常用求导与定积分公式(完美)

合集下载

定积分求导求导公式

定积分求导求导公式

定积分求导求导公式定积分的求导公式是积分学中的重要内容之一、它们是一些特定函数的导数的规律表达。

下面我将详细介绍定积分求导的常见公式。

1.基本初等函数的导数公式:常数函数:$f(x)=C$的导数为$f'(x)=0$。

幂函数:$f(x) = x^n$ 的导数为 $f'(x) = nx^{n-1}$。

指数函数:$f(x) = a^x (a > 0, a \neq 1)$ 的导数为 $f'(x) = a^x\ln(a)$。

对数函数:$f(x) = \ln(x)$ 的导数为 $f'(x) = \frac{1}{x}$。

三角函数:$f(x) = \sin(x)$ 的导数为 $f'(x) = \cos(x)$;$f(x) = \cos(x)$ 的导数为 $f'(x) = -\sin(x)$;$f(x) = \tan(x)$ 的导数为 $f'(x) = \sec^2(x)$。

反三角函数:$f(x) = \arcsin(x)$ 的导数为 $f'(x) =\frac{1}{\sqrt{1-x^2}}$;$f(x) = \arccos(x)$ 的导数为 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$;$f(x) = \arctan(x)$ 的导数为 $f'(x) = \frac{1}{1+x^2}$。

2.基本公式和性质:定积分的线性性:如果 $f(x)$ 和 $g(x)$ 可导,则有$\frac{d}{dx}\left(\int_a^b (f(x)+g(x)) dx\right) =\frac{d}{dx}\left(\int_a^b f(x) dx + \int_a^b g(x) dx\right)$。

定积分的常数倍性:如果 $f(x)$ 可导,则有$\frac{d}{dx}\left(\int_a^b kf(x) dx\right) =k\frac{d}{dx}\left(\int_a^b f(x) dx\right)$。

常用求导与定积分公式(完美)培训讲学

常用求导与定积分公式(完美)培训讲学

常用求导与定积分公式(完美)仅供学习与交流,如有侵权请联系网站删除 谢谢2一.基本初等函数求导公式(1) 0)(='C(2) 1)(-='μμμx x (3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan ='(6)x x 2csc )(cot -='(7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9)a a a x x ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log =' (12)x x 1)(ln =',(13) 211)(arcsin x x -='(14) 211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+ 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则仅供学习与交流,如有侵权请联系网站删除 谢谢3设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰(5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰仅供学习与交流,如有侵权请联系网站删除 谢谢4(11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+⎰ (19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

基本求导积分公式

基本求导积分公式

基本求导积分公式求导积分是微积分中最基本的概念之一,它们可以帮助我们理解函数的性质和计算函数在特定区间的变化。

在本文中,我将为您介绍一些基本的求导和积分公式,并详细解释它们的推导和应用。

一、求导公式1.常数函数求导公式如果f(x)=c,其中c是常数,那么f'(x)=0。

因为常数函数没有变化率,所以它的导数永远为零。

2.幂函数求导公式如果 f(x)=x^n,其中 n 是实数,则有 f'(x) = nx^(n-1)。

这个公式可以通过对函数 f(x) 进行直接求导来得到,也可以通过使用指数函数的导数公式来得到。

3.指数函数求导公式如果 f(x)=a^x,其中 a 是正数且a ≠ 1,那么 f'(x) = a^x * ln(a)。

这个公式可以通过对函数 f(x) 进行直接求导来得到。

4.对数函数求导公式如果 f(x)=log_a(x),其中 a 是正数且a ≠ 1,那么 f'(x) =1/(x * ln(a))。

这个公式可以通过对函数 f(x) 进行直接求导来得到。

5.三角函数求导公式(1) sin(x) 的导数是 cos(x);(2) cos(x) 的导数是 -sin(x);(3) tan(x) 的导数是 sec^2(x),其中 sec(x) 是 secant 函数,其定义为 sec(x) = 1/cos(x);(4) cot(x) 的导数是 -csc^2(x),其中 csc(x) 是 cosecant 函数,其定义为 csc(x) = 1/sin(x);(5) sec(x) 的导数是 sec(x) * tan(x);(6) csc(x) 的导数是 -csc(x) * cot(x)。

6.反三角函数求导公式(1) arcsin(x) 的导数是1/√(1-x^2);(2) arccos(x) 的导数是 -1/√(1-x^2);(3) arctan(x) 的导数是 1/(1+x^2);(4) arccot(x) 的导数是 -1/(1+x^2);(5) arcsec(x) 的导数是 1/(,x,* √(x^2-1));(6) arccsc(x) 的导数是 -1/(,x,* √(x^2-1))。

常用基本初等函数求导公式积分公式

常用基本初等函数求导公式积分公式

常用基本初等函数求导公式积分公式常用的基本初等函数求导公式有:1.常数函数求导公式:对于常数函数f(x)=C,其中C是一个常数,其导函数为f'(x)=0。

2.幂函数求导公式:对于幂函数f(x) = x^n,其中n是任意实数,其导函数为f'(x) =nx^(n-1)。

3.指数函数求导公式:对于指数函数f(x) = a^x,其中a是一个大于0且不等于1的常数,其导函数为f'(x) = ln(a) * a^x。

4.对数函数求导公式:对于自然对数函数f(x) = ln(x),其导函数为f'(x) = 1/x。

5.三角函数求导公式:a) 正弦函数求导公式:f(x) = sin(x)的导函数为f'(x) = cos(x)。

b) 余弦函数求导公式:f(x) = cos(x)的导函数为f'(x) = -sin(x)。

c) 正切函数求导公式:f(x) = tan(x)的导函数为f'(x) =sec^2(x)。

6.反三角函数求导公式:a) 反正弦函数求导公式:f(x) = arcsin(x)的导函数为f'(x) =1/√(1 - x^2)。

b) 反余弦函数求导公式:f(x) = arccos(x)的导函数为f'(x) = -1/√(1 - x^2)。

c) 反正切函数求导公式:f(x) = arctan(x)的导函数为f'(x) =1/(1 + x^2)。

常用的基本初等函数积分公式有:1.幂函数积分公式:对于幂函数f(x) = x^n,其中n不等于-1,其不定积分为∫x^n dx= (1/(n+1)) x^(n+1) + C,其中C为积分常数。

2.反函数积分公式:对于反函数f(x) = F^(-1)(x),其中F(x)为连续可导函数,其不定积分为∫f(x) dx = x * F(x) - ∫F(x) dF(x) + C,其中C为积分常数。

常用求导与定积分公式

常用求导与定积分公式

常用求导与定积分公式常用的求导公式有:1. 常数规则:对于常数C,有d/dx(C) = 0。

2. 幂函数规则:对于任意实数n,有d/dx(x^n) = nx^(n-1)。

特别地,d/dx(x^1) = 13. 指数函数规则:对于任意实数a,有d/dx(a^x) = ln(a) * a^x。

4. 对数函数规则:对于任意正实数a,有d/dx(log_a(x)) = 1 / (x * ln(a))。

5. 三角函数规则:对于三角函数sin(x)和cos(x),有d/dx(sin(x)) = cos(x)和d/dx(cos(x)) = -sin(x)。

6. 乘法规则:对于两个可导函数f(x)和g(x),有d/dx(f(x) *g(x)) = f'(x) * g(x) + f(x) * g'(x)。

7. 商法则:对于两个可导函数f(x)和g(x),有d/dx(f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^28. 复合函数规则:对于两个可导函数f(x)和g(x),有d/dx(f(g(x))) = f'(g(x)) * g'(x)。

常用的定积分公式有:1. 常数积分规则:对于常数C和可导函数f(x),有∫f(x) dx =F(x) + C,其中F'(x) = f(x)。

2. 幂函数积分规则:对于实数n不等于-1和可导函数f(x),有∫x^n dx = (x^(n+1)) / (n+1) + C。

3. 指数函数的积分规则:对于底数为a的指数函数和可导函数f(x),有∫a^x dx = (a^x) / ln(a) + C。

4. 对数函数的积分规则:对于底数为a的对数函数和可导函数f(x),有∫(1 / x) dx = ln,x, + C。

5. 三角函数的积分规则:对于三角函数sin(x)和cos(x)以及可导函数f(x),有∫sin(x) dx = -cos(x) + C和∫cos(x) dx = sin(x) + C。

常用求导与定积分公式

常用求导与定积分公式

一.基本初等函数求导公式(1) 0)(='C(2) 1)(−='μμμx x(3)x x cos )(sin ='(4)x x sin )(cos −='(5) x x 2sec )(tan =' (6)x x 2csc )(cot −=' (7) x x x tan sec )(sec ='(8)x x x cot csc )(csc −='(9)a a a x x ln )(=' (10) (e )e x x '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x −='(14)211)(arccos x x −−='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=−+函数的和、差、积、商的求导法则设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2)u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4) 2v v u v u v u '−'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠− (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =−+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=−+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =−+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a−=+−+⎰ (18)sin xarc C a =+(19)ln(x C =++(20)ln ||x C =+(21)tan ln |cos |xdx x C =−+⎰(22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =−+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

常用的求导和定积分公式

一.基本初等函数求导公式⑴(cy = o (2)⑶(si»x)r=cosx(4) (cosx)' =-sinx⑸(tanx)r = sec2 x(6)(cot x)f = -esc2X⑺(secx)r = sec x tan .v (8) (cscx)f = -cscxcotx⑼(a x y = a x In a(10) (e r y = e v(11) (log”)-]xm a(12) (In x)f =—(firpcin Y\9—(firr*r*oc vV—1 (13) vl -X2(14)v Wo 人f Jl -X(15) (arctan x)r -1、1+JC (16)(arc cot x\ =- 11 + x2函数的和、差.积.商的求导法则设“ =/心),V = v(x)都可导,则(])(M ± V)' = ll ± v' (2) {Cuy = cu(C 是常数)(3) (uv)f = u f v + uv f(\u1fu f v-uv r (4) ”2反函数求导法则若函数*=0(刃在某区间/y内可导、单调且0(刃h °,则它的反函数)‘=f⑴在对应区间人内也可导,且dy 1__ ______dx dxdy复合函数求导法则设〉'= /(”),而“=卩(尤)且/(")及#(x)都可导,则复合函数y = /[0(Q]的导数为dy _ dy dudx du dx或y f =广(")・0(x)二.基本积分表(1) ^kdx = kx + C(k 是常数)(2) (心—1)(3)[-dx = \n\x\+CJ x(4)[ = arl tanx + C」1 + JTdx= arcsinx + CJ tan xdx = -In I cos x I +C(6) (7) (8) (9) (10) (11) (12)(13)(14)(15) (16)(17) (18) (19)(20)(21)j cos xdx = sin x + C — lx = tan x + C cos* x —= -cot x + C siir xJ sec x tan xdx = sec x + C | esc x cot xdx = - esc x + C J e x dx = e x +C———C , (a > 0,且a H 1) \nashxdx = chx + C)chxdx = shx + Cf —― dx = —arc tan — + C 」犷+对 af —―- dx = —In I J x 2-a 2 la口 l+C2a x + af ‘ 1d x = a resin 丄 +CF —2"f . J d x = ln(x + y/a 2 + X 2) + C J yja 2 +x 2dx(22) J cot xdx = In 1 sin x 1+C (23) J sec xdx = In 1 secx + tan x 1+C (24) f esc xdx = In 1 esc x - cot x 1+C注:1、从导数基本公式可得前13个积分公式,(16)-(24)式后儿节证。

积分与求导公式大全

积分与求导公式大全一、常用的求导公式1. 常数法则:d/dx(c) = 0,其中c为常数。

2. 幂函数法则:若f(x) = x^n,其中n为常数,则d/dx(f(x)) =nx^(n-1)。

3. 乘法法则:若f(x) = u(x) * v(x),则d/dx(f(x)) = u'(x)v(x) + u(x)v'(x),其中u'(x)表示对u(x)求导。

4. 除法法则:若f(x) = u(x) / v(x),则d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x)) / v(x)^2,其中u'(x)表示对u(x)求导。

5. 指数函数法则:若f(x) = a^x,其中a为常数且a > 0,则d/dx(f(x)) = ln(a) * a^x。

6. 对数函数法则:若f(x) = log_a(x),其中a为常数且a > 0且a≠1,则d/dx(f(x)) = (1 / (x * ln(a)))。

7. 三角函数法则:若f(x) = sin(x),则d/dx(f(x)) = cos(x);若f(x) = cos(x),则d/dx(f(x)) = -sin(x)。

8. 反三角函数法则:若f(x) = arcsin(x),则d/dx(f(x)) = 1 / sqrt(1 - x^2);若f(x) = arccos(x),则d/dx(f(x)) = -1 / sqrt(1 - x^2)。

9. 导数的链式法则:若f(x) = g(h(x)),则d/dx(f(x)) = g'(h(x)) * h'(x),其中g'表示对g求导。

10. 高阶导数法则:若f(x)的n阶导数存在,则d^n/dx^n(f(x)) =d^(n-1)/dx^(n-1)(f'(x))。

二、常用的积分公式1. 常数积分:∫c dx = cx + C,其中c为常数,C为常数表示积分常数。

常用的求导和定积分公式(完美)

一.基本初等函数求导公式之老阳三干创作(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e x x'=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -='(14)211)(arccos x x --='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法例 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法例若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'='或dy dxdx dy 1=复合函数求导法例设)(u f y =,并且)(x u ϕ=)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰(1)u ≠-(3)1ln ||dx x C x=+⎰ (4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰(7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰ (18)sinxarc C a=+(19)ln(x C =+(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰(23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证.2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数.3、温习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=,21cos 2sin 2xx -=. 注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法.此办法是很是重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握罕见的凑微分形式及“凑”的技巧. 小结:1经常使用凑微分公式。

常用的求导和定积分公式(完美版)

一.基本初等函数求导公式(1) 0)(='C(2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a x x ln )(='(10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+⎰(19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰(24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.基本初等函数求导公式
(1) 0)(='C
(2) 1
)(-='μμμx x
(3) x x cos )(sin ='
(4) x x sin )(cos -='
(5)
x x 2
sec )(tan =' (6)
x x 2
csc )(cot -=' (7) x x x tan sec )(sec ='
(8) x x x cot csc )(csc -='
(9)
a a a x x ln )(='
(10) (e )e x
x '=
(11)
a x x a ln 1
)(log =
'
(12)
x x 1)(ln =
',
(13)
211)(arcsin x x -=
' (14)
211)(arccos x x --
=' (15)
21(arctan )1x x '=
+
(16)
21(arccot )1x x '=-
+
函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则
(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)
(3) v u v u uv '+'=')(
(4) 2v v u v u v u '-'='
⎪⎭⎫ ⎝⎛
反函数求导法则
若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数
)(x f y =在对应区间
x
I 内也可导,且
)(1)(y x f ϕ'=
' 或 dy dx dx dy 1=
复合函数求导法则
设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为
dy dy du dx du dx =g
或()()y f u x ϕ'''=g
二、基本积分表
(1)kdx kx C =+⎰ (k 是常数)
(2)1
,1
x x dx C μμ
μ+=
++⎰ (1)u ≠- (3)1
ln ||dx x C x =+⎰
(4)2
tan 1dx
arl x C x
=++⎰ (5)
arcsin x C =+⎰
(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰
(8)21
tan cos dx x C x =+⎰
(9)21
cot sin dx x C x
=-+⎰
(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰
(13)ln x
x
a a dx C a
=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰
(16)22
11tan x
dx arc C a x a a =++⎰
(17)2211ln ||2x a
dx C x a a x a
-=+-+⎰
(18)
sin
x
arc C a
=+⎰
(19)
ln(x C =+
(20)
ln |x C =+⎰
(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰
(24)csc ln |csc cot |xdx x x C =-+⎰
注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:
2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2
x
x +=
, 21cos 2sin 2
x
x -=。

注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。

此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

小结:
1常用凑微分公式
x
u x
u x u x u x u x u a u e u x u x u b ax u x d x f dx x
x f x d x f dx x
x f x
d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da
a f a dx a a f de
e f dx e e f x d x f dx x
x f x d x
f dx x x f a b ax d b ax f a
dx b ax f x x x
x
x
x
x
x
x
x
arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)
(arcsin .11)
(arctan )(arctan 11
)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1
)(.5)()(..4)
(ln )(ln 1
)(ln .3)
0()()(1
)(.2)
0()
()(1)(.12
2
2
21
==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅
≠=
≠++=+⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰
⎰⎰⎰
⎰⎰
-μμ
μ
μμμμ

分积元换一第换元公式
积分类型。

相关文档
最新文档