下面是高等数学中常见的微积分公式。

一、导数公式1.常数函数的导数公式:\[\frac{d}{dx} C=0\]其中C为常数。

2.幂函数的导数公式:\[\frac{d}{dx} x^{n}=nx^{n-1}\]其中n为常数。

3.自然指数函数的导数公式:\[\frac{d}{dx} e^{x}=e^{x}\]4.对数函数的导数公式:\[\frac{d}{dx} ln(x)=\frac{1}{x}\]5.三角函数的导数公式:\[\frac{d}{dx} sin(x)=cos(x)\]\[\frac{d}{dx} cos(x)=-sin(x)\]6.反三角函数的导数公式:\[\frac{d}{dx} sin^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}\] \[\frac{d}{dx} cos^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}\]7.复合函数的导数公式(链式法则):设y=f(u)和u=g(x),则有\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]二、微分公式1.常数函数的微分公式:\[d(C)=0\]其中C为常数。

2.幂函数的微分公式:\[d(x^{n})=nx^{n-1}dx\]其中n为常数。

3.指数函数的微分公式:\[d(e^{x})=e^{x}dx\]4.三角函数的微分公式:\[d(sin(x))=cos(x)dx\]\[d(cos(x))=-sin(x)dx\]5.反三角函数的微分公式:\[d(sin^{-1}(x))=\frac{dx}{\sqrt{1-x^{2}}}\]\[d(cos^{-1}(x))=-\frac{dx}{\sqrt{1-x^{2}}}\]6.复合函数的微分公式(链式法则):设y=f(u)和u=g(x),则有\[dy=\frac{dy}{du}\times du\]三、泰勒公式泰勒公式是微积分中的一个重要定理,它可以将一个函数在某点的值表示为一系列关于该点的导数的和。

导数微积分公式大全

导数微积分公式大全
【导数】 注:【】里面是次方的意思 (1)常数的导数: (c)′= 0 (2)x 的 α 次幂: ╭ 【α】╮′ 【α - 1】 │x │ = αx ╰ ╯ (3)指数类: ╭ 【x】╮′ 【x】
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

导数微积分公式大全

导数微积分公式大全

导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。

导数和积分公式

导数和积分公式

导数和积分公式导数和积分是微积分的两个重要概念,在数学中起着至关重要的作用。

它们不仅仅是理论上的概念,更是实际问题求解中不可或缺的工具。

本文旨在以生动、全面、有指导意义的方式介绍导数和积分的公式及其应用。

一、导数的公式及应用:导数是函数变化率的度量,表示函数在某一点的瞬时变化速率。

它有几种常见的表达方式:1. 函数f(x)在某一点x=a的导数记作 f'(a),也可以用 dy/dx 或 df(x)/dx 表示。

2. 导数的表达式为f'(x) = lim (x→a) (f(x) - f(a))/(x -a)。

3. 常见函数的导数公式:① 若 f(x) = ax^n (a为常数,n为正整数),则 f'(x) = anx^(n-1)。

② 若 f(x) = e^x,则 f'(x) = e^x。

③ 若 f(x) = sinx,则 f'(x) = cosx。

④ 若 f(x) = cosx,则 f'(x) = -sinx。

⑤ 若 f(x) = ln(x),则 f'(x) = 1/x。

导数的应用非常广泛,例如:1. 求函数的最大值和最小值:在函数的导数为零或不存在的点处,可能存在极值点。

2. 描述物体运动:导数可以反映物体的速度和加速度,常用于描述运动物体的位置、速度和加速度之间的关系。

3. 经济学中的边际分析:导数可以用于分析经济中的边际成本、边际收益等问题。

二、积分的公式及应用:积分是导数的逆运算,表示函数区间上的累积变化量。

它也有几种常见的表达方式:1. 函数f(x)在区间[a, b]上的积分记作∫(a to b) f(x)dx。

2. 不定积分的表达式为∫f(x)dx + C,其中C为常数。

3. 常见函数的积分公式:① 若 f(x) = x^n (n不等于-1),则∫f(x)dx = (1/(n +1))x^(n + 1)。

② 若 f(x) = e^x,则∫f(x)dx = e^x。

最全高等数学导数和积分公式汇总表

最全高等数学导数和积分公式汇总表

高等数学导数及积分公式汇总表一、导数公式 1.幂函数 0='c1)(-='n n nu u 2.指数函数 a a a u u ln )(=' e e e u u ln )(=' 3.对数函数 au a u ln 1)(log =' uu 1)(ln ='4.三角函数 u u cos )(sin =' u u sin )(cos -=' u u 2sec )(tan ='u u 2csc )(cot -='u u u tan sec )(sec =' u u u cot csc )(csc -='5.反三角函数 211)(arcsin uu -='211)(arccos u u --=' 211)(arctan u u +='211)cot (u u arc +-='6.其他 1='u211)(u u -='uu 21)(='23211)(uu-='22)(22a u u a u ±='±二、积分公式 1.幂函数 C du =⎰0 C udu un n n+=++⎰1112.指数函数 C e du e uu +=⎰ C du a aa uu +=⎰ln3.有关对数 C u udu +=⎰ln4.三角函数 C u udu +-=⎰cos sinC u udu +=⎰sin cosC u udu +=⎰tan sec 2C u udu +-=⎰cot csc 2C u udu u +=⎰sec tan sec C u udu u +-=⎰csc cot csc C u udu +-=⎰cos ln tan C u udu +=⎰sin ln cotC u u udu ++=⎰tan sec ln secC u u udu +-=⎰cot csc ln csc5.反三角函数C a u u a u du +±+=⎰±22ln 22C a u ua du +=⎰-arcsin 22C ua ua au a du +=-+-⎰ln2122Ca ua u a du +=⎰+arctan 122 6.其他 C u u du +-=⎰12C u du u +=⎰2332C u du u+=⎰2121Cu u udu +-=⎰-2222C u u udu ++=⎰+22111ln 2C u u u udu +-=⎰ln ln三、定义域 ))(10(∞+-∞∈≠>=,,,x a a a y x)010(log >≠>=x a a x y a ,,四、对数公式b Nb a a N log log log =mn m a n a log )(log =2lg 1lg 2lg 1lg log 21lg 21lg 2121q q k k q q k k k k q q --==五、三角公式 αααcos sin 22sin =ααα22sin cos 2cos -=αα2cos 1cos 22+=αα2cos 1sin 22-=六、因式分解3223333)(y xy y x x y x ±+±=±。

积分与求导公式最全

积分与求导公式最全

积分与求导公式最全一、求导公式求导是对函数进行微分运算,求函数的导数。

导数有一些基本的运算规则,下面是一些常用的求导公式。

1.常数函数的导数为0:如果f(x)=c,其中c为常数,则f'(x)=0。

2. 幂函数的导数:如果f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。

3. 指数函数的导数:如果f(x)=a^x,其中a为常数且a>0,则f'(x)=ln(a) * a^x。

4. 对数函数的导数:如果f(x)=ln(x),其中x>0,则f'(x)=1/x。

5. 三角函数的导数:如果f(x)=sin(x),则f'(x)=cos(x);如果f(x)=cos(x),则f'(x)=-sin(x);如果f(x)=tan(x),则f'(x)=sec^2(x)。

6. 反三角函数的导数:如果f(x)=arcsin(x),则f'(x)=1/√(1-x^2);如果f(x)=arccos(x),则f'(x)=-1/√(1-x^2);如果f(x)=arctan(x),则f'(x)=1/(1+x^2)。

7. 对数导数:如果f(x)=log_a(x),其中a为常数且a>0,则f'(x)=1/(xln(a))。

8.基本四则运算法则:求导公式也满足基本的四则运算法则,例如:如果f(x)=u(x)+v(x),则f'(x)=u'(x)+v'(x)。

二、积分公式积分是对函数进行求和运算,求解函数的原函数。

积分有一些基本的规则和公式,下面是一些常用的积分公式。

1. 常数函数的积分:∫(c)dx = cx + C,其中c为常数,C为积分常数。

2. 幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数。

3. 指数函数的积分:∫(e^x)dx = e^x + C,其中C为积分常数。

基本求导积分公式

基本求导积分公式

基本求导积分公式求导积分是微积分中最基本的概念之一,它们可以帮助我们理解函数的性质和计算函数在特定区间的变化。

在本文中,我将为您介绍一些基本的求导和积分公式,并详细解释它们的推导和应用。

一、求导公式1.常数函数求导公式如果f(x)=c,其中c是常数,那么f'(x)=0。

因为常数函数没有变化率,所以它的导数永远为零。

2.幂函数求导公式如果 f(x)=x^n,其中 n 是实数,则有 f'(x) = nx^(n-1)。

这个公式可以通过对函数 f(x) 进行直接求导来得到,也可以通过使用指数函数的导数公式来得到。

3.指数函数求导公式如果 f(x)=a^x,其中 a 是正数且a ≠ 1,那么 f'(x) = a^x * ln(a)。

这个公式可以通过对函数 f(x) 进行直接求导来得到。

4.对数函数求导公式如果 f(x)=log_a(x),其中 a 是正数且a ≠ 1,那么 f'(x) =1/(x * ln(a))。

这个公式可以通过对函数 f(x) 进行直接求导来得到。

5.三角函数求导公式(1) sin(x) 的导数是 cos(x);(2) cos(x) 的导数是 -sin(x);(3) tan(x) 的导数是 sec^2(x),其中 sec(x) 是 secant 函数,其定义为 sec(x) = 1/cos(x);(4) cot(x) 的导数是 -csc^2(x),其中 csc(x) 是 cosecant 函数,其定义为 csc(x) = 1/sin(x);(5) sec(x) 的导数是 sec(x) * tan(x);(6) csc(x) 的导数是 -csc(x) * cot(x)。

6.反三角函数求导公式(1) arcsin(x) 的导数是1/√(1-x^2);(2) arccos(x) 的导数是 -1/√(1-x^2);(3) arctan(x) 的导数是 1/(1+x^2);(4) arccot(x) 的导数是 -1/(1+x^2);(5) arcsec(x) 的导数是 1/(,x,* √(x^2-1));(6) arccsc(x) 的导数是 -1/(,x,* √(x^2-1))。

导数微分不定积分公式

导数微分不定积分公式

导数微分不定积分公式一、导数导数是微积分中的重要概念,表示函数在特定点上的变化率。

假设函数y=f(x),其中x是自变量,y是因变量,那么函数在其中一点x=a处的导数表示为f'(a)或$\frac{dy}{dx}$。

导数的定义可以通过极限来表示:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h是一个无穷小的增量。

导数有以下几个基本规则:1. 常数规则:如果f(x)是一个常数,那么它的导数等于零,即$\frac{d}{dx}(c) = 0$。

2. 幂函数规则:对于幂函数f(x) = $x^n$,其中n是任意实数,它的导数是f'(x) = $nx^{(n-1)}$。

3. 指数函数规则:对于指数函数f(x) = $a^x$,其中a是常数且大于零,它的导数是f'(x) = $a^x\ln(a)$。

4. 对数函数规则:对于对数函数f(x) = $\log_a{x}$,其中a是常数且大于零且不等于1,它的导数是f'(x) = $\frac{1}{x\ln(a)}$。

5.和差规则:设f(x)和g(x)是可导函数,那么它们的和(差)f(x)±g(x)的导数是f'(x)±g'(x)。

6. 积法则:设f(x)和g(x)是可导函数,那么它们的积fg的导数是f'(x)g(x)+f(x)g'(x)。

7. 商法则:设f(x)和g(x)是可导函数,且g(x)不等于零,那么它们的商$\frac{f(x)}{g(x)}$的导数是$\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。

此外,还有复合函数的导数、隐函数的导数等规则,它们的求导公式可以根据基本规则和链式法则来推导。

二、微分微分是导数的一个重要应用,它描述了函数局部变化的情况。

微分有两种方式表示,一种是微分形式,另一种是微分方程形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档