初中一次函数分段函数典例

合集下载

初中一次函数分段函数典例

初中一次函数分段函数典例

一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x ≤15时y 是x 的正比例函数; x ≥15时,y 是x 的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2 (2) 当该用户该月用21吨水时, 三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15 综上可得0.65(0100)0.815(100)xx y x x ⎧=⎨-⎩≤≤≥(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。

12.2.5一次函数-分段函数

12.2.5一次函数-分段函数

5
10
15 x(分)
我们把这种函数叫做分段函
八年级数学组
例2.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2 千克以上的种子,超过2千克部分的种子的价格打8折. (1)填出下表:
购买种子数量/千克
付款金额/元
0.5
1
1.5
2
2.5
3
3.5
4


2.5 5
7.5 10 12 14 16
18
(2)写出购买种子数量与付款金额之间的函数解析式,并 画出函数的图像. 解:(1)填表; 分析:付款金额与种子价格相关,问题中的种子价格不是固定不变 (2)设购买种子数量为x千克,付款金额为y元.
——分段函数
八年级数学组
创设情境 提出问题
例1.小芳以200米/分的速度起跑后,先匀加速跑5分,每分提 高速度20米/分,又匀速跑10分。试写出这段时间里她的跑步 速度y(单位:米/分)随跑步时间x(单位:分)变化的函数 关系式,并画出函数图象。
分析:本题y随x变化的规律分成两段:前5分钟
与后10分钟.写y 随x变化函数关系式时要分成 两部分.画图象时也要分成两段来画,且要注意 各自变量的取值范围. 八年级数学组
点评(1)根据图像反映的信息解答有关问 3 题时,首先要弄清楚两坐标轴的实际意义,抓 住几个关键点来解决问题; O 2 5 x/时 (2)特别注意,第5问中由y=3对应的x值有两个; (3)根据函数图像反映的信息来解答有关问题,比较形象、直观,从中能 八年级数学组 进一步感受“数形结合思想”。
反思总结
③当该市一户某月的用水量为5m³或10m³时,求其应缴的水费;
④该市一户某月缴水费26.6元,求该户这个月用水量.

19.2.5利用一次函数解决分段问题

19.2.5利用一次函数解决分段问题

19.2.2(4)利用一次函数解决分段函数问题编制:目标:通过函数图像获取信息,并用所获取的信息解决实际问题。

重点: 将实际问题转化为数学问题,从而构建函数模型。

难点:从实际问题中抽象出两个变量,再寻求两个变量之间的关系,构建函数模型。

一.知识清单1.形如_________________(_____________________)的函数,叫一次函数。

二.经典例题和变式例1.“黄金1号”玉米种子的价格为5元/kg ,如果一次购买2kg 以上的种子,超过2kg 部分的种子价格打八折.(1)填写下表:购买量/kg0.5 1 1.5 2 2.5 3 3.5 4 … 付款金额/元 …(2)写出付款金额关于购买量的函数解析式,并画出函数图象.例2.根据卫生防疫部门要求,游泳池必须定期换水清洗。

某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完。

游泳池内的水量)(3m Q 和开始排水后的时间)(h t 之间的函数图象如图所示,根据图象解答下列问题。

(1)暂停排水需要多少时间?排水孔的排水速度是多少。

(2)当2⩽t ⩽3.5时,求Q 关于t 的函数表达式。

变式1.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示。

(1)乙队调离时,甲、乙两队已完成的清雪总量为_____吨。

(2)求此次任务的清雪总量m。

(3)求乙队调离后y与x之间的函数关系式。

例2.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地。

如图是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象。

(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围。

一次函数(分段函数)

一次函数(分段函数)

点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,

30k
40k
b 60,解得 b 90
k
b
3 .所以 30
y=3x-30.
(2)当 0≤x<30 时,y=60,
所以 4 月份上网 20 小时,应付上网费 60 元.
(3)由 75=3x-30,解得 x=35,
所以 5 月份小李上网 35 小时.
(2)求y与x之间的函数关系式
B A
O(0,0) A(100,60) B(200,110)
当0 x 100时:
y3x 5
当x 100时:y
1 2
x
10
(2)求y与x之间的函数关系式
(3)月用电量为260度时, 应交电费多少元?
B A
当x 260时,
y 1 260 10 2
140
y
3
5
月份 3
4
用水量(m3) 水费(元)
5
7.5
9
27
课堂练习
该市某户今年3、4月份的用水量和水费如下表所示:
月份 3
4
用水量(m3) 水费(元)
5
7.5
9
27
设某户每月用水量为x(立方米),应交水费为y(元)。 求:(1)a、c的值
(2)并写出用水不超过6立方米和超过6立方米时,y与x 之间的函数关系式;
1
2
x(0 x 100) x 10( x 100)
练习1.某市推出电脑上网包月制,每月收取费用 y(元)与上网时 x(小时)的函数关系如图 4,其中 BA 是线段,且 BA∥x 轴,AC 是 射线.
图4 (1)当 x≥30 时,y 与 x 之间的函数解析式为__y_=__3_x-__3_0_____; (2)若小李 4 月份上网 20 小时,他应付___6_0____元上网费用; (3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是_______3_5__.

一次函数的综合应用分段函数

一次函数的综合应用分段函数

0.5 2.5
1 5
1.5 7.5
2 10
2.5 12
3 14
3.5 16
4 18
… …
(2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图象。 解:设购买种子数量为x千克,付款金额为y元。
当0≤x ≤2时,y=5x。 当x >2时,y=4(x-2)+10=4x+2
y(元)
14 10
y=4x+2
则他在该月份的上网时间__________.
解:(1)由图像得当0≤x≤30时,y=60 所以4月份上网20小时,应付上网费60元
Page 6
(2) 当x≥30时,设函数解析式为y=kx+b,
k=3 b= -30
∵函数图像经过 A(30,60), C(40,90)两点, 30k+b=60 40k+b=90
20k+b =1000 30k+b =4000 (2)设函数解析式为y=kx+b,由图像知 4000 3000 2000
解得:
k=300 b=-5000
1000
10 20 30 x(t)
0 ∴当x≥20时,y与x之间的函数解析式是y=300x-5000.
(3)由图知 当 y=7000 时,在函数 y=300x-5000 上,所以将
Page 4
例2.某农户种植种经济作物,总用水量y(m3)与种植时间x(天)之间的函数 关系式如图所示。
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数解析式; (3)种植时间为多少天时,总用水量达到7000米3 。 y(m3) 3 解:(1) 由图像可知,第20天的总用水量为1000米 当 x≥20 时函数经过点 (20,1000) 及 点 (30,4000),将两点代入 y=kx+b 得

一次函数分段函数

一次函数分段函数

(1)分别写出当0~100和大于100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准; (3)若该用户某月用电62度,则应缴费多少元?若该用户某月 缴费105元时,则该用户该月用了多少度电?
Page 6
例2、一名考生步行前往考场, 10分钟走了总路程 的 四分之一,估计步行不能准时到达, 于是他改 乘出租车赶往考场,他的行程与时间关系如图2所 示(假定总路程为1)则他到达考场所花的时间比 一直步行提前了( )分钟
(2)当x大于100时,求与之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?
Page 5
练习、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励 市民节约用电,采取按月用电量分段收费办法,若某户居民每月 应交电费y(元)与用电量x(度)的函数图象是一条折线(如图 3所示),根据图象解下列问题:
一次函数的综合应用
——分段函数
Page 1
例1 黄金1号玉米种子的价格为5元∕千克,如果一次购买2千 克以上的种子,超过2千克部分的种子的价格打8折。
(1)填出下表:
购买种子数量∕千克 付款金额∕元
0.5
1
1.5
2
2.5
3
3.5
4
… …
2.5
5
7.5
10
12
14
16
18
(2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图象。 解:设购买种子数量为x千克,付款金额为y元。
解得
k=3
b= -30
∴y=3x-30 (x≥30)
(2)由图像得当0≤x≤30时,y=60 所以4月份上网20小时,应付上网费60元 (3)由函数图像 将y=75代入y=3x-30 解得x=35 所以5月份小李上网35小时。

分段函数

分段函数

一次函数应用——分段函数
例1、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.
变式训练:为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.
例2、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,
采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:
(1)分别写出x≤5和x>5时,y与x的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准。

(3)若某户居民该月用水3.5吨,则应交水费多少元?
若该月交水费9元,则用水多少吨?
O y
58
3 6。

初中一次函数分段函数典例题

初中一次函数分段函数典例题

一次函数是初中数学的重要内容之一,而分段函数则是其中一种特殊的函数形式。

分段函数是指在一个定义域内,函数表达式在不同区间内不同的情况。

下面是一个初中一次函数分段函数的典例题:
题目:已知一次函数y = kx + b 的图像与x 轴交于点A(2,0),与y 轴交于点B(0,4),且当x >2时,y 的取值范围为1≤y≤9。

(1)求一次函数表达式;
(2)在x 轴上求点P,使△ABP 是等腰三角形,写出点P 的坐标;
(3)在坐标平面内,是否存在点C,使△ABC的面积为8?如果存在,求出点 C 的坐标;如果不存在,请说明理由。

解:(1)由题意可知,一次函数表达式为y = kx + b。

将点A(2,0)和点B(0,4)代入表达式中,可得:
0 = 2k + b
4 = b
解得:k = -2,b = 4
因此,一次函数表达式为y = -2x + 4。

(2)根据题目要求,要在x 轴上求出点P,使△ABP 是等腰三角形。

①若点P 在点 A 的右侧,则线段AP 为腰。

当△ABP 是等腰三角形时,点P 的坐标为(2 + ,0)。

②若点P 在点 B 的左侧,则线段BP 为腰。

当△ABP 是等腰三角形时,点P 的坐标为(0 -,4)。

③若点P 在点A、B 之间,则线段AB 为底。

当△ABP 是等腰三角形时,点P 的坐标为(2 -,0)或(2 + ,0)。

综上所述,满足条件的点P 的坐标为(2 + ,0)或(0 -,4)或(2 -,0)或(2 + ,0)。

(3)在坐标平面内存在点C,使△ABC的面积为8。

此时,C点的坐标为(6,-4)或(-2,8)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

识别分段函数,解决收费问题定义:一般地,如果有实数a 1,a 2,a 3……k 1,k,2k 3……b 1,b 2,b 3……且a 1≤a 2≤a 3……函数Y 与自变量X 之间存在k 1x+b 1 x ≤a 1y = k 2x+b 2a 1≤x ≤a2① 的函数解析式,则称该函数解析式为X 的分段函数。

K 3x+b 3 a 2≤x ≤a 3 … … … …应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K 1X+b 1 Y=K 2X+b 2……等几个不同函数的简单组合,而k 1x+b 1, k 2x+b 2 ……是函数Y 的几种不同的表达式.。

所以上例中Y={ 这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X 和110×80%X 是同一函数中的自变量X 在两种不同取值范围内的不同表达式。

(二),由于k 1,k 2,k 3……b 1,b 2,b 3是实数,所以函数Y 在X 的某个范围内的特殊函数,如正比例函数和常数函数。

(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。

(四), 一次函数的分段函数是简单的分段函数。

分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。

在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例. 一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x 的正比例函数; x≥15时,y是x的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2 (2) 当该用户该月用21吨水时,三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题: (1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15综上可得0.65(0100)0.815(100)x x y x x ⎧=⎨-⎩≤≤≥(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。

它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。

这些分段函数都是直线型。

通常是正比例函数的图像和一次函数的图像构成。

下面我们归纳分析如下,供学习时参考。

1、二段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。

例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?解析:设正比例函数的解析式为:y=k 1x , 因为图象经过点(3,41),所以,41= k 1×3,所以k 1=121,所以y=121x ,0<x <3设一次函数的解析式(合作部分)是y=k 2x+b ,(0k k b ≠,,是常数)因为图象经过点(3,41),(5,21),所以,由待定系数法得:⎪⎪⎩⎪⎪⎨⎧=+⨯=+⨯21541322b k b k ,解得:81,812-==b k .∴一次函数的表达式为8181-=x y ,所以,当1y =时,11188x -=,解得9x =∴完成此房屋装修共需9天。

方法2解:由正比例函数解析式可知:甲的效率是112,乙工作的效率:11181224-=甲、乙合作的天数:311641224⎛⎫÷+= ⎪⎝⎭(天)∵甲先工作了3天,∴完成此房屋装修共需9天(2)由正比例函数的解析式:y=121x ,可知:甲的工作效率是112,所以,甲9天完成的工作量是:139124⨯=,∴甲得到的工资是:3800060004⨯=(元)评析:在这里未知数的系数的意义是表示他们的工作效率。

例2、一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A .20分钟 B.22分钟 C.24分钟 D .26分钟解析:步行前往考场,是满足正比例函数关系,设正比例函数的解析式为:y=k 1x , 因为图象经过点(10,41),所以,41= k 1×10,所以k 1=401,所以y=401x ,0<x<10由正比例函数解析式可知:甲的效率是401,所以,步行前往考场需要的时间是:1÷401=40(分钟),乘出租车赶往考场,是满足一次函数关系,所以,设一次函数的解析式是y=k 2x+b ,(0k k b ≠,,是常数), 因为图象经过点(10,41),(12,21),所以,由待定系数法得:⎪⎪⎩⎪⎪⎨⎧=+⨯=+⨯2112411022b k b k ,解得:解得:1,812-==b k ,∴一次函数的表达式为:181-=x y ,所以,乘出租车赶往考场用的时间是:x=43÷81,解得:x=6分钟,所以,先步行前往考场,后乘出租车赶往考场共用时间为:10+6=16分钟, 所以,他到达考场所花的时间比一直步行提前了:40-16=24(分钟),故选C 。

评析:在这里未知数的系数的意义是表示他们的行使速度。

例3、某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解析:(1) 由图3可得,当0≤t ≤30时,市场日销售量y 与上市时间t 的关系是正比例函数, 所以设市场的日销售量:y=kt ,∵ 点(30,60)在图象上, ∴ 60=30k .∴ k =2.即 y =2t ,当30≤t ≤40时,市场日销售量y 与上市时间t 的关系是一次函数关系, 所以设市场的日销售量:y=k 1t+b , 因为点(30,60)和(40,0)在图象上,所以 116030040k b k b=+⎧⎨=+⎩ ,解得 k 1=-6,b =240. ∴ y =-6t +240. 综上可知,当0≤t ≤30时,市场的日销售量:y =2t ,当30≤t ≤40时,市场的日销售量:y=-6t+240。

(2) 由图4可得,当0≤t ≤20时,市场销售利润w 与上市时间t 的关系是正比例函数, 所以设市场的日销售量:w=kt ,∵ 点(20,60)在图象上, ∴ 60=20k .∴ k=3.即 w=3t ,当20≤t ≤40时,市场销售利润w 与上市时间t 的关系是常数函数, 所以,w=60,∴ 当0≤t ≤20时,产品的日销售利润:m=3t ×2t =6t 2 ; ∵k=6>0,所以,m 随t 的增大而增大,∴ 当t =20时,产品的日销售利润m 最大值为:2400万元。

当20≤t ≤30时,产品的日销售利润:m=60×2t =120t , ∵k=120>0,所以,m 随t 的增大而增大,∴ 当t =30时,产品的日销售利润m 最大值为:3600万元;当30≤t ≤40时,产品的日销售利润:m =60×(-6t+240)=-360t+14400;∵k=-360<0,所以,m 随t 的增大而减小,∴ 当t =30时,产品的日销售利润m m 最大值为:3600万元, 综上可知,当t =30天时,这家公司市场的日销售利润最大为3600万元. 评析:本题不仅考查同学们对分段函数意义的理解,而且同时还考查了同学们对分类思想的掌握情况,和对一次函数性质的理解和应用。

相关文档
最新文档