低碳钢和灰口铸铁的拉伸压缩
低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
低碳钢和铸铁的压缩试验

(a ) (b )图2-1FF sc△L(a ) (b )图2-2F F bc△L§2 低碳钢和铸铁的压缩试验一、试验目的1.测定低碳钢的压缩屈服点和铸铁的抗压强度。
2.观察并分析两种材料在压缩过程中的各种现象。
二、设备和仪器1.电子万能试验机 2.游标卡尺三、试样低碳钢和铸铁等金属材料的压缩试样一般制成圆柱形,其公差、表面粗糙度、两端面的平行度和对试样轴线的垂直度在国标GB7314-87中有明确规定。
目前常用的压缩试验方法是两端平压法。
由于试样两端面不可能理想地平行,试验时必须使用球形承垫(见图2-1a ),试样应置于球形承垫中心,藉球形承垫自动调节实现轴向受载。
由于试样的上下两端与试验机承垫之间会产生很大的摩擦力,它们阻碍着试样上部及下部的横向变形,导致测得的抗压强度较实际偏高。
当试样的高度相对增加时,摩擦力对试样中部的影响就会相应变小,因此抗压强度与比值h o /d o 有关,同时考虑稳定性因素,为此国家标准对试样高度h o 与直径d o 之比规定在1~3的范围内。
本次实验采用10×15的圆柱形试样。
四、试验原理试验时缓慢加载,试验机自动绘出压缩图(即F-Δl 曲线)。
低碳钢试样压缩图如图2-1b 所示。
试样开始变形时,服从虎克定律,呈直线上升,此后变形增长很快,材料屈服。
此时载荷暂时保持恒定或稍有减小,这暂时的恒定值或减小的最小值即为压缩屈服载荷F SC 。
有时屈服阶段出现多个波峰波谷,则取第一个波谷之后的最低载荷为压缩屈服载荷F SC 。
以后图形呈曲线上升,随着塑性变形的增长,试样横截面相应增大,增大了的截面又能承受更大的载荷。
试样愈压愈扁,甚至可以压成薄饼形状(如图2-1a 所示),而不破裂,所以测不出抗压强度。
铸铁试样压缩图如图2-2a 所示。
载荷达最大值F bc 后稍有下降,然后破裂,能听到沉闷的破裂声。
SC σbc σφ铸铁试样破裂后呈鼓形,并在与轴线大约成45°的面上破断,这主要是由切应力造成的。
低碳钢和灰口铸铁的拉伸,压缩实验

⑸.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。
⑹.学习、掌握电子万能试验机的使用方法及其工作原理。
2
50KN电子万能试验机,单向引伸计,钢板尺,游标卡尺
3
实验证明,试件尺寸和形状对实验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试
(3)硬化阶段(ce段)
经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称 为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d d斜线),其斜率与比例阶段的直
线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或 残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力 应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比 例极限或弹性极限将得到提高,这一现象称为冷作硬化。
I0100mm。本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h/d02,
d015mm(图2—2)
(1)
在拉伸实验前,测定低碳钢试件的直径d°和标距l°。实验时,首先将试件安装在实验机的上、下夹
头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。然后开动实验机,缓慢加载,与实验机相
2 -4),随着载荷的逐渐增大,材料呈现岀不同的力学性能:
材料的弹性极限(e),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)
超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成
低碳钢、铸铁的拉伸和压缩实验

实验一:低碳钢、铸铁的拉伸和压缩实验一、实验目的1.测定低碳钢的屈服强度、抗拉强度、延伸率和断面收缩率。
2.测定铸铁的抗拉强度。
3.测定铸铁压缩时的抗压强度。
4.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图。
5.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
二、实验内容1.铸铁拉伸实验;2.铸铁压缩实验;3.低碳钢拉伸实验。
三、实验原理、方法和手段常温、静载下的轴向拉伸实验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。
但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。
为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。
因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。
依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸实验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1-1所示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原l图1-1点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力P)除以试样原始横截面面积A,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线,它与拉伸图曲线相似,也同样表征了材料力学性能。
低碳钢和灰口铸铁的拉伸压缩实验

低碳钢和灰口铸铁的拉伸压缩实验Last revision on 21 December 2020低碳钢和灰口铸铁的拉伸、压缩实验1 实验目的⑴.观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率10δ和断面收缩率ψ。
⑵.观察铸铁在轴向拉伸时的各种现象。
⑶.观察低碳钢和铸铁在轴向压缩过程中的各种现象。
⑷.观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。
测定该试样所代表材料的F S 、F b 和l ∆等值。
⑸.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。
⑹.学习、掌握电子万能试验机的使用方法及其工作原理。
2 仪器设备和量具50KN 电子万能试验机,单向引伸计,钢板尺,游标卡尺。
3 试件实验证明,试件尺寸和形状对实验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准,(GB6397-86),将金属拉伸比例试件的尺寸列表如下:本实验的拉伸试件采用国家标准中规定的长比例试件(图2-1),实验段直径mm d 100=,标距mm l 1000=。
本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件2/0=d h ,mm d 150=(图2-2)。
4 实验原理和方法(一)低碳钢的拉伸实验在拉伸实验前,测定低碳钢试件的直径0d 和标距0l 。
实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。
然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(l F ∆-曲线,见图2-3)或应力-应变曲线(εσ-曲线,见图2-4),随着载荷的逐渐增大,材料呈现出不同的力学性能:性段的直线斜率即为材料的弹性摸量E 。
线性阶段后,εσ-曲线不为直线(ab 段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
铸铁低碳钢拉伸压缩试验

实验一:低碳钢和铸铁的拉伸实验班级:力学系姓名:孙承宏组别:第一组实验日期:2001.4.13 一.实验目的:1. 通过单轴拉伸试验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较器机械性能。
)和塑性指标(延伸率δ和2.测定材料的强度指标(屈服极限σs,强度极限σb断面收缩率ψ)。
二.实验原理单轴拉伸实验在电子万能试验机上进行,在实验中,试验机上的载荷传感器和位移传感器分别将感受到的载荷和位移信号转变成电信号送入EDC控制器,信号经放大和模数转换后送入计算机,并将处理后的数据同步显示在屏幕上形成载荷-位移曲线。
三.实验设备:1.试验机型号和名称:WDW-100A型电子式万能材料试验机2.游标卡尺3.计算机,打印机四.实验数据的记录(1)实验数据的记录:a)试件的测量及分析拉伸试件:低碳钢:屈服极限σs=23859*4*3.14|0.01|0.01=3.09GPa,δ=(128.42-96.62)|96.92=32.9%断面收缩率ψ=(10.02*10.02-5.20*5.20)|20.02|10.02=70% 铸铁:强度极限σ=10163*4*3.14|0.00992|0.00992=1.29GPab六.低碳钢拉伸曲P-δl线图:铸铁拉伸P-δl曲线:实验二:低碳钢和铸铁的压缩实验班级:力学系姓名:孙承宏组别:第一组实验日期:2011.4.13 一.实验目的:1. 通过单轴压缩试验,观察并比较低碳钢和铸铁在压缩时变形与破坏现象。
2.测定低碳钢的屈服极限σs与铸铁的强度极限σb二.实验原理低碳钢:取圆柱形试件,在屈服之前,其应力应变曲线与拉伸时基本相同,随后横截面逐渐增大,试件最后被压成饼状而不破裂故只能测出Fs,由σs=Fs|Ao 得出材料受压时的屈服极限而得不出受压时的强度极限。
铸铁:去圆形试件,试件受力直至破坏,破坏面与试样轴线约成35-45度角,测出破坏时Fb,由σb=Fb|Ao得到铸铁强度极限。
拉压实验

O 10 20 e(%料和脆性材料力学性能比较
塑性材料
延伸率 δ > 5% 断裂前有很大塑性变形 抗压能力与抗拉能力相近 可承受冲击载荷,适合于 锻压和冷加工
脆性材料
延伸率 δ < 5% 断裂前变形很小 抗压能力远大于抗拉能力
适合于做基础构件或外壳
材料的塑性和脆性会因为制造方法工艺条件 的改变而改变
a
O
e
O1 O2 0.1 0.2
by
灰铸铁的 压缩曲线
a
bL
灰铸铁的 拉伸曲线
a = 45o~55o
剪应力引起断裂
O
e
其它塑性材料拉伸应力应变曲线
(MPa) 900 800 700 600 2 强铝 1 锰钢 A
0.2
S
500
400 300 200 100 0
3 退火球墨铸铁 4 低碳钢
拉伸压缩时材料的力学性能
由前面的讨论可知,杆件的应力与构件的几何形状 有关,而杆件的变形却与材料的性质有关。 因此,有必要研究材料的力学性能。这种研究可以 通过实验进行。
1、低碳钢和铸铁拉伸\压缩时的力学性能
在工程上使用最广泛,力学性能最典型
# 实验用试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
DL
O
Pb b A0
L L 1 0 延伸率: 100% L0
A0 A1 断面 100% 收缩率: A0
(MPa)
400
低碳钢压缩 应力应变曲线 E(b)
C(s上) (e) B 200 D(s下) A(p)
f1(f)
低碳钢拉伸 应力应变曲线
g
实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制 作 人 :熊 莉
•
材料在外力作用下所呈现的有关强 度和变形方面的特性,称为材料的力学 性能,材料的力学性能都要通过试验来 测定。拉伸压缩实验是测定材料在静载 荷作用下机械性能的最基本和最重要的 实验之一。这不仅因为拉压实验简便易 行,易于分析,且测试技术较为成熟。 更重要的是,工程设计中所选用材料的 强度、塑性和弹性模量等机械性能指标, 大多是以拉压实验为主要依据。
A
强度极限 塑性指标:延伸率
pb σ = b A
δ=
L1 L 100 0 0 L
断面收缩率
d2 d2 1000 0 2 d
由于发生颈缩现象,低碳钢拉伸试件的破坏形状为杯口状
二、灰口铸铁的拉伸实验
实验前,测量试件的直径d 由于铸铁是脆性材料,一拉就断,试验过程中不存在屈 服、颈缩现象,而且铸铁抗压不抗拉,其最大荷载很小。
实验目的
1.学习使用电子万能试验机
2.观察试件在拉伸、压缩过程中受力和变形 的相互关系 3.测定材料的强度指标和塑性指标 4.观察试件破坏后的形状
仪器设备
WDW3100微机控制电子万能试验机
电 子 万 能 试 验 机
实验原理
本实验的实验原理分四部分:
一.低碳钢的拉伸实验原理
二、灰口铸铁的拉伸,在承受拉力达最大以前, 试件发生的变形在各处基本上是均匀的, 但在达到最大拉力后,变形主要集中于 试件的某一局部区域,在该区域处横截 面积急剧缩小,直至断裂,这种现象就 叫颈缩现象。颈缩现象是材料内部晶格 剪切滑移的表现。
当试件断裂后,测量试件断口处的最小直径 d1 和标距 L1 根据所测的实验数据,计算低碳钢的强度指标和塑性 指标: P 强度指标:屈服极限 σ S = S
•
强化阶段
• 过了屈服阶段后,材料因发生明显的塑性 变形,其内部晶体组织结构重新得到了排列调 整,其抵抗变形的能力有所增强,随着拉力的 增加,伸长变形也随之增加。在该阶段中,随 着塑性变形量累积增大,促使材料的力学性能 也发生变化,即材料的塑性变形性能劣化,抵 抗变形能力提高,这种特征称为冷作硬化。在 工程上常利用冷作硬化来提高钢筋和钢缆绳等 构件在线弹性范围内所承受的最大载荷,但此 工艺同时降低了材料的塑性性能。这种冷作硬 化性质,只有经过退火处理才能消失。 • 在强化阶段,我们要记录最大荷载 Pb
P σS= S A
由于是塑性材料,低碳钢压缩后的形状为鼓形
四、灰口铸铁的压缩实验
实验前,测量试件的直径d 铸铁抗压不抗拉,其最大压力荷载会比较大。
记录下其最大荷载
计算其压缩时 强度极限:
pb σ = b A
Pb
由于是剪切破坏,铸铁压缩时的破坏形状为45 斜截面
0
实验步骤
1、将试件装卡在万能试验机的夹头上。
• 拉伸初始阶段为弹性阶段,在此阶 段若卸载,试件的伸长变形即可消 失,力与变形成正比关系,为一直 线。其直线的斜率就是低碳钢材料 的弹性模量E。
屈服阶段
• 继续增加荷载,试件继续变形,但力却不再增 加,而是出现一段比较平坦的波浪线,若试件 表面加工光滑,可看到45度倾斜的滑移线,这 表示试件在承受的拉力不继续增加或稍微减小 的情况下却继续伸长达到塑性变形发生,这种 现象称为材料的屈服。其对应的应力称为屈服 应力(屈服强度),屈服强度表示材料抵抗永 久变形的能力。 在屈服阶段,我们要记录试件的下屈服力Ps, 屈服力分上屈服力和下屈服力,由于上屈服强 度受实验速度、试件变形率和试件形式等因素 影响不够稳定,所以我们采用下屈服强度作为 材料的屈服强度,故记录下屈服力。
2、打开计算机,开始拉压程序。
3、按照程序提示,一步一步进行操作。
4、观察实验过程中的力学现象。 5、将实验结果打印出来。 6、分析试件的断口形状。
思 考 题
1、试比较低碳钢和铸铁在拉伸时的力学性能。 2、压缩时为什么必须将试件对准试验机压头的 中心位置,如没对中会产生什么影响? 3、说明低碳钢和铸铁断口的特点。 4、低碳钢和铸铁在拉伸、压缩时,各要测得哪 些数据?观察哪些现象?
三、低碳钢的压缩实验原理 四、灰口铸铁的压缩实验原理
一.低碳钢的拉伸实验
实验前,用游标卡尺测量试件的直径d,标距L。(这里已 知标距为100mm) 低碳钢的拉伸过程分为四个阶段: 弹性阶段 屈服阶段 强化阶段 颈缩阶段
在屈服阶段,我们要记录试件的屈服荷载Ps
在强化阶段,我们要记录最大荷载 Pb
弹性阶段
记录下铸铁断裂时 的最大荷载 P b 计算其拉伸时 强度极限:
σ =
b
pb A
由于脆性材料一拉就断,其断口形状为平断
三、低碳钢的压缩实验
实验前,测量试件的直径d 低碳钢发生屈服后,随着压力荷载的增大,其承载面积 会越来越大,当 P与A成正比时,低碳钢就永远不会破坏。 所以,它的曲线呈现上凹趋势。 记录下屈服荷载 PS 计算其屈服极限: