常规岛厂房钢吊车梁设计
钢结构 吊车梁设计

n
—刹车轮与轨道间的滑动摩擦系数 取0.1
K 1
P
i 1
n
max, k
—吊车一侧制动轮的最大轮压之和
2.4.3 吊车梁内力计算
1.计算内容
M x max 及相应
Q、 支座
Vmax
M y max 及局部弯矩(制动桁架)M y
2.计算原则
注意:计算吊车梁的强度、稳定和连接时,按两台吊 车考虑;计算吊车梁的疲劳和变形时按作用在跨间内 起重量最大的一台吊车考虑。疲劳和变形的计算,采 用吊车荷载的标准值,不考虑动力系数。
1加强上翼缘图242吊车梁系统组成图242吊车梁系统组成2制动梁制动桁架较大竖向荷载吊车梁横向水平荷载制动梁制动梁图242吊车梁系统组成图242吊车梁系统组成竖向荷载吊车梁横向水平荷载制动桁架15制动桁架辅助桁架图242吊车梁系统组成图242吊车梁系统组成垂直支撑水平支撑3边柱吊车梁设置垂直辅助桁架轻中级工作制制动桁架吊车梁242吊车梁荷载242吊车梁荷载吊车起重物及系统自重
2.疲劳验算位置
5
A6~A8级吊车梁下列位置应进行疲劳验算 1.受拉翼缘与腹板连接处的主体金属 2.受拉区加劲肋端部的主体金属
2
4
1 3
3.受拉翼缘与支撑连接处的主体金属 (a)跨中截面 (螺栓孔处) 4.下翼缘与腹板连接的角焊缝 5.支座加劲肋与腹板连接的角焊缝
(b)支座截面
图2.4.5 疲劳验算点
x x
受拉区:B点最不利 Mx f Wnx2
y
B
(a)
Wnx1、Wnx2 ——吊车梁截面对x轴上部、 下部纤维处的净截面 图2.4.3 截面强度验算 抵抗矩。
2.带制动梁 A点最不利
钢结构吊车梁设计一般规定、荷载计算

钢结构吊车梁设计一般规定、荷载计算一、设计一般规定1.吊车梁及吊车的工作级别(1)吊车的使用等级根据《起重机设计规范GB/T 3811-2008》3.2.1,吊车按照吊车可能完成的总工作循环数将使用等级划分为U0~U9共10个等级,吊车使用总工作循环数Cr与吊车使用等级及使用频繁程度的关系见《起重机设计规范GB/T 3811-2008》3.2.1表1,如下:表1 起重机的使用等级(2)吊车的起升荷载状态级别根据《起重机设计规范GB/T 3811-2008》3.2.2,起重机的起升载荷,是指起重机在实际的起吊作业中每一次吊运的物品质量(有效起重量)与吊具及属具质量的总和(即起升质量)的重力;起重机的额定起升载荷,是指起重机起吊额定起重量时能够吊运的物品最大质量与吊具及属具质量的总和(即总起升质量)的重力。
其单位为牛顿(N)或千牛(kN)。
起重机的起升载荷状态级别是指在该起重机的设计预期寿命期限内,它的各个有代表性的起升载荷值的大小及各相对应的起吊次数,与起重机的额定起升载荷值的大小及总的起吊次数的比值情况,据此载荷状态级别被分为Q1~Q4共4个级别。
详见《起重机设计规范GB/T 3811-2008》3.2.2表2。
表2起重机的载荷状态级别及载荷谱系数(3)吊车的工作级别根据吊车的10个使用等级与吊车的4个起升荷载状态级别,将吊车整机的工作级别分为A1~A8共8个级别,详见《起重机设计规范GB/T 3811-2008》3.2.3表3。
表3 吊车的工作级别在《建筑结构荷载规范GB 5009-2012》(简称《荷规》)中,工作级别与吊车的荷载系数(《荷规》6.2)、动力系数(《荷规》6.3)及吊车荷载的组合值系数、频遇值系数、准永久值系数(《荷规》6.4)有关,为方便设计,在吊车荷载的条文说明中将吊车的工作制与工作级别的对应关系做如下规定:表4 吊车的工作制等级与工作级别的对应关系2吊车梁荷载吊车梁荷载分为竖向荷载(吊车的竖向轮压)与水平荷载,水平荷载又分为纵向水平荷载与横向水平荷载,吊车纵向水平制动力产生纵向水平荷载,对于轻、中级工作制吊车(A1-A5),横向水平荷载考虑由小车的水平制动力产生,对于重级、特重级工作制吊车(A6-A8),横向水平荷载还需考虑吊车的摇摆力,根据《钢结构设计标准GB50017-2017》3.2.2,计算强度、稳定性以及连接的强度时,此水平力不宜与小车产生的水平制动力同时考虑。
钢结构厂房的吊车梁如何设计

吊车梁系统结构的组成吊车梁设计吊车梁一般是简支的(构造简单施工方便对支座沉降不敏感)常见的形式有:型钢梁(1)、组合工字型梁(2)、箱形梁(3)、吊车桁架(4)等。
吊车梁所受荷载永久荷载(竖向)动力荷载,其方向有横向、水平向,特点是反复作用,容易引起疲劳破坏。
因此,对钢材的要求较高,除了对抗拉强度、伸长率、屈服点等常规要求外,要保证冲击韧性合格。
吊车梁结构系统的组成1、吊车梁2、制动梁或者制动桁架吊车梁的荷载吊车梁直接承受三个方向的荷载:竖向荷载(系统自重和重物)、横向水平荷载(刹车力及卡轨力)和纵向水平荷载(刹车力)。
吊车梁设计不考虑纵向水平荷载,按照双向受弯设计。
竖向荷载、横向水平荷载、纵向水平荷载。
竖向荷载包括吊车及其重物、吊车梁自重。
吊车经过轨道接头处时发生撞击,对梁产生动力效应。
设计时采取加大轮压的方法加以考虑。
横向水平荷载由卡轨力产生(轨道不平顺),产生横向水平力。
吊车荷载计算荷载规范规定,吊车横向水平荷载标准值应取横行小车重力g与额定起重量的重力Q之和乘以下列百分数:软钩吊车:Q≤100kN时取20%Q=150~500kN时取10%Q≥750kN时,取8%硬钩吊车:取20%GB50017规定,重级工作制(工作级别为A6~A8)吊车梁,由于吊车摆动引起的作用于每个轮压处的水平力标准值为:吊车梁的内力计算计算吊车梁的内力时,由于吊车荷载为移动荷载,首先应按结构力学中影响线的方法确定各内力所需吊车荷载的最不利位置,再按此求出吊车梁的最大弯矩及其相应的剪力、支座处最大剪力、以及横向水平荷载作用下在水平方向所产生的最大弯矩。
计算吊车梁的强度、稳定和变形时,按两台吊车考虑;疲劳和变形的计算,采用吊车荷载的标准值,不考虑动力系数。
1、移动荷载作用下的计算,首先根据影响线方法确定荷载的最不利位置;2、其次,求出吊车梁的最大弯矩及相应剪力、支座处最大剪力,横向水平荷载作用下的最大弯矩3、进行强度和稳定计算时,一般按两台吊车的最不利荷载考虑;疲劳计算时则按一台最大吊车考虑。
中、重型厂房结构设计-吊车梁的设计

吊车梁的施工工艺流程
施工准备
根据设计图纸和施工要求,进行现场 勘查,确定吊车梁的安装位置和基础 结构。
01
02
基础制作
根据设计要求,进行吊车梁的基础制 作,包括混凝土浇筑、钢筋绑扎等。
03
吊车梁安装
将吊车梁按照设计要求进行安装,确 保其位置和标高符合设计要求。
质量检测
对吊车梁的安装质量进行检测,包括 其位置、标高、平整度等,确保符合 设计要求和相关规范。
吊车梁的功能
吊车梁的主要功能是支撑和固定吊车 的轨道,承受吊车的运行载荷,并将 载荷传递至厂房的承重结构上,确保 吊车的正常运行和使用安全。
吊车梁的类型与选择
吊车梁的类型
根据制作材料的不同,吊车梁可分为钢吊车梁、钢筋混凝土吊车梁等。根据使用场合和承载能力的不同,又可分 为轻型、中型和重型吊车梁。
吊车梁的选择
选择何种类型的吊车梁应根据厂房的跨度、高度、使用需求以及经济性等因素综合考虑。例如,钢吊车梁具有自 重轻、承载能力强、安装方便等优点,适用于大跨度、高净空的厂房;钢筋混凝土吊车梁则具有承载能力较高、 耐久性好、造价较低等优点,适用于中等跨度和高度的厂房。
吊车梁设计的原则与要求
吊车梁设计的原则
吊车梁设计应遵循安全可靠、经济合理、技术先进的原则, 确保吊车梁能够承受各种可能的载荷组合,满足厂房的正常 使用和安全性能要求。
04
吊车梁的抗震设计
吊车梁的抗震设防目标
防止吊车梁在地震中发生严重破坏,确保厂房的正常使用和 安全。
保证吊车在地震中的安全运行,防止因吊车梁破坏而引起的 设备损坏或人员伤亡。
吊车梁的抗震措施
选择合适的材料
采用高强度钢材,提高吊车梁的承载能力和抗变 形能力。
钢吊车梁设计中应注意的一些问题_概述说明

钢吊车梁设计中应注意的一些问题概述说明1. 引言:1.1 概述:本文旨在探讨钢吊车梁设计中需要注意的一些问题。
钢吊车梁是工业领域中常见的起重装置,其设计直接影响到安全性、效率和经济性。
因此,在进行钢吊车梁设计时,工程师们需要关注一些重要的问题,包括载荷计算与设计条件、材料选择与强度要求以及结构稳定性分析和优化设计等方面。
1.2 文章结构:本文将按照以下结构进行论述:引言部分对文章进行了概述说明;第二部分将详细介绍钢吊车梁设计中应注意的问题,包括载荷计算与设计条件、材料选择与强度要求以及结构稳定性分析和优化设计等内容;第三节将从注意事项与安全考虑角度出发,探讨工作环境因素的考虑、设计过程中常见错误及其避免方法以及安全措施与监测建议;第四节将通过实例分析与案例研究,总结吊车梁失效案例并得出教训,分享成功案例经验,并对比分析不同设计方案的优缺点;最后一节为结论和展望,总结主要问题并展望未来发展方向。
1.3 目的:针对钢吊车梁设计中的问题和注意事项,本文旨在提供一个全面而系统的指南,以帮助工程师更好地设计和优化这些起重装置。
通过研究载荷计算与设计条件、材料选择与强度要求以及结构稳定性分析和优化设计等问题,可以全面了解钢吊车梁的设计原则和方法,并掌握一些有效的安全考虑措施。
此外,通过实例分析与案例研究,工程师们可以从失败案例中吸取经验教训,并借鉴成功案例中的经验。
最终,本文将为读者提供一个深入探讨钢吊车梁设计的参考文献,促进相关领域的发展。
2. 钢吊车梁设计中应注意的问题2.1 载荷计算与设计条件在钢吊车梁的设计中,首先需要进行准确的载荷计算和确定设计条件。
这包括确定工作环境下所承受的最大载荷、静态和动态载荷的影响、风载和地震等外部力的考虑。
同时,还需根据使用要求选择合适的工作条件和安全系数。
2.2 材料选择与强度要求材料选择是钢吊车梁设计中至关重要的一环。
我们需要根据承受载荷的大小、工作环境的特点以及结构形式来选择合适的材料。
吊车梁钢结构设计计算书

钢结构设计计算一、屋架类型由于车间内部设有二台t 5锻锤,厂房内桥式吊车为二台150/30t(中级工作制),又具有加热设备炉。
拟采用钢筋混凝土柱,梯形钢屋架,柱的混凝土强度等级为30C ,屋面坡度L L i ;10/=为屋架跨度。
二、钢材及焊条根据该地区的冬季计算温度和荷载性质,钢材钢材采用345Q ,屋架连接方法采用焊接,焊条选用50E 型,手工焊。
三、屋架形式及几何尺寸1、屋架计算跨度 mm l l 207003002100015020=-=⨯-=屋架端部高度 mm H 19900=屋架中部高度 mm i H H 30402210001.01990210=⨯+=+= 屋架的高跨比 9.6/121000/3040/==l H屋架沿水平投影面积分布的自重,按公式P=(0.12+0.011跨度)计算跨度(m ),即p=0.12+0.011×21=0.351kN/㎡,则 P=2/351.0m kN2、支撑布置根据车间长度90m ,屋架跨度21l m =荷载情况,以及吊车、锻锤设置情况,布置三道上、下弦横向水平支撑,两道纵向水平支撑,垂直支撑和系杆,屋脊节点及屋架支座处沿厂房通长布置刚性系杆,屋架下弦沿跨中通长设一道柔性系杆。
凡与支撑连接的屋架编号为2GWJ -,其余编号均为1GWJ -,其中屋架间距取15m ,两端和中间共6榀屋架。
四、荷载和内力计算 4.1荷载计算永久荷载标准值:三毡四油(上铺绿豆砂)防水层 2/4.0m kN水泥沙浆找平层 2/4.0m kN 保温层 20.65/kN m 一毡二油隔气层 2/05.0m kN 水泥沙浆找平层 2/30.0m kN 预应力砼屋面板 2/45.1m kN 屋架及支撑自重 2/351.021011.012.0m kN =⨯+合计 23.60/kN m可变荷载标准值:屋面活荷载 20.7/kN m 积灰荷载 2/0.1m kN 合计 21.7/kN m永久荷载设计值:21.2 3.60 4.132/kN m ⨯= 可变荷载设计值:21.4 1.7 2.38/kN m ⨯=4.2荷载组合4.2.1全跨永久荷载 +全跨可变荷载屋架上弦节点荷载:2(4.32 2.38) 1.5660.3/P kN m =+⨯⨯=支座反力: 260.3(1/227)482.4/A R kN m =⨯⨯+=4.2.2全跨永久荷载 +半跨可变荷载屋架上弦节点荷载: P (全)24.32 1.5638.88/kN m =⨯⨯=P (半)22.38 1.5621.42/kN m =⨯⨯=4.2.3全跨屋架与支撑+半跨屋面板+半跨屋面荷载全跨屋架和支撑自重产生 的节点荷载:P (全)21.20.35 1.56 3.78/kN m =⨯⨯⨯=P (半)2(1.2 1.45 1.40.7) 1.5624.48/kN m=⨯+⨯⨯⨯=21米跨屋架几何尺寸21米跨屋架半跨单位荷载作用下各杆件的内力值Aa cegg'e'c'a'+3.0100.000-5.310-7.339-6.861-5.319-3.923-2.1620.00-5.641-2.633-0.047+1.913+1.367+1.570+1.848+3.960+1.222-1.039-1.200-1.525-1.776-2.043-1.0-1.0-1.00.000.000.00-0.5+6.663+7.326+5.884+4.636+3.081+1.090BCD EF GHG 'F 'E 'D 'C 'B 'A '0.5 1.01.0 1.01.01.0 1.0 1.0 21米跨屋架半跨单位荷载作用下各杆件的内力值 4.3杆件内力计算杆件名称杆内力系数(P=1)组合一组合二组合三计算内力全垮①左半跨②右半跨③P ①N(左)=P(全)×①+P(半)×②N(右)=P(全)×①+P(半)×③N(左)=P(全)×①+P(半)×②N(右)=P(全)×①+P(半)×③上弦杆AB 0.0 0.0 0.0 0.0 0.0 0.0 0.0BD -7.472 -5.301 -2.162 -483.532 -392.222-324.791-158.233-81.170-483.532 DF -11.262 -7.399 -3.923 -660.967 -576.936-503.765-222.229-138.605-660.967FH -12.18 -6.861 -5.319 -734.454 -600.911-567.882-213.998-176.250-734.454下弦杆ac 4.100 3.010 1.090 240.629 217.281176.15589.18342.181240.629ce 9.744 6.633 3.081 571.875 505.880429.154199.943112.255571.875 eg 11.962 7.326 4.636 702.050 602.747545.127224.557158.706702.050 gh 11.768 5.884 5.884 709.61 564.629564.629188.523188.523709.61斜腹杆aB-7.684 -5.641 -2.043 -463.345 -407.213-330.144-167.137-79.058-463.345 Bc5.808 3.960 1.848 350.22 301.287256.048118.89567.193350.22 cD-4.409 -2.633 -1.776 -265.86 -220.722-202.365-81.122-60.143-265.86 De2.792 1.222 1.570 168.357 130.233137.68740.46848.987168.357 eF-1.572 0.047 -1.525 -94.792 -59.595-91.2547.093-43.274-94.7927.093 Fg0.328 -1.039 1.367 19.78 34.48043.26-26.67534.70443.26-26.675 gH0.713 1.913 -1.200 41.84 63.909-52.27849.525-32.07163.909-52.278竖杆aA-0.5 -0.5 0 -29.345 -29.345-14.673-14.13-1.89-29.345 cC-1.0 -1.0 0 -60.03 -60.03 -28.26-3.78-60.03 eE-1.0 -1.0 0 -60.03 -60.03 -28.26-3.78-60.03 gG -1.0 -1.0 0 -60.3 60.03 -28.26 -60.03-3.78五、截面杆件设计 5.1 上弦杆腹杆最大内力463.345N kN =-,节点板厚度选用mm 10,支座节点板厚度选用mm 12。
(整理)吊车梁设计

1、吊车梁设计1. 1 设计资料威远集团生产车间,跨度30m ,柱距6m ,总长72 m,吊车梁钢材采用Q235钢,焊条为E43型,跨度为6m ,计算长度取6m ,无制动结构,支撑于钢柱,采用突缘式支座,威远集团生产车间的吊车技术参数如表2-1所示:表2-1 吊车技术参数台数 起重量 级别 钩制 吊车跨度 吊车总量 小车重 最大轮压 25t中级软钩28.5m19.2t1.8t8.5t吊车轮压及轮距如图1-1所示:46503550图1-1吊车轮压示意图1. 2 吊车荷载计算吊车荷载动力系数05.1=α,吊车荷载分项系数Q γ=1.40。
则吊车荷载设计值为竖向荷载设计值 Q P γα⋅=m a x P ⋅=1.05⨯1.4⨯83.3=122.45kN 横向荷载设计值 =H Qγn g Q )(12.0+⋅=1.4⨯48.9)8.15(12.0⨯+⨯=2.80kN1. 3 内力计算1.3.1 吊车梁中最大竖向弯矩及相应剪力1) 吊车梁有三个轮压(见图1-2)时,梁上所有吊车轮压∑P 的位置为:PPPPBCAa230003000a5a5a1图1-2 三个轮压作用到吊车梁时弯矩计算简图mm W B a 1100355046501=-=-= mm W a 35502==mm a a a 3.4086110035506125=-=-=。
自重影响系数β取1.03,则 C 点的最大弯矩为:cM max =W β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--∑125)2(Pa l a l P =1.03×⎥⎦⎤⎢⎣⎡⨯--⨯⨯100.145.1226)408.03(45.12232 =284.94m kN ⋅2) 吊车梁上有两个轮压(见图1-3 )时,梁上所有吊车轮压∑P 的位置为:PPBCAa130003000Pa4a4图1-3 三个轮压作用到吊车梁时弯矩计算简图mm W B a 1100355046501=-=-=mm a a 275414==则C 点的最大弯矩值为:c M max =Wβl a l P ∑-24)2( =1.03×6)275.03(45.12222-⨯⨯=m kN ⋅18.312 可见由第二种情况控制,则在max M 处相应的剪力为CV =W βla lP ∑-)2(4=1.03×6)275.03(45.1222-⨯⨯=114.51kN 。
钢结构厂房吊车梁设计

吊车梁设计3、3、1设计资料轮用p 轮圧P3500图3-1吊车轮压示意图吊车总重量:8、84吨,最大轮压:74、95kN,最小轮压:19、23kN。
3、3、2吊车荷载计算吊车荷载动力系数a = 1.05,吊车荷载.分项系数北=1.40则吊车荷载设计值为竖向荷载设计值P = •化狀=1.05xl.4x74.95 = 110.18RN横向荷载设计值H = °10 (g + ^ = 1 .4X0-10X8-84X9-8 = 3.03Wn 23、3、3内力计算3、3、3、1吊车梁中最大弯矩及相应得剪力如图位置时弯矩最大图2-2 C 点最大弯矩Mmax 对应得裁面位置考虑吊车来那个自重对内力得影响,将内力乘以增大系数J3W = 1.03,则最大 弯矩好剪力设计值分别为:V 虛=A 工片"=1.O3X 2汕。
叫(3-0」25)=咖N 3. 3、3. 2吊车梁得最大剪力如图位置得剪力最大al60003000 >pal30002x74.95x(3.75 —1・875尸7.5x 0㈢=73.1ORN •加7.56000图2-3 A 点受到剪力最大时戒面得位置/?4 =1.03x110.18x(一 + 1) = 179.60W , V^ax = 179.69RN 。
63、3、3、3水平方向最大弯矩ITO OM H = — M ; = ——— x 312.68 = 8.6W ・ m 。
P max 110.183、3、4截面选择3. 3、4. 1梁高初选容许最小高度由刚度条件决定,按容许挠度值(v = —)要求得最小高度500为:^nun > o.6[ /]/[-] = 0.6 X 6000 X 500 X 200 X1 O'6= 360/7/nz 。
v由经验公式估算梁所需要得截而抵抗矩= L2X312-68X ,°6=1876.08x10-^200梁得经济高度为M = 7卿- 300 = 563.34mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈常规岛厂房钢吊车梁设计
摘要:本文通过某核电厂常规岛厂房钢吊车设计实例,简述了核电厂钢吊车梁的一般设计方法,就影响线在吊车梁设计中的应用进行了探讨,总结了在钢吊车梁设计过程中需要注意的事项及需要采取的措施,可供类似工程设计参考。
关键词:常规岛厂房;钢吊车梁;影响线;设计过程;注意事项核电厂常规岛厂房由于工艺设备安装的要求,均会有较大吨位的吊车。
吊车对厂房设计有着非常大的影响,吊车的安全性在厂房设计中非常重要。
吊车梁作为直接承受动力荷载的构件,在设计中因此需要慎之又慎。
通过某核电厂常规岛厂房钢吊车梁的设计,对主厂房吊车梁设计中的经验和问题进行了探讨和总结。
1. 工程概况
某核电厂常规岛厂房由于工艺设备布置的需要,主厂房柱间轴距尺寸多且分布不均匀,有边跨12m和11.2m,中跨9m和11.4m。
厂房内有两台270/50t轻级桥式吊车,由于柱距的不均匀,吊车梁的最大弯矩点和最大弯矩以及吊车梁的最大剪力确定比较困难。
下面就该梁的设计过程说明一下吊车梁的一般设计方法及如何利用影响线快速方便的确定吊车梁最大弯矩和最大剪力的问题。
2. 设计过程
钢吊车梁系统通常由吊车梁、制动结构、辅助桁架及支撑等构架组成。
而吊车梁又以焊接工字形吊车梁最为常见,其制作简单,受力性好。
因此本工程吊车梁的设计采用该种型式,其强度、稳定性
和允许挠度均需满足规范规定的要求。
吊车梁截面如图1所示。
2.1.截面特性
2.1.1.吊车梁对x轴的截面特性
a=1149.04cm2(毛截面),y=92.55cm(毛截面),a0=1133.06cm2(净截面),y0=93.83cm(净截面)
毛截面惯性矩:ix=8.944x106cm4 ;毛截面抵抗矩:wx=
ix/y=9.664x104 cm3
净截面惯性矩:ix0=8.814x106cm4;净截面抵抗矩:wnx上=
ix0/y0=9.394x104 cm3
wnx下= ix0/(h-y0)=6.986x104 cm3
2.1.2. 吊车梁上翼缘对y轴的截面特性(净截面)
2.2.吊车资料
2.3.吊车荷载计算
2.3.1.吊车竖向荷载
2.4.内力计算
2.4.1.最大弯矩点(c)的确定及最大弯矩计算
计算手册等参考文献均未有8个轮子的最大弯矩点位置图及最大弯矩计算公式,但是了解其计算原理后,可根据影响线比较后列出计算公式轻松求得。
在移动荷载作用下,可以求出简支梁上任一指定截面处的最大弯矩。
但在梁的所有各截面最大弯矩中,又有最大的,通常称为简支梁的绝对最大弯矩。
要确定绝对最大弯矩,需解决两个问题:a.绝
对最大弯矩发生在哪一个截面?b.此截面发生最大弯矩值时的荷
载位置。
当梁上作用的都是集中荷载时,弯矩图的顶点总是在集中荷载作用点处,因此绝对最大弯矩必定是在发生在某一集中荷载作用点的截面上。
mk表示pk以左梁上荷载对pk作用点的力矩总和,它是一个与x 无关的常数,当mx为极大时,根据极值条件(l-x-a)=0得
x=l/2-a/2。
这表明,当pk与合力∑p对称于梁中心点时,pk之下截面的弯矩达到最大值。
利用上述结论,可以求出各个荷载作用点截面的最大弯矩,然后将他们加以比较而得出绝对最大弯矩。
因简支梁绝对最大弯矩总是发生在梁的中心附近,故可设想,使梁中心截面参生最大弯矩的临界荷载,也就是发生绝对最大弯矩的临界荷载。
因此计算简支梁绝对最大弯矩,可首先确定使梁中心截面发生最大弯矩的临界荷载pk,然后移动荷载组使pk与梁上荷载的合力∑p对称于梁的中心,再计算此时pk作用点截面的弯矩,即得绝对最大弯矩。
根据上述方法计算(以中跨11.4m为例),2台吊车如图4(a)所示摆放时(计算过程略),临界荷载pk为前吊车最后一个轮子轮压,此时梁中心截面弯矩最大,移动荷载组使pk与梁上荷载的合力∑p对称于梁的中心,计算梁绝对最大弯矩得:
如图3(b)所示,经验证,根据影响线计算所得结果与以c点为中心取矩算得的mc结果一样,无误差(验证计算过程略)。
2.4.2. 最大剪力计算
当p作用在c点时,vc的影响线没有意义。
因此,绝对最大弯矩处的相应剪力不应用剪力影响线求得,应以取矩方法求得:
吊车梁最大剪力(支座处)vr根据支座处反力影响线(见图4)求得:
2.4.
3.水平向最大弯矩计算
吊车梁横向水平荷载作用下在水平方向产生的最大弯矩:
2.5.强度计算
2.5.1.正应力
2.5.2.剪应力
2.5.
3.腹板局部压应力:
2.5.4. 腹板计算高度边缘处的折算应力,按钢结构设计规范公式4.1.4-1计算能满足,过程略。
2.6.稳定性计算
由于吊车梁没有设置制动结构体系,故需计算梁的整体稳定性2.6.1. 整体稳定性系数(按钢结构设计规范附录b.1公式计算)2.6.2. 整体稳定性计算
2.6.
3. 腹板局部稳定性计算
=97>66,应配置横向加劲肋,并验算腹板稳定性,加劲肋间距
a=150cm,宽度bs=20cm。
按钢结构设计规范公式(4.3.3-1)验算能满足,过程略。
2.6.4.支座加劲肋计算及加劲肋稳定验算
按《钢结构设计手册》(第三版)公式3-26a,3-27a进行强度计算,按公式8-34进行稳定性验算,满足要求,过程略。
2.7.挠度计算
2.8.疲劳度验算
本厂房吊车为轻级工作制,根据钢结构规范条文说明6.2节说明,轻级工作制吊车梁可不做疲劳验算。
经过反复试算比较,中跨11.4m吊车梁为本次设计控制跨度,各项计算满足规范要求。
认定该梁的断面型式比较合理,施工、安装方便,满足工艺要求;经济性合理,且有一定的安全裕度,符合核电“安全第一”的企业文化要求。
3.设计注意事项及措施
通过本次设计及研究发现,在钢吊车梁设计过程需注意以下几个方面:
3.1.荷载计算需准确。
竖向荷载、横向水平荷载需乘以动力系数及分项系数。
3.2. 内力计算需准确。
绝对最大弯矩及最大剪力的确定应依靠影响线确定,且影响线直观方便,减少计算工作量,不易出错。
通常认为的在吊车梁上轮子越多,梁绝对最大弯矩越大是不正确的,需特别注意,因此绝对最大弯矩一定要以影响线确定。
通过影响线对边跨12m比较计算,发现5个轮子在吊车梁上时绝对最大弯矩比6个轮子在吊车梁上时大。
3.3. 支座加劲肋需进行压力计算和稳定性验算且留有一定裕
度。
国内外一些试验表明,焊接工字型梁破损部位多在端加劲肋或横向加劲肋与上翼缘的焊接区产生局部纵向裂缝,因此设计支座加劲肋需留有一定裕度。
3.4. 合理的构造设计。
支座处横向加劲肋应在腹板梁侧成对布置,并与梁上下翼缘刨平顶紧。
中间横向加劲肋上端应与梁上翼缘刨平顶紧,且下端宜在距受拉翼缘50~100mm处断开。
为防止横向水平力引起的钢梁受扭(钢结构受扭性能差),在吊车梁上翼缘宜每隔1500mm左右(横向加劲肋间距)设置钢板与常规岛厂房框架梁连接,抵抗扭矩增强整体稳定性。
4.小结与探讨
通过此次设计,对钢吊车梁的设计过程有了一个总体认识,吊车梁的设计就总体而言,除应满足规范规定的强度、稳定、挠度要求外,还应满足一定的构造要求。
而对重级工作制及使用频繁而满负荷率低的一些中级工作制吊车梁,特别是吊车桁架需进行疲劳验算。
对钢吊车梁可能由附加荷载及轨道偏心引起的扭矩,除在截面型式和构造上进行处理外,计算方法还有待于我们进一步探讨。