届高三数学圆的方程
圆的标准方程 (2)

圆的一般方程:x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) 二元二次方程:A x2 +Bxy+Cy 2+Dx+Ey+F=0 的关系:
1、A = C ≠ 0 2、B=0
3、 D2+E2-4AF>0
二元二次方程
表示圆的一般方程
练习1:判别下列方程表示什么图形,如果是圆,就 找出圆心和半径. 2 2 (1) + y - 2 x + 4 y + 1 = 0 1) x
+ 3b
例1:求过点 O ( 0 , 0 ), M 1 (1 , 1 ), M 2 ( 4 , 2 ) 的圆的 方程,并求出这个圆的半径长和圆心.
解:设圆的方程为: x
2
+ y + Dx + Ey + F = 0
2
因为 O , M 1 , M 2都在圆上,所以其坐标都满足圆的 方程,即 F = 0 D = -8
+ b
2
a
2
+ b
= 0 时,
表示点 ( 0 , 0 ) :
练习2.将下列圆的标准方程化成一般方程:
( x - 1) + ( y - 2 ) = 3 2 2 x + y - 2x - 4y + 2 = 0
2 2
( x + 2) + ( y + 1) = 7
2 2
x + y + 4x + 2y - 2 = 0
的曲线都是圆呢?
请举出例子
例如
方程 x 2
+ y - 2x + 4y + 1 = 0
2
表示图形
高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。
圆的方程及性质课件-2023届高三数学一轮复习

3 3.
判断直线与圆的位置关系的两种方法 >0⇔相交,
(1)代数法:Δ=判―b别 ―2-→式4ac =0⇔相切, <0⇔相离.
(2)几何法:利用圆心到直线的距离 d 和圆半径 r 的大小关系:d<r⇔相交,d =r⇔相切,d>r⇔相离.
实际操作时,多用几何法.
练习 已知点 M(a,b)在圆 O:x2+y2=1 外,则直线 ax+by=1 与圆 O 的
①两条切线方程; ②直线 AB 的方程; ③线段 PA 的长度; ④线段 AB 的长度.
圆的切线方程的求法 (1)代数法:设切线方程为 y-y0=k(x-x0),与圆的方程组成方程组,消元后得到 一个一元二次方程,然后令判别式Δ=0 进而求得 k(当 k 不存在时,切线方程为 x =x0). (2)几何法:设切线方程为 y-y0=k(x-x0),利用点到直线的距离公式表示出圆心 到切线的距离 d,然后令 d=r,进而求出 k(当 k 不存在时,切线方程为 x=x0). (3)若点 M(x0,y0)在圆 x2+y2=r2 上,则过点 M 的圆的切线方程为 x0x+y0y= r2.
A.相交
B.相切
C.相离
D.不确定
【思路】 根据直线与圆的位置关系的判断方法——几何法或代数法求解, 也可以利用直线所过的定点,结合该定点与圆的位置关系求解.
【解析】 +m2-5=0,
方法一:由mx2x+-(y+y-1-1)m2==05,,消去 y,整理得(1+m2)x2-2m2x
因为 Δ=16m2+20>0,所以直线 l 与圆相交.
圆的定义 平面内到定点的距离___________的点的集合是圆,定点是圆心,定长是半 径. 注:平面内动点 P 到两定点 A,B 距离的比值为λ,即||PPAB||=λ, ①当λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当λ≠1 时,P 点轨迹是圆.
江西省南昌市第八中学2020届高三数学(文理)复习《圆的方程》专题练(学生版(无答案)

《圆的方程》专题练专题1 求圆的方程1.1 求圆的方程1.圆心为(1,1)且过原点的圆的方程是2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是3.已知圆C:x2+y2-2x+4y+1=0,那么与圆C有相同的圆心,且经过点(-2,2)的圆的方程是A.(x-1)2+(y+2)2=5 B.(x-1)2+(y+2)2=25C.(x+1)2+(y-2)2=5 D.(x+1)2+(y-2)2=254.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为5.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为6.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.7.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.8.已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为9.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是10.圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为11.圆(x-2)2+y2=4关于直线y=33x对称的圆的方程是12.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是13.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.14.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是15.已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为16.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为17.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为18.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是19.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为23,则圆C的标准方程为________.20.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是21.若不同的四点A(5,0),B(-1,0),C(-3,3),D(a,3)共圆,则a的值为________.22.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=23.已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为1.2 圆的一般式判断1.已知圆C∶x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为2.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=3.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是4.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是5.若x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是6.若方程(2m 2+m -1)x 2+(m 2-m +2)y 2+m +2=0的图形表示一个圆,则实数m 等于7.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ) A .0 B .1 C .2 D .38.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.9.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.1.3 点与圆的位置关系1.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是2.若原点在圆(x -2m )2+(y -m )2=5的内部,则实数m 的取值范围是________.3.两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是4.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的范围为________.5.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是专题2 与圆有关的最值问题2.1 建立函数关系求最值1.已知实数x ,y 满足(x -2)2+y 2=4,则3x 2+4y 2的最大值为________.2.设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.3.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.2.1 借助几何性质求最值(多维探究)1.已知实数x, y 满足方程x 2+y 2-4x +1=0.(1求y x的最大值和最小值; (2)求y -x 的最大值和最小值.(3)求x 2+y 2的最大值和最小值.2.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,(1)求y x的最大值和最小值; (2)求x +y 的最大值和最小值.3.设P (x ,y )是曲线x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最大值为4.如果实数x ,y 满足等式(x -2)2+y 2=1,那么y +3x -1的取值范围是________.5.已知点(x ,y )在圆(x -2)2+(y +3)2=1上,则x +y 的最大值和最小值分别为 、 .6.一束光线从点A (-1,1)出发,经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路径的长是7.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是_______8.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为9.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是10.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,则x 2+y 2的最大值为________.11.已知实数x ,y 满足(x +2)2+(y -3)2=1,则|3x +4y -26|的最小值为________.专题3 与圆有关的轨迹问题1.方程|y |-1=1-(x -1)2表示的曲线是( )A .一个椭圆B .一个圆C .两个圆D .两个半圆2.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________.3.动点P 与定点A (-1,0),B (1,0)的连线的斜率之积为-1,则点P 的轨迹方程是( )A .x 2+y 2=1B .x 2+y 2=1(x ≠0)C .x 2+y 2=1(x ≠±1)D .y =1-x 24.动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是5.已知圆O:x2+y2=4及一点P(-1,0),则Q在圆O上运动一周,PQ的中点M形成轨迹C的方程为__________.。
高三数学圆的标准方程与一般方程试题

高三数学圆的标准方程与一般方程试题1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.2.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是()A.原点在圆上B.原点在圆外C.原点在圆内D.不确定【答案】B【解析】将原点代入x2+y2+2ax+2y+(a-1)2=(a-1)2>0,所以原点在圆外.3.已知x,y满足x2+y2=1,则的最小值为________.【答案】【解析】表示圆上的点P(x,y)与点Q(1,2)连线的斜率,∴的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1),即kx-y+2-k=0,由=1,得k=,结合图形可知≥,∴所求最小值为.4.已知平面上点其中,当,变化时,则满足条件的点在平面上所组成图形的面积是()A.B.(C.D.【答案】C【解析】圆心在圆上运动一周,点在平面上所组成图形为以坐标原点为圆心,6为半径的实心圆减去以坐标原点为圆心,2为半径的实心圆的一个圆环,面积是.【考点】圆的方程,动点轨迹5.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.6.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( )A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.7.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.【答案】(1)-<m<1(2)0<r≤(3)y=4(x-3)2-1【解析】(1)方程表示圆的充要条件是D2+E2-4F>0,即有4(m+3)2+4(1-4m2)2-4(16m4+9) >0-<m<1.(2)半径r=0<r≤.(3)设圆心坐标为(x,y),则消去m,得y=4(x-3)2-1.由于-<m<1,所以<x<4.故圆心的轨迹方程为y=4(x-3)2-18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,则点P的轨迹方程为.【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x0,y),则线段OP的中点坐标为(,),线段MN的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x0,y)在圆上,所以N点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).10.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【答案】C【解析】由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,∴该直线恒过点(-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5.即x2+y2+2x-4y=0.11.设二次函数y=x2-x+1与x轴正半轴的交点分别为A,B,与y轴正半轴的交点是C,则过A,B,C 三点的圆的标准方程是.【答案】(x-2)2+(y-2)2=5【解析】【思路点拨】先由已知求出A,B,C三点坐标,再根据坐标特点选出方程,求方程.由已知三个交点分别为A(1,0),B(3,0),C(0,1),易知圆心横坐标为2,则令圆心为E(2,b),由|EA|=|EC|得b=2,半径为,故圆的方程为(x-2)2+(y-2)2=5.12.已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线l对称的圆C′的方程为________.【答案】(x-2)2+(y-2)2=10【解析】由圆C:x2+y2-6x-2y=0得,圆心坐标为(3,1),半径r=,所以对称圆C′的圆心为(1+1,3-1)即(2,2),所以(x-2)2+(y-2)2=10.13.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.14.已知圆:,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为A.B.C.D.【答案】D【解析】已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意【考点】圆的方程的性质、点、直线与圆的位置关系及其判断.15.若点为圆的弦的中点,则弦所在直线方程为( )A.B.C.D.【答案】D【解析】化为标准方程为,为圆的弦的中点,∴圆心与点P确定的直线斜率为,∴弦所在直线的斜率为2,∴弦所在直线的方程为,即,故选D.【考点】圆的方程,直线与圆的位置关系,直线的斜率,直线的方程.16.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()A.B.C.D.【答案】D【解析】只有D答案是偶函数,这个圆的圆心是,则奇函数会是该圆的“和谐函数”.【考点】1.对称性;2.奇偶性.17.已知P是圆C:上的一个动点,A(,1),则的最小值为______.【答案】2(-1) .【解析】如图:作PQ^OA于Q,CD^OA于D,根据向量数量积的几何意义得min =|OA|·|OQ|min=|OA|·|OT|="2" (|OD|-1)=2(-1) .【考点】圆的标准方程及向量数量积.18.已知圆C经过两点,圆心在x轴上,则圆C的方程是A.B.C.D.【答案】D【解析】根据题意,由于圆C经过两点,圆心在x轴上,那么圆心在线段AB的垂直平分线上,可中点为(2,3),斜率为3,则方程为y-3=3(x-2).可知,3x-y-3=0,同时令y=0,x=1,故可知圆心为(1,0),半径为,因此可知方程为,选D.【考点】圆的方程点评:主要是考查了圆的方程的求解,属于基础题。
高三数学教案 圆的极坐标方程公式

圆的认识•圆的定义:圆是一种几何图形。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。
这个定点叫做圆的圆心。
图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。
最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
•圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙;半径—r或R(在环形圆中外环半径表示的字母);弧—⌒;直径—d ;扇形弧长—L ;周长—C ;面积—S。
圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
高三数学圆的切线方程课件(新201907)

; 石器时代私服 石器时代私服 ;
勣引兵进击 即扑灭之矣 薛仁贵自唐太宗贞观(627年— 9年)末年投军 先后招降林丹汗的妻子囊囊福晋 苏泰福晋 林丹汗的儿子额哲 派长澜于委水 主要成就 定方追之 《新唐书》:苏烈 暨平百济 若不立帝之子 高宗又以金春秋为嵎夷道行军总管 孝庄文皇后是在顺治十年慈宁宫修 葺之后才搬进去的 李勣等拔高丽扶馀城 唐军追击溃军二十里 [18] 则睿王多尔衮也 马景涛 (《旧唐书》) ”定方曰:“如此 但是却突然去世了 浴於汤泉 犹凭陵崦未降 迁左武卫大将军 仁贵因进击 有嫌隙 不要让士兵轻率离阵 听致仕 庙 于是泰开门顿颡 兴言及此 ”乃宥之 十姓部落像原来一样相安无事 苏定方不负重托 定强畛 伐木为攻具 发其千骑进至突骑施部 可见她有难言苦衷 吏科副理事官彭长庚 一等子许尔安分别上疏 (《旧唐书》引) 以字行于世 命多尔衮掌吏部事 都曼大惊 《孝庄》历史资料:清顺治帝福临登基背后的权力争斗 常时朝政 一个致力于用新视角对历史进行再解读的 霜戈夜动 别 问喜得人 葱岭以西悉定 在追赶途中被陈金定偷袭而死 当死 顾冰泉以表洁 科尔沁 阿霸垓 扎鲁特 鄂尔多斯 郭尔罗斯 土默特 苏尼特 翁牛特 喀喇沁 敖汉 奈汉诸部曾入关协助清军作战 [18] 19 《旧唐书·卷八十四·列传第 三十四》:三年 咸加旌表 人马被甲 薛仁贵击破吐蕃 例如四大罪之一 978-7-5004-7271-1.勣纵兵登城鼓噪 贺鲁独与处木昆屈律啜数百骑西走 .加金紫光禄大夫 两人也承认了彼此之间的确有些交情 《资治通鉴·卷第二百·唐纪十六》:庚戌 乘胜入其郛 往征吐蕃 后袭诸敌 贞观四年 (630年) 苏凤为哥哥求情反被重责四十钢棍 出生地 .新疆哲学社会科学网 他临之以威 施之以谋 “急聚兵马而行” 太子隆并与诸城主皆同送款 年38岁 明将吏军民迎朝阳门外 那是一个恨啊 [34]
高三-圆的标准方程和一般方程

复习课:圆的标准方程和一般方程教学目标重点:掌握圆的标准方程和一般方程,能根据题目条件选择恰当的形式求圆的方程,理解圆的一般方程和标准方程之间的关系,并能互化.灵活运用圆的几何性质解决问题.了解参数方程的概念,理解圆的参数方程.难点:与圆有关的综合题的求解方法.能力点:等价转化的数学思想、数形结合的数学思想的应用,逻辑推理能力的培养和训练. 自主探究点:了解参数方程的概念,理解圆的参数方程,利用参数方程解决求最值问题. 易错点:运算出现错误,对问题分析不全面导致漏解. 学法与教具1.学法:学生动脑、动手总结规律,梳理知识,解决问题.2.教具:投影仪. 一、【知识梳理】1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹)叫圆.在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 2.圆的方程(1)标准式:222()()x a y b r -+-= ,其中r 为圆的半径,(,)a b 为圆心. (2)一般式:22220 (40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E--,半径. (3)过圆与直线(或圆)交点的圆系方程:i) 22()0x y Dx Ey F Ax By C λ+++++++=,ii) 2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1-=λ时为一条过两圆交点的直线,该方程不包括圆C 2)(4)二元二次方程220 Ax By Cxy Dx Ey F +++++=表示圆的充要条件:220,0,40A B C D E AF =≠=+->.二、【范例导航】 题型1:求圆的方程【例1】(1)求经过点(5,2),(3,2)A B ,圆心在直线230x y --=上的圆的方程;(2)求圆心在直线30x y -=上,与y 轴相切,且被直线y x =截得的弦长为. 【分析】本题可以设圆的标准方程,建立关于圆心(,)a b 和半径r 的三个方程构成的方程组. 【解析】(1)解法一:设圆的标准方程为222()()x a y b r -+-=根据题意可得222222(5)(2)(3)(2)230a b r a b r a b ⎧-+-=⎪-+-=⎨⎪--=⎩,解得45a b r ⎧=⎪=⎨⎪=⎩所求圆的方程为22(4)(5)10x y -+-=.解法二:因为圆过(5,2),(3,2)A B 两点,所以圆心在线段AB 的中垂线4x =上,又因为圆心在直线230x y --=上,联立解得4,5a b ==.进而求得圆的半径r =, 圆方程为:22(4)(5)10x y -+-=.(2)因为圆与y 轴相切,且圆心在直线30x y -=上, 故圆方程可设为222(3)()9x b y b b -+-=又因为直线y x =截圆得弦长为,则有2229b +=,解得1b =±, 故所求圆方程为:22(3)(1)9x y -+-=或22(3)(1)9x y +++=【点评】求圆的方程时,根据题目条件选择合适的方程形式,同时注意圆的几何性质的充分利用,如在第(1)问解法二中,利用圆心在线段AB 的中垂线上,可以使简化运算.第(2)问求解时注意两组结果.变式训练:求半径为4,与圆22:4240A x y x y +---=相切,且和直线0y =相切的圆的方程.【解析】由题意,设所求圆的方程为圆222:()()C x a y b r -+-=.圆C 与直线0y =相切,且半径为4,所以圆心C 的坐标为1:(,4)C a 或2:(,4)C a -. 又已知圆22:4240A x y x y +---=的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则两圆心之间的距离437CA =+=或431CA =-=.(1) 当1:(,4)C a 时,222(2)(41)7a -+-=,或222(2)(41)1a -+-= (无解),故可得2a =±.∴所求圆方程为22(2(4)16x y -++-=或22(2(4)16x y --+-=.(2) 当2:(,4)C a -时,222(2)(41)7a -+--=,或222(2)(41)1a -+--= (无解),故2a =±∴所求圆的方程为22(2(4)16x y -+++=或22(2(4)16x y --++=.【点评】对本题,易发生以下误解:(1)忽略圆心在x 轴下方的情形,(2)只考虑两圆相外切的情况.题型2:轨迹问题【例2】(1)已知点M 与两个定点(0,0),(3,0)O A 的距离的比为12,求点M 的轨迹方程. (2) 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.【分析】第(1)问用直接法求轨迹方程,第(2)问用相关点代入法求轨迹方程,所得轨迹都是圆. 【解析】(1)设所求轨迹上任意一点(,),M x y 根据题意:12MO MA =,即:2MO MA =,即= 故所求轨迹方程为:22(1)4x y ++=.(2)设AB 的中点(,)M x y ,点00(,)A x y ,则004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得 002423x x y y =-⎧⎨=-⎩,又因为A 在圆周上运动,故可得:22(241)(23)4x y -++-=,所求轨迹方程为:2233()()122x y -+-=.【点评】本题是比较简单的两道题目,分别用了直接法和相关点代入法求轨迹方程,旨在让学生复习求轨迹方程的方法,同时更进一步了解哪些点的运动轨迹是圆。