课程教学大纲-兰州大学物理系
电磁场理论兰州大学物理学院

电磁场理论课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电磁场理论所属专业:微电子科学与工程课程性质:专业基础课学分:4(二)课程简介、目标与任务;电磁场理论是宏观电磁现象的经典理论,是研究电磁场的基本属性、运动规律以及它与带电物质之间相互作用的一门重要基础理论课。
电磁场理论是解决一切信息处理的物质基础。
课程目标与任务:掌握静电场、恒磁场以及时变电磁场的基本理论,理解麦克斯韦方程组的来源以及电磁统一,会利用基本的电磁理论分析一些具体的工程问题,如电磁波传播、天线、微波等。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:高等数学、数学物理方法、电磁学关系:其中高等数学和数学物理方法是电磁场理论的数学基础,电磁学是电磁场理论的物理基础,电磁场理论在电磁学的基础上系统阐述电磁场的基本理论,并进一步阐述电磁场理论在解决实际问题方面的应用。
(四)教材与主要参考书。
选用教材:William H.Hayt,Jr.,John A. Buck编,赵彦珍等译,工程电磁场,西安交通大学出版社(第版)。
主要参考书:1.《电动力学》,汪映海编著,兰州大学出版社,1995年2.《电磁场理论基础》(第二版),陈重,崔正勤,胡冰编著,北京理工大学出版社,2010年3.《工程电磁场导论》,冯慈章、马西奎编著,高等教育出版社,2000年4.《电磁场与电磁波》,李书芳、李莉、张阳安、高泽华编著,科学出版社,2004年二、课程内容与安排第一章数学准备知识第一节标量和矢量第二节矢量代数第四节矢量分量和单位矢量第五节矢量场第六节点乘和叉乘第七节其他坐标系:圆柱坐标系、球坐标系第二章库仑定律和电场强度第一节库仑定律第二节电场强度第三节连续分布体电荷的电场第四节线电荷的电场第五节面电荷的电场第六节电力线和电场分布图第三章电通量密度、高斯定律和散度第一节电通量密度第二节高斯定律第三节高斯定律的应用:一些对称电荷的电场第四节高斯定律的应用:体积元电荷的电场第五节散度和麦克斯韦第一方程第六节矢量算子 和散度定理第四章能量和电位第一节点电荷在电场中运动时消耗的能量第二节线积分第三节电位差和电位的定义第四节点电荷的电位第五节点电荷系统的单位:保守性第六节电位梯度第七节电偶极子第八节静电场中的能量密度第五章导体和电介质第一节电流和电流密度第二节电流连续性第三节金属导体第四节导体性质和边界条件第五节镜像法第六节半导体第七节电介质材料的性质第八节理想电介质的边界条件第六章电容第一节电容的定义第二节平行板电容器第四节两导体传输线的电容第五节采用场分布图估算二维问题中的电容第六节泊松方程和拉普拉斯方程第七节拉普拉斯方程解的例子第八节泊松方程解的例子:P-N结的电容第七章恒定磁场第一节毕奥-沙伐定律第二节安培环路定律第三节旋度第四节斯托克斯定理第五节磁通量和磁感应强度第六节磁位和磁矢位第七节恒定磁场定律的推导第八章磁场力、材料和电感第一节运动电荷所受的力第二节元电流所受到的力第三节元电流之间的作用力第四节闭合回路所受到的力和力矩第五节磁性材料的性质第六节磁化和磁导率第七节磁场边界条件第八节磁路第九节势能和磁性材料受到的力第十节自感和互感第九章时变电磁场和麦克斯韦方程第一节法拉第定律第二节位移电流第三节微分形式的麦克斯韦方程组第四节积分形式的麦克斯韦方程组第五节推迟位第十章传输线第一节传输线中波传播的物理描述第二节传输线方程第三节无损耗传输第四节正弦电压的无损耗传输第五节正弦波的复数形式第六节传输线方程组及其向量形式解第七节无损耗传输和低损耗传输第八节传输功率和损耗特性第九节波在不连续处的反射第十节电压驻波比第十一节有限长传输线第十二节几个传输线的例子第十三节图解法:史密斯圆图第十四节暂态分析第十一章均匀平面电磁波第一节自由空间中波的传播第二节电介质中波的传播第三节坡印亭定理和波的功率第四节良导体中波的传播:集肤效应第五节波的极化第六节磁化和磁导率第十二章平面电磁波的反射和散射第一节正入射时均匀平面电磁波的反射第二节驻波比第三节多层媒质分界面上波的反射第四节任意入射方向下平面电磁波的反射第五节斜入射时平面电磁波的反射第六节斜入射时波的全反射和全折射第七节色散媒质中波的传播第八节色散媒质中的脉冲展宽第十三章导行电磁波第一节传输线场及其基本参数第二节波导基本工作原理第三节平行平板波导中的平面波第四节利用波方程分析平板波导第五节矩形波导第六节平板介质波导第七节光纤纤维(一)教学方法与学时分配教学方法:教学中始终突出以学生为本的教育理念,重视课程的规划和建设,按照课程体系制定规范的教学大纲和教学进度表;因材施教使学生掌握物理学的发展脉络和做科研的方法,使学生变被动学习为主动学习,真正达到从会学到好学;通过启发式教学培养学生较强的主动思考习惯,注重对大学生创新思维和解决实际问题能力的培养;及时与学生进行有效沟通,布置课后作业,必要时进行习题讲解;将实际工程问题引入课堂,使学生理解电磁场理论在实际问题中的应用,加深理解电磁场理论的本质,培养学生具有一定的抽象思维能力;开发并实施多媒体教学手段,使得课程的教学实施建立在现代教育技术平台之上。
热学-兰州大学物理学院

热学课程教学大纲一、课程说明课程名称:热学所属专业:物理学专业本科学生课程性质:大类平台课程学分:3分主要先修课程和后续课程:(1)先修课程:高等数学,力学。
(2)后续课程:热力学与统计物理,电磁学,原子物理学,固体物理。
课程简介、目标与任务:“普通物理学”课程是理科物理类专业的重要基础课,由力学、热学电磁学、光学和原子物理学这五个部分组成。
各个部分单独设课,“热学”是其中继“力学”后的第二门课程。
“普通物理学”课程的“目的是使学生系统地了解和掌握物理学的基本概念、基本原理、基本知识、基本思想“和方法,以及它们的实验基础;了解物理学的发展方向及物理学与其它自然科学和社会科学等的关系;培养学生进一步学好物理学的兴趣,提高学生的自学能力、分析和解决问题的能力;逐步帮助学生建立科学的自然观、世界观和方法论。
”“热学”课程在物理类专业一年级第二学期开设。
通过“热学”课程的学习,使学生认识物质热运动形态的特点、规律和研究方法,深刻地理解热运动的本质,较为系统地掌握热力学、气体动理论和物性学的基础知识,能独立解决今后学习中遇到的一般热学问题,为进一步学习电磁学、原子物理学、理论物理热力学和统计物理等后续课程打下良好的基础。
教材:《热学》(第二版),李椿等编,高等教育出版社,2008主要参考书:1. 《热学》(第二版)习题分析与解答,宋峰常树人编,高等教育出版社,20102. 《热学》(第二版)常树人编,南开大学出版社,20092.《热学教程》,包科达编,科学出版社,20073. 《热学》(第二版),张玉民编,科学出版社,20064.《新概念物理教程·热学》(第二版),赵凯华等编,高等教育出版社,20055.《普通物理学教程·热学》(第二版),秦允豪编,高等教育出版社,20046. 《热学》(第二版),李洪芳编,高等教育出版社,2001二、课程内容与安排绪论(1学时)第一节热学研究的对象和方法第二节热学发展简述主要内容:热学研究的对象热现象热运动热力学统计物理学气体动理学理论物性学热学研究的方法宏观量微观量宏观量与微观量的关系热学发展简史热学常用物理量的符号热学常用物理量的单位基本物理常量基本物理常量的国际推荐值物理量的数量级物质世界的层次分子的典型数据热学课程的特点【掌握】:热学研究的对象热运动热学研究的方法宏观量微观量宏观量与微观量的关系热学课程的特点【了解】:热学发展简史热学常用物理量的符号热学常用物理量的单位物理量的数量级分子的典型数据物质世界的层次【难点】:深入理解热学是适用于宏观和微观的普适理论宏观理论和微观理论的本质关系第一章温度(5学时)第一节平衡态状态参量第二节温度第三节气体的物态方程主要内容:平衡态热动平衡对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量电磁参量热接触热平衡热动平衡的条件热力学第零定律温度及温标建立温标的要素水的冰点水的汽点水的三相点经验温标华氏温标摄氏温标理想气体温标热力学温标国际实用温标ITS-90 温度计液体温度计定体气体温度计定压气体温度计物态方程气体物态方程玻意耳定律阿伏伽德罗定律理想气体物态方程普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程分体积定律平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程范德瓦耳斯方程范德瓦耳斯气体昂内斯方程【重点掌握】:平衡态热动平衡热动平衡的条件热力学第零定律温度及温标的概念理想气体物态方程范德瓦耳斯方程【掌握】:对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量热接触热平衡建立温标的要素水的冰点水的汽点水的三相点经验温标理想气体温标热力学温标玻意耳定律阿伏伽德罗定律普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程【了解】:国际实用温标ITS-90华氏温标摄氏温标温度计液体温度计定体气体温度计定压气体温度计各种物态方程平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程昂内斯方程【难点】:平衡态热动平衡温度及温标概念的建立物态方程的建立第二章气体分子动理论的基本概念(6学时)第一节物质的微观模型第二节理想气体的压强第三节温度的微观解释第四节分子力第五节范德瓦耳斯气体的压强主要内容:气体动理学理论的基本论点分子论点热运动论点分子力论点统计论点布朗运动的微观解释统计规律性与涨落现象偶然性与必然性的关系统计性假设平均值加权平均统计平均理想气体的微观模型理想气体压强公式的推导气体压强的微观解释用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系温度的微观解释对理想气体定律的推证阿伏伽德罗定律道尔顿分压定律分子间力伦纳德-琼斯模型短程力分子间力势能常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据分子体积引起的修正分子间引力所引起的修正范德瓦耳斯常量b 范德瓦耳斯常量a范德瓦耳斯气体的压强范德瓦耳斯气体的压强与理想气体的压强范德瓦耳斯方程的适用范围范德瓦耳斯气体的摩尔体积【重点掌握】:气体动理学理论的基本论点理想气体的微观模型气体压强的微观解释温度的微观解释【掌握】:理想气体压强公式的推导用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系对理想气体定律的推证常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径的概念分子体积引起的修正分子间引力所引起的修正范德瓦耳斯气体的压强【了解】:布朗运动的微观解释分子间力来源分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据范德瓦耳斯常量b范德瓦耳斯常量a范德瓦耳斯方程的适用范围【一般了解】:偶然性与必然性的关系统计性假设算术平均几何平均加权平均统计平均范德瓦耳斯气体的压强与理想气体的压强用迭代法计算范德瓦耳斯气体的摩尔体积【难点】:各种简化模型的建立方式物体内分子之间的相互作用和分子的热运动决定其宏观性质理想气体压强公式的推导宏观量的微观本质第三章气体分子热运动速率和能量的统计分布(11学时)第一节气体分子的速率分布率第二节用分子射线实验验证麦克斯韦速度分布律第三节玻尔兹曼分布律重力场中微粒按高度的分布第四节能量按自由度均分定理主要内容:分布函数速率分布函数速率分布函数的归一化条件麦克斯韦速率分布律麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围随机事件概率概率加法定理概率乘法定理概率分布函数气体分子的最概然速率麦克斯韦速率分布函数的约化形式用麦克斯韦速率分布函数求平均值气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数误差函数的计算气体分子速率其他特征速率麦克斯韦速度分布律麦克斯韦速度分布曲线的特征麦克斯韦速度分布函数的约化形式速度空间麦克斯韦速度分布函数与麦克斯韦速率分布函数的关系麦克斯韦速度分布函数的定义域气体分子速度分量的最概然值、平均值和方均根值分子通量公式泻流分子束泻流存在的条件麦克斯韦发射分布麦克斯韦发射分布的约化形式麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验等温大气等温气压公式气压计和高度计玻尔兹曼分布律重力场中微拉按高度的分布阿伏伽德罗常量的测定大气标高大气粒子总数大气的温度结构标准大气负绝对温度自由度分子运动的自由度分子的平动自由度分子的转动自由度分子的振动自由度刚性分子和非刚性分子的自由度线形分子和非线形分子的自由度能量均分定理理想气体的内能理想气体热容的经典理论能量均分定理的应用限度量子理论对气体热容量的解释【重点掌握】:麦克斯韦速率分布律麦克斯韦速度分布律玻尔兹曼分布律能量均分定理【掌握】:麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围气体分子的最概然速率用麦克斯韦速率分布函数求平均值、气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数麦克斯韦速度分布曲线的特征分子通量公式等温大气等温气压公式重力场中微拉按高度的分布分子运动的自由度理想气体的内能理想气体热容的经典理论【了解】:分布函数随机事件概率概率加法定理概率乘法定理气体分子特征速率的量纲分析麦克斯韦速率分布函数的约化形式麦克斯韦发射分布麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验大气标高能量均分定理的应用限度量子理论对气体热容量的解释【一般了解】:误差函数的计算麦克斯韦发射分布的约化形式阿伏伽德罗常量的测定大气粒子总数大气总质量大气的温度结构大气的均质层标准大气负绝对温度【难点】:速率分布函数及分布函数的统计意义麦克斯韦速率及速度分布律函数的统计意义及应用玻尔兹曼分布律的统计意义及应用第四章气体内的输运过程(5学时)第一节气体分子的平均自由程第二节输运过程的宏观规律第三节输运过程的微观规律主要内容:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程气体分子的平均相对速率与平均速率的关系分子的自由程分布函数穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离黏性现象牛顿黏性定律黏度系数黏性现象的微观解释热传导现象傅里叶定律热导率热传导现象的微观解释热传导与电传导扩散现象菲克定律扩散系数扩散现象的微观解释黏度系数、热导率、扩散系数与压强的关系黏度系数、热导率、扩散系数与温度的关系黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定估算分子有效直径的方法的比较分子热运动的典型数据【重点掌握】:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程黏性现象热传导现象扩散现象【掌握】:牛顿黏性定律及其微观解释傅里叶定律及其微观解释菲克定律及其微观解释低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定【了解】:黏度系数、热导率、扩散系数与压强、温度的理论和实验比较黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级估算分子有效直径的方法的比较分子热运动的典型数据【一般了解】:穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离的概念【难点】:气体分子的碰撞频率、气体分子的碰撞截面、气体分子的平均自由程的概念的建立分子穿过指定截面前最后一次受碰处至截面的平均距离第五章热力学第一定律(10学时)第一节热力学过程第二节功第三节热量第四节热力学第一定律第五节热容焓第六节气体的内能焦耳-汤姆孙实验第七节热力学第一定律对理想气体的应用第八节循环过程和卡诺循环主要内容:热力学过程准静态过程非静态过程作功体积功作功的计算过程曲线示功图广义坐标广义位移广义力广义功绝热过程绝热功内能热量传热传热的计算热容量比热容摩尔热容焓作功与传热都是过程量作功与传热的等当性热力学第一定律能量守恒定律第一类永动机符号规定焦耳实验绝热自由膨胀过程等内能过程理想气体的内能焦耳-汤姆孙实验绝热节流膨胀过程等焓过程焦耳-汤姆孙效应焦耳-汤姆孙系数理想气体的焓反转温度理想气体的宏观定义迈耶关系热功当量的测定热力学第一定律对理想气体的应用等体过程等压过程等温过程绝热过程多方过程等热容过程直线过程理想气体绝热过程方程泊松公式循环热机的工作原理正循环的效率制冷机与热泵的工作原理逆循环的制冷系数符号规定卡诺热机卡诺循环理想气体卡诺循环的效率理想气体逆向卡诺循环的制冷系数奥托循环狄塞尔循环斯特林循环回热式循环热机与热泵的组合应用【重点掌握】:热力学过程准静态过程作功体积功作功的计算绝热功内能热量热容量比热容摩尔热容焓理想气体的宏观定义迈耶关系热力学第一定律对理想气体的应用循环热机的工作原理正循环的效率逆循环的制冷系数【掌握】:理想气体的内能理想气体绝热过程方程泊松公式【难点】:绝热过程多方过程第六章热力学第二定律(6学时)第一节热力学第二定律第二节热现象过程的不可逆性第三节热力学第二定律的统计意义第四节卡诺定理第五节热力学温标第六节应用卡诺定理的例子主要内容:热力学第二定律开尔文表述克劳修斯表述第二类永动机热力学第二定律的适用范围热力学第二定律两种表述的等效性可逆过程不可逆过程各种不可逆过程互相关联热力学第二定律的实质论证过程的不可逆性的方法不可逆过程的特点孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义卡诺定理可逆卡诺循环的效率不可逆卡诺循环的效率对于制冷机类似卡诺定理的结论卡诺定理的推广任意正循环的效率卡诺定理的应用热力学温标的引入热力学温标与理想气体温标和摄氏温标的关系内能随体积的改变与物态方程的关系定压摩尔热容与定体摩尔热容的关系【重点掌握】:热力学第二定律开尔文表述克劳修斯表述热力学第二定律两种表述的等效性可逆过程不可逆过程热力学第二定律的实质卡诺定理【掌握】:孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义【难点】:论证过程的不可逆性的方法不可逆过程的特点第七章固体(1学时)第一节晶体第二节晶体中粒子的结合力和结合能第三节晶体中粒子的热运动主要内容:物质的聚集态凝聚体固体液体气体晶体与非晶体单晶体和多晶体长程有序晶体中粒子的结合力晶体弹性的微观解释晶体中粒子的热运动热振动杜隆-珀蒂定律晶体热膨胀的微观解释晶体线膨胀率的计算非晶态固体过冷液体短程有序【重点掌握】:晶体中粒子的热运动热振动杜隆-珀蒂定律【掌握】:晶体与非晶体单晶体和多晶体晶体中粒子的结合力晶体弹性的微观解释晶体热膨胀的微观解释第八章液体(4学时)第一节液体的微观结构液晶第二节液体的彻体性质第三节液体的表面性质主要内容:液体与晶体和气体的比较液体的宏观特征液体的微观结构定居时间液体各向同性液晶外界因素对液晶的影响显示技术液体的表面性质表面张力表面层表面张力的微观解释表面张力系数影响表面张力系数的因素表面活性物质球形液面下的附加压强拉普拉斯公式柱形液面下的附加压强马鞍形液面下的附加压强接触角润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释毛细现象毛细管【重点掌握】:液体的表面性质表面张力表面层表面张力的微观解释表面张力系数球形液面下的附加压强接触角毛细现象【掌握】:润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释第九章相变(5学时)第一节单元系一级相变的普遍特征第二节气液相变第三节克拉珀龙方程第五节范德瓦耳斯等温线对比物态方程第六节固液相变第七节固气相变三相图主要内容:元单元系二元系多元系相相变一级相变单元系一级相变相变中体积的改变相变潜热内潜热和外潜热汽化蒸发气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线饱和蒸气压影响饱和蒸气压的因素饱和蒸气压与液面曲率的关系凝结过冷蒸气亚稳态凝结核云雾的形成云室沸腾沸腾的条件过热液体亚稳态汽化核泡室暴沸临界等温线临界点临界态临界参量临界温度临界压强临界摩尔体积克劳修斯—克拉珀龙方程沸点与压强的关系正常沸点高压锅蒸气压方程由蒸气压方程求潜热沸点与海拔高度的关系兰州市区水的沸点熔点与压强的关系正常熔点范德瓦耳斯等温线亚稳平衡范德瓦耳斯气体的临界参量临界系数由临界参量确定范德瓦耳斯常量对应态对应态定律熔化凝固熔化曲线凝固时体积的改变升华凝华升华曲线升华与蒸发升华热与汽化热和熔化热的关系三相点相图三相图【重点掌握】:单元系一级相变相变中体积的改变相变潜热克劳修斯—克拉珀龙方程【掌握】:气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线【难点】:临界等温线临界点临界态临界参量范德瓦耳斯等温线亚稳平衡制定人:蔡让岐毛延哲审定人:批准人:日期:。
热力学统计物理学课程教学大纲

热力学统计物理学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;热力学统计物理【Thermodynamics and Statistical Physics】,兰州大学物理科学与技术学院物理学专业专业基础课,4学分。
(二)课程简介、目标与任务;《热力学统计物理》从宏观及微观角度理解大量粒子组成的物理系统的基本性质及其微观基础,该课程的任务是让学生掌握热力学和统计物理的基本原理和研究方法。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:高等数学、普通物理(包括力学、热学、光学、电磁学及原子物理)、理论力学。
与理论力学、量子力学、电动力学共同构成物理类专业基础课。
(四)教材与主要参考书。
教材:热力学•统计物理(第五版);作者:汪志诚;高等教育出版社。
参考书目:1)王竹溪,《热力学简程》,高教出版社,19642)王竹溪,《统计物理学导论》,第二版,高教出版社,19653)龚昌德,《热力学与统计物理学》,,高教出版社,19824)苏汝铿,《热力学与统计物理基础》,,复旦大学出版社,19905)Landau L.D. and Lifshitz E.M., Statistical Physics, Pergamon Press, 1958 6)Reif F., Fundamental of Statistical and Thermal Physics, McGraw Hill Book Company, 19657)L.E.雷克著,黄昀等校译,统计物理现代教程,上册,北京大学出版社二、课程内容与安排(一)章节详细内容第一章热力学的基本规律第一节热力学系统的平衡状态及其描述;第二节热平衡定律和温度;第三节物态方程;第四节准静态过程及其功表达式;第五节内能、热量和热力学第一定律;第六节热容量和焓;第七节理想气体的内能;第八节理想气体的绝热过程;第九节理想气体的卡诺循环;第十节热力学第二定律;第十一节卡诺定律;第十二节热力学温标;第十三节克劳修斯等式和不等式;第十四节熵和热力学基本方程;第十五节理想气体的熵;第十六节热力学第二定律的普遍表述;第十七节熵增加原理的简单应用。
近代物理教学大纲-兰州大学物理学院

《近代物理实验》课程教学大纲一、课程说明(一)课程名称:近代物理实验所属专业:物理、核物理相关专业课程性质:物理学学分:8(材料物理专业4)(二)课程简介、目标与任务近代物理实验是继普通物理实验和无线电电子学实验后的一门重要的基础实验课程,具有较强的综合性和技术性。
本课程的主要目的是:通过近代物理实验丰富和活跃学生的物理思想,培养他们对物理现象的观察能力和分析能力,引导他们了解实验物理在物理概念的产生、形成和发展过程的作用,学习近代物理中的一些常用方法、技术、仪器和知识,进一步培养正确的和良好的实验习惯以及严谨的科学作风,使学生掌握一定程度的实验方法和技术,获得研究物理现象和规律的独立工作能力。
1.学习如何用实验方法和技术研究物理现象与规律,培养学生实验过程中发现问题,分析问题和解决问题的能力,以及创新能力。
2.学习近代物理主要领域中的基本实验方法和技术,同时通过实验加深对近代物理的基本现象及其规律的理解。
3.通过实验加深对近代物理的基本现象及其规律的理解。
4.能对实验结果做出基本的分析,并巩固和加强有关实验数据处理及误差分析方面的训练。
5.培养实事求是,踏实细致,严肃认真的科学态度和克服困难,坚韧不拔的工作作风以及良好的实验素养。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接本课程以普通物理实验,电子学实验(数字、模拟电路)为基础,为本课程各个实验的综合性内容提供基础训练。
二、课程内容与安排(一)、课程介绍与考核要求兰州大学的近代物理实验分为两部分:常规近物实验和近物创新实验。
常规近物实验为必做实验题目,包涵原子、分子与量子物理,核物理与相对论,真空物理与致冷技术,微波与光学,固体物理,先进测量与传感技术等领域,由30多个实验组成。
近物创新实验为选做实验题目,也是开放性实验,分为工程类实验和科学研究类实验。
工程类实验包括科学研究仪器制备,实验教学需要的仪器制备,实验仪器配件及实验电路的设计与实现等;科学研究类包括半导体材料的性质及器件制备研究,磁性材料制备表征及性质研究等。
电磁学试验教学大纲-兰州大学物理学院

电磁学试验教学大纲-兰州大学物理学院第一篇:电磁学试验教学大纲-兰州大学物理学院电磁学实验大纲一、实验教学目标与基本要求电磁学实验课程的教学目的在于使学生掌握电阻、电流、电压、电动势和磁场强度的外部测量方法;加深对静电场和静磁场分布规律的认识;熟练使用检流计、电流表、伏特表、直流电桥、交流电桥,电位差计等基本电磁学仪表;对实验结果要求进行正确的分析,找出产生误差的原因。
实验设计上以电磁学知识为基础,适当加大综合性和设计性实验的内容,教学中以学生主动操作为主,教师指导为辅,充分发挥学生在实验中的主观能动性,以锻炼学生的综合实验技能。
电磁学实验分为常规实验和综合性实验两部分,共二十多个题目。
在教学过程中按照基础物理理论知识的基础,学生分为两大类----物理专业、非物理专业进行授课。
物理专业上课16周,安排有六个必做常规实验,六个必做综合性实验和十几个选做综合性实验;非物理专业上课8周,有六个必做常规实验和十几个选做综合性实验。
课程的最终考核结果为百分制,结合平时成绩和期末考试成绩综合评定出最终总成绩。
课程在仪器台次允许的情况下要求学生独立进行实验操作,提倡学生之间的讨论和交流。
常教学过程分为学生课下预习、教师课堂讲授与提问、学生实验操作、学生撰写实验报告四个个环节,教师通过以上各环节学生的表现给出当次实验的平时成绩。
期末考试为上机答题考试,考题从理论知识,仪器使用和实验设计等层面综合考查学生对实验的理解和掌握程度。
二、实验题目及其目的内容 01电阻元件的伏安特性曲线目的内容:1.掌握电学基本仪器的使用方法2.掌握伏安法和替代法测电阻的原理3.了解线路的方法误差以及测量仪器的结构误差4.了解电阻、二极管的伏安特性,并描绘其伏安特性曲线02万用表的使用目的内容:1.了解万用表基本结构2.掌握万用表测量电压、电流、电阻等的使用方法3.用万用表判断电路故障 03惠斯通电桥目的内容:1.掌握惠斯通电桥测电阻的原理和方法2.根据电桥线路用电阻箱自组电桥测量电阻3.了解并设计参量变化探讨影响电桥灵敏度的因素4.分析误差来源 04电压的精确测量目的内容:1.掌握补偿法侧电位差的原理2.自组电位差计并测量电池的电源电动势和内阻3.用电位差计校正电表05单相交流电路的研究目的内容:1.了解交流电路中的欧姆定律2.掌握交流电路中电压、电流、功率及功率因数的测量原理及方法3.了解提高功率因数的基本方法4.学会简单的电工安装06 RLC谐振电路的研究目的内容:1.掌握RLC串联和并联电路的谐振特性2.了解品质因数的物理意义3.分别用作图法和电压法测量谐振电路的品质因数,并对数据进行误差分析 07示波器的使用目的内容:1.了解示波器的主要构造和基本工作原理2.掌握示波器面板控制的使用的方法3.用示波器观察周期性信号的波形并测量其频率4.观察李萨如图形并用其测量待测信号频率 08 RLC电路的暂态目的内容:1.用示波器观察RC、RL、RLC电路的暂态过程;并学会测量时间常数。
(完整word版)大学物理实验电子Ⅰ单人单组

《大学物理实验Ⅰ》教学大纲课程名称:大学物理实验Ⅰ课程编号:课程类别:专业基础课、必修课学时/学分:30/1开设学期:1开设单位:物理与机电工程学院适用专业:电子信息科学与技术说明一、课程性质专业课、必修课程二、教学目标通过本课程的学习,使学生完成9—18个包括力学、热学、电磁学、光学或其他方面的实验,应达到如下基本要求:1.使学生独立完成实验预习、学习实验目的和实验原理,了解实验过程的物理思想,初步掌握实验过程的物理规律和物理方法。
2.学习物理量的一般测量方法,如:长度、时间、温度、速度、功率、热量等.3.培养学生正确处理实验数据、正确表达和评价实验结果的初步能力。
能根据实验数据设计数表并作图,写出正规的实验报告。
4.培养学生的实验能力,尤其是进行实验时的动手能力.注意使学生初步养成良好的实验习惯和工作作风.三、学时分配表学习物理实验的基本理论、基本思想、基本方法、数据处理等。
通过实验,学生应具有对物理现象的观察能力和分析能力,将物理问题抽象成数学模型的初步能力。
培养学生进行科学实验研究的素养,初步形成科学实验研究的能力五、考核方式及要求大学物理实验课程的考核包括操作能力的考核和理论考核两部分.操作能力考核主要实验操作和实验报告为依据。
理论考核通过笔试进行。
基本内容包括:实验预习、实验操作、实验记录、实验报告, 由此得出考核成绩.成绩按百分记。
本文实验一长度的测量一、实验性质实验类别:专业基础必修实验类型:验证型计划学时:3学时实验分组:单人单组二、实验目的1. 练习使用测长度的几种仪器;2。
练习做好记录和计算不确定度.三、实验的基本内容和要求1.阅读绪论的有关知识,理解游标卡尺和螺旋测微器、移测显微器的原理,并掌握其使用方法.2.测滚珠的直径、测圆管的高与直径。
3.计算体积,并计算直接测量量和间接测量量的误差。
四、实验仪器设备及材料米尺,游标卡尺,螺旋测微器,移测显微器,被测物(滚珠、金属丝)五、实验操作要点仔细阅读相关实验仪器说明,严格按照要求操作。
大学物理教学大纲2024

引言概述:大学物理教学是在培养学生科学思维和创新能力方面起着重要作用的一门学科。
一个合理的物理教学大纲是确保学生接受全面而系统的物理知识的重要基础。
本文将探讨大学物理教学大纲的重要性以及其应包含的内容。
正文内容:1.学科概述1.1物理学的定义和基本原理1.2大学物理学的特点和重要性1.3物理学与其他学科的关系2.基础知识与理论2.1物理学的基础概念和量纲2.2物理学的数学工具2.3物质和能量的基本性质2.4物理学中的基本定律和公式3.实验与实践3.1实验方法和技巧3.2常用仪表的使用和操作3.3实验数据的处理和分析3.4实验设计和实验报告的撰写4.物理学的分支和应用4.1经典力学4.1.1物体的运动和力的作用4.1.2力学定律和运动的定量描述4.1.3质点和刚体的运动4.1.4动能、功和能量守恒定律4.2热学与统计物理学4.2.1温度与热量4.2.2热力学定律和热力学过程4.2.3统计物理学和热力学的关系4.2.4热机和热力学效率4.3电磁学4.3.1静电场和电势4.3.2电场和电场强度4.3.3电荷和电荷分布4.3.4电流和电路分析4.3.5磁场和电磁感应4.4光学4.4.1光的本质和光谱学4.4.2几何光学4.4.3物质的光学性质4.4.4光的传播和波动理论4.5原子与核物理学4.5.1原子结构和性质4.5.2核物理学和放射性物质4.5.3核能的利用与应用5.教学方法和评估5.1创造性实践和问题解决5.2探究性学习和课堂讨论5.3数学描述与模型构建5.4虚拟实验与计算模拟5.5课程设计和学习成果评估总结:大学物理教学大纲是指导学生系统学习物理学知识和培养科学思维的重要文件。
本文详细介绍了大学物理教学大纲的各个方面,包括学科概述、基础知识与理论、实验与实践、物理学的分支和应用以及教学方法和评估。
一个合理的大纲应能够确保学生全面理解物理学的基础概念和原理,并能将其应用于实际问题解决中。
通过合适的教学方法和评估手段,学生能够培养出创新思维和解决问题的能力。
《连续介质力学(一)》课程教学大纲

二选教材:《弹性力学》程昌钧等高教出版社1999
《弹性力学》徐芝纶高教出版社1994(第三版)
参考书目:《弹性力学》吴家龙高教出版社2001
6.考核形式:1、开卷闭卷相结合2、笔试口试相结合3、考试与平时成绩相结合
7.教学环境:课堂
(三)长度和角度的变化;应变分量的坐标变换式;主应变和应变主方向;应变张量的不变量(6学时)
(四)变形协调条件;多连通域、位移周期性条件;有限变形简介;小结(6学时)
(五)热力学定律、应变能;Green公式;各向异性弹性材料的广义胡克定律;各向同性弹性材料的广义胡克定律;弹性常数及其测定;小结(6学时)
教学要求:
本课程是连续介质力学(二)的姐妹篇,在那里将系统介绍流体力学的基本理论。为提高学生自学能力,在本课程中将安排4~6小时课堂讨论。
课
程
内
容
及
学
时
分
配
课
程
内
容
及
学
时
分
配
(一)绪论;外力和内力;应力和应力张量;应力分量的坐标变换式(6学时)
(二)主应力和主方向;应力张量的不变量;最大剪应力;平衡微分方程和力的边界条件;小结。位移与变形;应变张量与转动张量(6学时)
课
程
教
学
目
的
及
要
求
教学目的:
本课程将系统介绍弹性力学的最基本的概念和理论,要求学生系统理解和掌握弹性力学的基本假设,建立弹性力学边值问题的三条主线:应力、应变、应力与应变关系等,基本概念及相关公式的推导方法,掌握弹性力学三类边值问题的正确提法并会灵活应用,掌握弹性力学基本原理的叙述、证明及应用,掌握平面弹性力学问题的基本假设及分类,能用应力函数表达平面问题的边值问题,掌握有关的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料物理专业实验课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:金属材料物理专业实验所属专业:金属材料课程性质:专业实验课学分:4(二)课程简介、目标与任务;课程简介:金属材料物理专业实验是专业实验教学部的重要组成部分,其前身是原物理系金属物理专业,始建于1956年,是我国第一批设置的金属物理专业,是与吉林大学、北京大学、南京大学、中山大学同期先后设置的专业,也是建国初期按照地理区域和行政区域划分的全国八大金属材料研究基地之一。
主要培养有色金属、复合材料、粉末冶金、材料热处理、材料腐蚀与防护及表面等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面的人才。
本专业实用性很强,研究成果可以直接应用到现实生产,所取得的进展和人民群众的日常生活密切相关,专业就业前景广阔。
目标和任务:从基础性的技能训练实验、综合性创新性实验和研究性科研训练等三个层次上进行实验内容、层层深入地培养与训练学生的综合实验素质及创新能力:精选基础性实验,建设并加强综合性实验和研究创新性实验。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;《金属物理学》《金属热处理》(四)教材与主要参考书。
教材:自编中参考书:1.《金属热处理综合实验指导书》,王志刚、刘科高主编,高等学校“十二五”实验实训规划教材,冶金工业出版社;2.《金属材料及热处理实验教程》,周小平主编,华中科技大学出版社;3.《金属热处理原理与工艺》,王顺兴主编,哈尔滨工业大学出版社;4.《金属热处理工艺学》,夏立方主编,哈尔滨工业大学出版社(五)主讲教师。
主讲:卓仁富,闫徳教师梯队:王君,耿柏松,门学虎,吴志国二、课程内容与安排第一章金属热处理(退火、正火、淬火)(一)教学方法与学时分配8学时,必做实验。
先讲授,然后自己动手完成实验(二)内容及基本要求主要内容:热处理是一种很重要的金属加工工艺方法,热处理的主要目的是改善钢材性能,提高工件使用寿命。
钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。
热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织发生了质的变化。
采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。
普通热处理的基本操作有退火、正火、淬火及回火等。
热处理操作中,加热温度、保温时间和冷却方式是最重要的三个关键工序,也称热处理三要素。
正确选择这三种工艺参数,是热处理成功的基本保证。
Fe-FeC相图和C-曲线是制定碳钢热处理工艺的重要依据。
【重点掌握】:含碳量、加热温度、冷却速度等因素与碳钢热处理后组织及性能的关系。
【掌握】:熟悉碳钢的基本热处理(退火、正火、淬火)工艺方法【难点】:学会采用不同的热处理工艺,将会得到不同的组织结构,从而使钢的性能发生变化。
第二章金属热处理(回火)(一)教学方法与学时分配8学时,必做实验。
先讲授,然后自己动手完成实验(二)内容及基本要求主要内容:低温回火:保持了钢的高硬度、高强度和良好耐磨性,适当提高了韧性。
中温回火:中温回火后共计爱你的淬火应力基本消失,钢具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性。
高温回火:习惯上将淬火和随后的高温回火相结合的热处理工艺成为调制处理。
经调制处理后,钢具有优良的综合力学性能。
【重点掌握】:回火温度对钢性能的影响【掌握】:回火的工艺方法第三章金相试样的制备(一)教学方法与学时分配8学时,必做实验。
先讲授,然后自己动手完成实验(二)内容及基本要求主要内容:样品制备的基本步骤为取样、镶嵌、磨光、抛光、侵蚀五个步骤。
取样:显微试样的选取应根据研究的目的,取其具有代表性的部位。
用切割机把试样截下,采用直径20mm,高15mm的圆柱体。
切取过程中不宜使试样的温度过于升高,以免引起金属组织的变化,影响分析结果。
镶样:当试样尺寸太小时,直接用手磨制很困难,用试样镶嵌机把试样镶嵌在胶木粉中。
磨制:分为粗磨和细磨两道工序。
粗磨:粗磨的目的是为了获得一个平整的表面。
通常在砂轮机上进行,但在磨制时应主意:试样对砂轮的压力不宜过大,否则会在试样表面形成很深的磨痕,增加精磨和抛光的难度;要随时用水冷却试样,以免受热引起组织变化;试样边缘的棱角若无保存表要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。
细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的磨痕。
细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步的抛光做好准备。
细磨是在一套粗细程度不同的金相砂纸上,由粗到细一次顺序进行的。
细磨时将砂纸贴在带有旋转圆盘的预磨机上,手指紧握试样,并使磨面朝下,均匀用力向下压在砂纸上。
每更换一号砂纸时,须将试样的研磨方向调转90度。
抛光:抛光的目的是去除细磨时遗留下来的细微磨痕而获得光亮的镜面,制备时采用机械抛光,在专用的抛光机上进行。
抛光机主要由电动机和抛光圆盘组成,抛光圆盘转速为300~500转/分。
抛光盘上铺以细帆布、呢绒、丝绸等。
抛光时在抛光盘上不断滴注抛光液。
抛光液通常采用A1203、Mg0或Cr203等细粉末(粒度约为0.3~1um)在水中的悬浮液。
机械抛光就是靠极细的抛光粉与磨面间产生相对磨削和滚压作用来消除磨痕的。
操作时将试样磨面均匀地在旋转的抛光盘上,并沿盘的边缘到中心不断作径向往复运动。
抛光时间一般为3~5分钟。
抛光结束后,试样表面看不出任何磨痕而呈光亮的镜面。
浸蚀:经抛光后的试样若直接放在显微镜下观察,只能看到一片亮光,除某些非金属夹杂物(如MnS及石墨等)外,无法辨别出各种组成物及其形态特征。
必须使用浸蚀剂对试样表面进行“浸蚀”,才能清楚地显示出显微组织的真是情况。
钢铁材料最常用的浸蚀剂为3~4%硝酸酒精溶液。
浸蚀的方法是将试样磨面浸入浸蚀剂中,活用棉花沾上浸蚀剂擦拭表面。
浸蚀时间要适当,一般试样磨面发暗时就可停止,如果浸蚀不足可重复浸蚀。
浸蚀完毕后立即用清水冲洗,接着用酒精冲洗,最后用吹风机吹干。
这样制的金相试样即可在显微镜下进行观察和分析研究。
【掌握】:熟悉金相试样制备过程中的取样、镶嵌、磨光、抛光四个步骤的操作方法【了解】:热镶嵌及冷镶嵌的差别及需要的实验用品第四章显微镜的使用、摄影(一)教学方法与学时分配8学时,必做实验。
先讲授,然后自己动手完成实验(二)内容及基本要求主要内容:显微分析是研究材料内部组织和缺陷的主要方法之一,它在材料研究中占有重要的地位。
利用金相显微镜将试样放大100~1500倍来研究材料内部组织的方法称为金相显微分析法,是研究金属材料微观结构最基本的一种实验技术。
显微分析可以研究材料内部的组织与其化学成分的关系;可以确定各类材料经不同加工及热处理后的显微组织;可以判别材料质量的优劣,如金属材料中诸如氧化物、硫化物等各种非金属夹杂物在显微组织中的大小、数量、分布情况及晶粒度的大小等。
在现代金相显微分析中,使用的主要仪器有光学显微镜和电子显微镜两大类。
这里主要对常用的光学金相显微镜作一般介绍。
【重点掌握】:金相显微镜的成像原理、基本构造、各主要部件及元件的作用【掌握】:光学显微摄像CCD系统的运用第五章组织观察(平衡及非平衡、不锈钢、焊接)主要内容:碳钢经退火、正火可得到平衡或接近平衡组织;经淬火得到的是不平衡组织。
得到不同的组织,各组织的显微特征大概包含如下:1. 索氏体(S)是铁素体与渗碳体的机械混合物,其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。
2. 屈氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。
当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层。
3. 贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。
在显微形态上,主要有三种形态;(1)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。
(2)下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。
它比淬火马氏体易受浸蚀,在显微镜下黑色针状。
在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。
(3)粒状贝氏体是最近十几年才被确认的组织。
在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。
它的温度范围大致在上贝氏体转变渐度区的上部,由铁素体和它所包围的小岛状组织所组成。
4. 马氏体(M)是碳在αFe的过饱和固溶体。
以马氏体的形态按含碳量主要分两种,即板条状和针状。
(1)板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。
其组织形态是由尺寸大致相联系贩细马氏体条定向平行排列组成马氏体束或马氏体领域。
在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。
板条马氏体具有较低的硬度和较好的韧性。
(2)针状马氏体是含碳量较高的钢淬火后得到的组织。
在光学显微镜下,它呈竹叶状或针状,针和针之间成一定的角度。
最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体加以分割,使以后形成的马氏体片的大小受到限制。
因此,针状马氏体的大小不一。
同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。
针状马氏体的硬度高而韧性差。
5. 残余奥氏体(A残)是含碳量大小0.5%的奥氏体淬火时被保留到室温不转变的那部分奥氏体。
它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。
6. 钢的回火组织与性能(1)回火马氏体。
是低温回火(150~250℃)组织。
它仍保留了原马氏体形态特征。
针状马氏体回火析出了极细的碳化物,容易受到浸蚀,在显微镜下呈黑色针状。
低温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色。
低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的高硬度。
(2)回火屈氏体。
是中温回火(350~500℃)线织。
回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。
铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相渗碳体则析出在其中,呈极细颗粒状,用光学显微镜极难分辨。
中温回火后有很好的弹性和一定的韧性。
(3)回火索氏体:是高温回火(500~650℃)组织。
回火索氏体是铁素体与较粗的粒状渗碳体所组成的机械混合物。
碳钢回火索氏体中的铁素体已经通过再结晶,呈等轴细晶粒状。
经充分回火的索氏体已没有针的形态。
在大于500倍的光镜下,可以看到渗碳体微粒。
回火索氏体具有良好的综合机械性能。
应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁素体基体上;而淬火索氏体和淬火屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。