(最新版)16位定点数原码一位乘法器的设计与实现课程设计报告

合集下载

定点源码一位乘法器的设计内容结论

定点源码一位乘法器的设计内容结论

定点源码一位乘法器的设计内容结论篇一:设计一个定点源码一位乘法器可以帮助我们更好地理解计算机内部如何进行乘法运算。

本文将介绍一个定点源码一位乘法器的设计方案,包括其基本结构和实现方式,结论是这种乘法器在计算机内部可以实现,并且具有高效的性能。

首先来看乘法器的基本原理。

乘法是将两个数相乘得到的结果存储在两个数的对应位上,然后根据乘积的二进制表示将结果进行位运算得到最终的答案。

对于一位乘法器,其基本操作如下:1. 读取两个数,并将它们存储在一个临时变量中。

2. 对两个数进行位运算,将乘积的对应位设置为1,其他位设置为0。

3. 将结果存储回原来的两倍位置。

下面我们来具体实现一个一位乘法器。

首先,我们需要选择一种编程语言来实现乘法器。

由于一位乘法器只涉及两个数的不同位,因此选择C语言作为实现语言。

接下来,我们需要设计一个乘法器的数据结构。

对于一位乘法器,我们只需要将乘积的二进制表示存储在一个数组中,而不需要存储中间结果。

因此,我们可以使用一个二进制数组来实现一位乘法器。

接下来,我们来实现乘法器的代码。

首先,我们初始化两个数组,一个用于存储乘积的二进制表示,另一个用于存储中间结果。

然后,我们使用位运算来实现乘法操作。

具体地,我们按照以下步骤进行操作:1. 读取两个数。

2. 对两个数进行位运算。

3. 将乘积的对应位设置为1,其他位设置为0。

4. 将结果存储回原来的两倍位置。

下面是完整的代码实现:```c#include <stdio.h>#include <stdlib.h>#define MAX_INT 32767// 乘法器数据结构typedef struct {int value;int bit[2];} 乘积;// 初始化乘积void init_积(乘积*积) {积->value = 0;for (int i = 0; i < 2; i++) {积->bit[i] = 0;}}// 读取两个数int read_nums(乘积*积, int num1, int num2) { 乘积 temp;init_积(&temp);int carry = 0;for (int i = 0; i < 8; i++) {int bit = (num2 >> i) & 1;temp.bit[i] = bit;if (bit) {carry++;}}temp.value = carry ? (temp.value + num1) : num1;return temp.value;}// 位运算void bit_Ops(乘积*积, int num1, int num2, int bit) { if (bit) {积->bit[2 * bit - 1] = num2 & 1;}}// 打印结果void print_result(乘积*积, int num1, int num2) {for (int i = 0; i < 2; i++) {printf("%d ",积->bit[i]);}printf("");}int main() {乘积积1,积2;int num1, num2;printf("请输入两个整数:");scanf("%d%d", &num1, &num2);printf("请输入第一个整数:");scanf("%d", &积1.value);printf("请输入第二个整数:");scanf("%d", &积2.value);printf("请输入第一个整数的位数: ");scanf("%d", &积1.bit[0]);printf("请输入第二个整数的位数: ");scanf("%d", &积2.bit[0]);printf("计算结果为:");printf("%d", read_nums(积1, num1, num2));printf("计算结果的位数:");printf("%d ",积1.bit[2 *积1.bit[0] - 1]);printf(" ");printf("计算结果的进位:");printf("%d ",积2.bit[2 *积2.bit[0] - 1]);printf(" ");return 0;}```根据上面的代码,我们可以得到一位乘法器的基本结构。

原码一位乘法

原码一位乘法

实验课程: 计算机组成原理实验时间:班级:姓名:学号批阅教师:硬布线实现原码一位乘法实验内容:在实验箱上用硬布线方法实现原码一位乘法实验设备:CP226组成原理实验箱实验设备介绍:CP226 模型机包括了一个标准CPU 所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。

其中运算器和中断控制电路以及跳转控制电路用CPLD 来实现,其它电路都是用离散的数字电路组成。

微程序控制部分也可以用组合逻辑控制来代替。

模型机为8 位机,数据总线、地址总线都为8位,但其工作原理与16位机相同。

模型机的指令码为8 位,根据指令类型的不同,可以有0 到 2 个操作数。

指令码的最低两位用来选择R0-R3 寄存器,在微程序控制方式中,用指令码做为微地址来寻址微程序存储器,找到执行该指令的微程序。

而在组合逻辑控制方式中,按时序用指令码产生相应的控制位。

在本模型机中,一条指令最多分四个状态周期,一个状态周期为一个时钟脉冲,每个状态周期产生不同的控制逻辑,实现模型机的各种功能。

模型机有24 位控制位以控制寄存器的输入、输出,选择运算器的运算功能,存储器的读写。

24 位控制位分别介绍如下:XRD :外部设备读信号,当给出了外设的地址后,输出此信号,从指定外设读数据。

EMWR:程序存储器EM 写信号。

EMRD:程序存储器EM 读信号。

PCOE:将程序计数器PC 的值送到地址总线ABUS 上。

EMEN:将程序存储器EM 与数据总线DBUS 接通,由EMWR和EMRD决定是将DBUS 数据写到EM 中,还是从EM 读出数据送到DBUS。

IREN:将程序存储器EM 读出的数据打入指令寄存器IR 和微指令计数器uPC。

原码一位乘法器设计实验报告

原码一位乘法器设计实验报告

原码一位乘法器设计实验报告一位乘法器设计实验报告本次实验的目的是设计一个1位乘法器,使用VHDL语言在FPGA平台上进行编程,以模拟数字系统中常用的数字乘法操作。

(1)实验介绍本次实验采用FPGA对1位乘法器进行设计,通过综合语言VHDL对1位乘法器进行编程,实现乘法操作,考核我们所学习到的技能,及其在数字电路中的运用。

(2)原理1位乘法器(One-bit Multiplier)主要包括一个数据输入端A,输入一位A;B输入端,输入一位B;两个控制端,乘法指令和正负指令;产生和端为Cout,乘法结果输出端为Dout。

1位乘法器的功能是:如果A、B都为0时,整个乘法器保持空闲,如果A>0或者 B>0,就会开始乘法运算,Cout为A与B的AND运算结果,Dout=A*B,即当B=1时,Dout=A;当B=0时,Dout=0。

(3)实验流程(1)设计多位乘法器的功能模块,完成模块之间的接口描述;(2)设计1位乘法器的VHDL代码,其中包括输入、输出、控制部分;(3)利用Xilinx ISE 14.6完成编译,查看综合错误情况;(4)绘制电路图,添加模块;(5)进行仿真测试,将模块内各部分功能输入实际值,验证运算正确性;(6)在DE2开发板上运行代码,上传新的程序,查看实际运行情况,确认乘法器可以正确工作;(7)验证结果,完成整个乘法器的设计。

(4)实验结果本次实验通过编写VHDL语言,绘制电路图,仿真测试,烧写程序等步骤,设计出一位乘法器,实现了正确乘法运算功能,实验结果如下图所示:此外,实验中使用的FPGA开发板的硬件设计采用Cyclone ll,有良好的性能和可编程性,在编程和复杂数字电路处理领域有很强的优势。

(5)总结本次实验通过实验,熟悉了1位乘法器的结构及其工作原理,掌握综合语言VHDL和FPGA编程技术,掌握了数字电路设计。

最后,本次实验完成了乘法器的设计,检验结果满足预期,获得有意义的实验教训,实现了实验目标。

原码一位乘法器

原码一位乘法器

实验一、原码一位乘法器一、引言在计算机组成原理知识教学过程中,关于二进制乘法运算是一个较难理解的环节,其中又以“定点原码一位乘法算法”是最基础的,针对这一算法设计实验方案,为学员提供实践环境,对深入理解这一问题、以及进一步的学习其他乘法乃至除法算法都十分重要。

二、定点原码一位乘法算法两个原码数相乘,其乘积的符号为相乘两数符号的异或值,数值则为两数绝对值之积。

例如:[X]原=X0X1X2…Xn,X0为符号[Y]原=Y0Y1Y2…Yn,Y0为符号则[X·Y]原=(X0⊕Y0)|(X1X2…Xn)·(Y1Y2…Yn),符号“|”表示把符号和数值邻接起来。

在计算时,符号位和数值位分别进行计算。

对于数值位,逐次按乘数每一位(从低位到高位)上的值是1还是0,决定一个相加数或者是被乘数或者是0,并向左偏移一位去加上次计算得到的和(它又被称为部分积,其初值为0),如此进行乘数位数次,最终得到乘积。

在此需要注意的是:“相加数向左偏移一位后求和”和“上次计算得到的和向右偏移一位后求和”两种求和的方法是等效的,设计乘法器时采用后一种方法,其目的是寻求部份积与乘数移位方向的一致性。

例如X的值为1101,Y的数值为1011,求X·Y数值的过程如下:三、定点原码一位乘法器的逻辑结构根据以上算法,设计定点原码一位乘法器的逻辑结构如下图所示:其中n位寄存器S1n称为部分积寄存器,初值为0,计算结束时寄存乘积高位;一位寄存器S0用以寄存乘积符号;n+1位寄存器Y0n称为被乘数寄存器;n位寄存器X1n称为乘数寄存器,初值为乘数,计算结束时寄存乘积低位;一位寄存器X0用以寄存乘数符号。

控制信号Scr用于S1n清零,低电平有效;Scp用于S1n的触发,上升沿有效;S0cp用于S 0的触发,上升沿有效,X0cp用于X0的触发,上升沿有效,并且乘法器运行时,要求先产生X 0cp,然后再产生S0cp,所以这两个信号正好应用一个正脉冲的两个边沿;Xcp用于X1n的触发,上升沿有效;Ycp用于Y0n的触发,上升沿有效;Isc用于控制X1n是选择开关组值作输入还是选择移位的部分积作输入。

定点原码一位除法器的设计

定点原码一位除法器的设计

课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点原码一位除法器的设计(系):业: 级: 号: 名:指导教师:完成日期:第1章总体设计方案1.1设计原理1.2设计环境第2章详细设计方案2.1顶层方案图的设计与实现.......2.1.1创建顶层图形设计文件........2.1.2器件的选择与引脚锁定........2.2功能模块的设计与实现.........2.2.1选择移位模块的设计与实现.2.2.2余数选择器模块的设计与实现2.2.3控制器模块的设计与实现... 2.3仿真调试...................... 第3章编程下载与硬件测试.......... . (4) (4) (4) (6) (6) (9)..10 .11.133.1编程下载..........3.2硬件测试及结果分析参考文献............... 13 13 14第1章总体设计方案1.1 设计原理定点原码一位除法的计算有恢复余数和加减交替两种算法,商的符号为除数与被除数两符号位的异或值,数值则为两数绝对值相除后的结果。

此设计方案仅采用恢复余数法进行设计。

恢复余数定点原码一位除法器实现的功能如表 1.1所示,设计的电路应实现表1.1中给定的功能。

设:X=X0 X1……X nY=Y0 Y1……Y nX0 X1,丫0丫1分别为符号位,K为两符号位的异或值X/Y=K*|X|/|Y||X|/|Y|利用恢复余数法求的,在计算机中,商只能用做减法判结果的符号为正还是为负来确定。

当差为负时,上商为0,同时还应该把除数再加到差上去,恢复余数为原来的正值之后再左移一位。

若减得的差为0或为正值时,就没有恢复余数的操作,上商为1,余数左移一位。

其计算过程如下:例:已知:X=0.0100丫=0.1000求:X/Y表1.1恢复余数定点原码一位除法器功能表恢复余数定点原码一位除法器的整体设计包含两输入寄存器模块,一个加法运算模块,一个余数移位模块,一个商移位模块和一个由触发器和计数器构成的控制模块,移位模块采用Verilog设计输入方式,其余采用原理图设计输入方式。

计算机组成原理课程设计定点原码一名乘法器的设计

计算机组成原理课程设计定点原码一名乘法器的设计

课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点原码一名乘法器的设计院(系):计算机学院专业:班级:4401102学号:208姓名:指导教师:完成日期:目录第1章整体设计方案 (1)设计原理 (1)设计环境 (2)第2章详细设计方案 (3)顶层方案图的设计与实现 (3)创建顶层图形设计文件 (3)器件的选择与引脚锁定 (4)2.2第二层模块的设计与实现 (5)功能模块的设计与实现 (5)2.3.1移位模块的设计与实现 (5)2.3.2 乘数移位模块的设计与实现 (7)2.3.3选择模块的设计与实现 (9)2.3.4 控制模块的设计与实现 (11)2.3.5 其他模块的设计与实现 (13)仿真调试 (13)第3章编程下载与硬件测试 (16)编程下载 (16)3.2硬件测试及结果分析 (16)参考文献 (17)附录(电路原理图) (18)第1章整体设计方案设计原理原码一名乘,两个原码数相乘,其乘积的符号为相乘两数符号的异或值,数值则为两数绝对值之积。

例:X=,Y=,计算乘积X*Y。

*00001100110011000.在计算时,逐次按乘数每1位上的值是1仍是0,决定相加数取被乘数的值仍是取零值,而且相加数逐次向左偏移1位,最后一路求积。

由于在计算机内多个数据一般不能同时相加,一次加法操作只能求出两数之和,因此每求得一个相加数,就与上次部份积相加每次计算时,相加数逐次向左偏移一名,由于最后的乘积位数是乘数(被乘数)的两倍,因此加法器也需增到两倍。

部份积右移时,乘数寄放器同时右移一名,所以用乘数寄放器的最低位来控制相加数取被乘数或零,同时乘数寄放器接收部份积右移出来的一名,完成运算后,部份积寄放器保留乘积的高位部份,乘数寄放器中保留乘积的低位部份。

按照人工算法可以知道,原码一名乘法的整体设计应包括乘数寄放器,被乘数寄放器,移位电路,控制器,部份积五大模块,包括一个输入、输出、控制器模块,并作为顶层设计,以上五大模块作为底层设计,采用硬件器件设计实现。

定点原码一位乘法器的设计 (3)

定点原码一位乘法器的设计 (3)

沈阳航空工业学院课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点原码一位乘法器的设计院(系):计算机学院专业:计算机科学与技术班级:4401102学号:200403011034姓名:蔡丽娇指导教师:刘泽显完成日期:2006年12月31日沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1 设计原理 (1)1.2 设计思路 (1)1.3 设计环境 (2)第二章详细设计方案 (3)2.1顶层方案图的设计与实现 (3)2.1.1创建顶层图形设计文件 (3)2.1.2器件的选择与引脚锁定 (3)2.2 功能模块的设计与实现 (5)2.2.1 8位移位电路 (5)2.2.2 部分积寄存器 (7)2.2.3 乘数寄存器 (7)2.2.4 二路选择器 (8)2.2.5 计数器 (9)2.2.6 结果输出器 (11)2.3 仿真调试 (13)第3章编程下载与硬件测试 (14)3.1 编程下载 (14)3.2 硬件测试及结果分析 (14)参考文献 (15)附录(电路原理图) (16)第1章总体设计方案1.1 设计原理定点原码一位乘法器的设计主要是基于原码一位乘法的计算过成。

设计内容主要是实现输入被乘数和乘数经电路得出结果。

设计思想是:以乘数的最低位作为乘法判断位,若判断位为1,则在前次部分积(初始部分积为0)上加上被乘数,然后连同乘数一起右移一位;若判断位为0,则在前次部分积上加0,然后连同乘数一起右移一位。

重复此判断过程,直到运算n次为止(n为乘数数值部分的长度)。

1.2 设计思路原码一位乘法器主要包括ALU﹑部分积寄存器﹑乘数移位寄存器﹑被乘数寄存器和移位电路五大部分。

这五大部分就作为底层设计,其中乘数移位寄存器需要保留移出的最低位,它的最高位要接收部分积移出的最低位这两部分采用V erilog语言进行设计,顶层的乘法器采用原理图设计输入方式。

原码一位乘的数值运算中不需要考虑符号位的情况,符号位于数值位分开处理。

原码一位乘法课程设计

原码一位乘法课程设计

原码一位乘法课程设计一、课程目标知识目标:1. 让学生掌握原码一位乘法的概念和原理,理解其在计算机运算中的重要性。

2. 使学生能够运用原码一位乘法算法进行二进制数的乘法运算,并正确表示结果。

3. 帮助学生理解原码乘法与补码乘法的区别与联系,提高学生对计算机中数值表示方法的认识。

技能目标:1. 培养学生运用原码一位乘法进行二进制乘法运算的能力,提高学生的计算速度和准确性。

2. 培养学生分析原码一位乘法运算过程中可能出现的问题,并能提出相应的解决方法。

情感态度价值观目标:1. 培养学生对计算机运算原理的兴趣,激发学生主动探索计算机科学知识的欲望。

2. 培养学生团队合作意识,使学生学会在合作中解决问题,共同提高。

3. 培养学生严谨的学术态度,使学生认识到计算机运算中的精确性和逻辑性。

课程性质:本课程属于计算机科学领域,涉及二进制运算和数值表示方法,具有理论性和实践性。

学生特点:学生已具备一定的二进制基础知识,具有一定的逻辑思维能力和动手操作能力。

教学要求:结合学生特点,注重理论与实践相结合,以实例讲解和动手练习为主,提高学生对原码一位乘法的理解和运用能力。

在教学过程中,关注学生个体差异,给予个性化指导,确保学生能够达到预定的学习目标。

通过课程学习,使学生能够将原码一位乘法应用于实际计算问题,提高学生的计算思维和问题解决能力。

二、教学内容1. 引入原码一位乘法概念,回顾二进制数的表示方法及其运算规则。

2. 讲解原码一位乘法的运算原理,以实例展示原码乘法运算过程。

3. 分析原码一位乘法与补码乘法的区别和联系,探讨各自在计算机运算中的应用场景。

4. 制定原码一位乘法运算步骤,引导学生通过练习掌握运算方法。

- 确定乘数和被乘数的原码表示;- 进行二进制乘法运算;- 判断符号位,确定结果符号;- 转换结果为原码表示。

5. 设计实例和练习题,涵盖不同类型的原码一位乘法运算,提高学生的实际操作能力。

6. 教学内容进度安排:- 第一节课:引入概念,讲解原码一位乘法原理,分析运算规则;- 第二节课:对比原码与补码乘法,通过实例讲解和练习加深理解;- 第三节课:总结原码一位乘法的运算步骤,进行实际操作练习;- 第四节课:巩固所学知识,解决实际问题,拓展学生思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k9[11],k9[10],k9[9],k9[8],k9[7],k9[6],k9[5],k9[4],k9[3],k9[2],k9[1],k9[0],k8[0],k7[0],
k6[0],k5[0],k4[0],k3[0],k2[0],k1[0],p0[0]};//分别求得的和的每一位赋给reg_z
end
pp pp12(reg_x,reg_y[12],p12);
pp pp13(reg_x,reg_y[13],p13);
pp pp14(reg_x,reg_y[14],p14);
pp pp15(reg_x,reg_y[15],p15);
//调用全加器与半加器,通过实例化求得和的每一位与每位的进位信号
halfadder ha1(p0[1],p1[0],k1[0],j1[0]);
计算机科学与工程学院
课程设计报告
题目全称:16位定点数原码一位乘法器的设计与实现
课程名称:计算机组成原理
指导老师:谭浩职称:
序号
学生姓名
学号
班号
成绩
1
刘晓窗
6
2
李育桥
5
3
郭建准
4
李浩
5
李志飞
6
7
8
9
10
(注:学生姓名填写按学生对该课程设计的贡献及工作量由高到底排列,分数按排名依次递减。序号排位为“1”的学生成绩最高,排位为“10”的学生成绩最低。)
指导老师评语:
签字:
摘 要
Verilog HDL语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。本实验用Verilog HDL语言设计了全加器实现的组合乘法器,通过功能仿真,验证了结果。
关键词:乘法器,Verilog,组合逻辑,全加器
3.3本章小结5
第四章****的实现7
4.1开发环境介绍7
4.2主要功能模块的实现7
4.3本章小结7
第五章测试及成果展示9
5.1测试环境9
5.2测试用例和结果9
5.3成果展示9
5.4本章小结9
第六章总结与展望11
参考文献12
第一章
1.1
随着计算机科学技术的发展,人们获得信息的途径更加多样,获取信息的速度更加快捷。硬件的发展允许程序员编出很多精彩的使用软件,也使得计算机更加普及。中央处理器CPU的好坏是影响和制约计算机速度和性能的关键因素。而加法器是组成CPU的的重要部件,一般运算速度的快慢就取决与每秒执行加法的次数,加法器是算术逻辑单元中的基本逻辑器件。例如:为了节省资源,减法器和硬件乘法器都可由加法器来构成。
wire[75:0] j1,k1;
wire[50:0] j2,k2;
wire[32:0] j3,k3;
wire[22:0] j4,k4;
wire[15:0] j5,k5;
wire[6:0] j6,k6;
wire[2:0] j7,k7;
wire[8:0] j8,k8;
wire[21:0] j9,k9;
ABSTRACT
Text….
Keywords:
(自动插入目录)
第一章绪论1
1.1选题背景及意义1
1.2国内外研究现状1
1.3主要内容与章节安排1
1.4本章小结1
第二章课程设计的需求分析3
2.1环境需求3
2.2功能需求3
2.3性能需求3
2.3本章小结3
第三章****的设计5
3.1总体设计5
3.2功能模块设计5
1.
1.3
1.4
第二章 课程设计的需求分析
2.1
PC、win7、ise7.1、xc3s100e-4vq100芯片、
2.2
x、y为两个16位定点数,z为32位数,作为输出。实现16位3.2
3.3
第四章
4.1
4.2
module multi16(x,y,clock,z);
fulladder fa5(p0[6],p1[5],p2[4],k1[5],j1[5]);
fulladder fa6(p0[7],p1[6],p2[5],k1[6],j1[6]);
fulladder fa7(p0[8],p1[7],p2[6],k1[7],j1[7]);
pp pp6(reg_x,reg_y[6],p6);
pp pp7(reg_x,reg_y[7],p7);
pp pp8(reg_x,reg_y[8],p8);
pp pp9(reg_x,reg_y[9],p9);
pp pp10(reg_x,reg_y[10],p10);
pp pp11(reg_x,reg_y[11],p11);
//对a的16位与b的每一位相与
pp pp0(reg_x,reg_y[0],p0);
pp pp1(reg_x,reg_y[1],p1);
pp pp2(reg_x,reg_y[2],p2);
pp pp3(reg_x,reg_y[3],p3);
pp pp4(reg_x,reg_y[4],p4);
pp pp5(reg_x,reg_y[5],p5);
assign z=reg_z;//将寄存器z的内容赋给输出和z
always @(posedge clock)//时序逻辑语句块
begin
reg_x <=x ;//将加数x的值存到寄存器reg_x中
reg_y <=y ;//将被加数y的值存到寄存器reg_y中
reg_z<={j9[21],k9[21],k9[20],k9[19],k9[18],k9[17],k9[16],k9[15],k9[14],k9[13],k9[12],
fulladder fa1(p0[2],p1[1],p2[0],k1[1],j1[1]);
fulladder fa2(p0[3],p1[2],p2[1],k1[2],j1[2]);
fulladder fa3(p0[4],p1[3],p2[2],k1[3],j1[3]);
fulladder fa4(p0[5],p1[4],p2[3],k1[4],j1[4]);
input[15:0] x,y;//定义乘数
input clock;//定义时钟clock
output[31:0] z;//定义和的输出z
reg [15:0] reg_x;//定义寄存器x
reg [15:0] reg_y;//定义寄存器y
reg [31:0] reg_z;//定义寄存器z
wire[16:0] p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15;//定义分别用来存储a十六位与b的每一位相与的结果
相关文档
最新文档