高中数学竞赛解题策略-几何分册第32章勃罗卡定理
最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.5图321FOL G NEDCBA6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-.7 22EG GN BG GD R OG ⋅=⋅=-.8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-.11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥.13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥.16同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥.18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠23 90(180)90BCD BCD =︒-︒-∠=∠-︒24 11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,25 即知点M 在OBD △的外接圆上.26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合.35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC36与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 37 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,38 AC 与BD 交于点G ,则G 为OEF △的垂心.39 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,40 22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证.41 下面给出定理及推论的应用实例.42 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,43 Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.44 事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 45 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交46 于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.47图322F48 证明由勃罗卡定理知,OP EF ⊥于点G .49 延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,50 GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.51 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得52 BGP DGP ∠=∠.53故AGB CGD ∠=∠.54 例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上55 一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与56 AB 交于点M .57 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.58图32359 证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交60 于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,61 知OK PQ ⊥.62 由题设,OK MN ⊥,从而知PQ MN ∥. 63 即有AQ APQN PM=.① 64 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 65 有1NB DE AQBD EA QN⋅⋅= 66 及1MC DE APCD EA PM⋅⋅=. 67 由①,②得NB MCBD CD=. 68再应用分比定理,有ND MDBD DC=, 69 从而DMN DCB △∽△.70 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知71 矛盾.故A ,B ,D ,C 四点共圆.72 例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 73 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 74 证:P ,E ,F 三点共线.75 证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定76 理,知OG PQ ⊥.77A图32478 设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、79 Q 、D 、C 四点共圆.80 又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.81 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由82 根心定理,知MQ 、CD 、EF 三条直线共点于P .83故P ,E ,F 三点共线.84 例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 85 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:86 ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .87 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、88 C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.89HB'QCEMNBC 'PA图32590 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,91 知MH AQ ⊥.92 设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密93 克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的94 公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 95 下证点P 在ADE △的外接圆上.96 延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 97 由DBH ECH △∽△, 98 有BD CEBH CH=. 99由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 100 并注意BN CN =,NC BH =, 101 于是由*,有BD BH NC BPCE CH BN CP===, 102 即BD CEBP CP=. 103 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 104 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 105 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 106 下面看定理的演变及应用107 将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有108 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交109 于点F ,AC 与BD 交于点G .则OG EF ⊥.110图326AS DFRCG OM BEN111 证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、112 BD 、MR 、NS 四线共点于G .113 注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅.114同理,22FG FS SG GN =-⋅. 115 由上述两式相减,得116 2222EG FG EM FS MG GR SG GN -=--⋅+⋅.117 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,118 222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.119 于是,2222EG FG EO FO -=-. 120 由定差幂线定理,知OG EF ⊥.121 由此例及勃罗卡定理,则可简捷处理如下问题:122 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四123 边形指既有外接圆,又有内切圆的四边形).124 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点125 G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.126图327ADFCOI G BE127 当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,128 联结EF .129 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 130 故O ,I ,G 三点共线.131将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对132 角线交点在完全四边形另一条对角线上的射影,则有133 例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线134 分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.135图328A DFOEP CB136 事实上,可类似于前面例2的证法即证得结论成立.137 将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有138 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 139 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .140图329AE CNMDBF OH141 求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. 142 证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 143 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠,144即90OBD BDF ∠=︒-∠,故OB DF ⊥. 145 同理,OC DE ⊥.146 (2)要证OH MN ⊥,由定差幂线定理知,只要证明 147 有222MO MH NO NH -=-即可.148 注意到CH MA ⊥,有2222MC MH AC AH -=-,①149 BH NA ⊥,有2222NB NH AB AH -=-.② 150 DA BC ⊥,有2222BD CD BA AC -=-,③ 151 OB DN ⊥,有2222BN BD DN OD -=-,④152 OC DM ⊥,有2222CM CD DM OD -=-.⑤153 由①-②+③+④-⑤得2222NH MH ON OM -=-. 154 即有2222MO MH NO NH -=-. 155 故OH MN ⊥.156 将例9中的外心O 演变为一般的点,则有157 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,158 交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.15911 图3210AE C ND HO Q FB MP160证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 161注意到HN OB ⊥,HM OC ⊥,分别有 1622222OH ON BH BN -=-,2222OH OM CH CM -=-. 163从而得222222OM ON CM BN BH CH -=-+-.① 164由BH AN ⊥,有2222BA BN HA HN -=-, 165CH AM ⊥,有2222CA CM HA HM -=-, 166AH BC ⊥,有2222AB AC HB HC -=-. 167从而得222222HM HN CM BN BH CH -=-+-.② 168由①,②得2222OM ON HM HN -=-.故OH MN ⊥. 169170。
高中数学竞赛解题策略组合分册

高中数学竞赛解题策略组合分册第一章:数学竞赛的意义与挑战1. 数学竞赛不仅仅是一项学科竞赛,更是思维训练的过程。
在参加数学竞赛的过程中,学生不仅仅是在解决问题,更是在培养逻辑思维、数学推理和数学建模的能力。
2. 数学竞赛的题目难度较高,需要学生具备扎实的数学基础、优秀的逻辑思维能力和丰富的解题经验。
参加数学竞赛对学生来说是一项挑战,也是一次提高自身数学能力的机会。
3. 通过参加数学竞赛,学生可以在解题过程中积累经验,提高解题速度和准确度,更好地理解数学知识,并培养良好的数学思维习惯。
第二章:数学竞赛解题的策略与方法1. 熟练掌握数学基础知识是参加数学竞赛的基础。
学生要熟练掌握数学基础知识,包括代数、几何、数论等各个方面的知识点,才能在竞赛题目中灵活运用。
2. 多做历年数学竞赛试题,尤其是一些经典的难题。
通过做历年试题,学生可以了解数学竞赛的出题规律和题型,积累解题经验,发现自身在某些知识点上的不足之处,及时进行补充和强化。
3. 注重解题过程中的思维方法和策略。
在解题过程中,学生要注意用多种方法进行思考和解决问题,可以尝试逆向思维、分析归纳、构造反证等不同的思维方法,找到问题的突破口。
4. 多与同学或老师讨论,参加数学竞赛的学生可以多与同学或老师讨论解题思路,交流解题经验,互相学习、互相提高。
5. 树立信心,面对数学竞赛中的难题,学生要树立信心,保持心态平和,不要惧怕困难,要相信自己的能力,努力克服困难。
第三章:高中数学竞赛解题策略的实例分析通过对一些经典的数学竞赛试题进行分析,我们可以看到一些解题的策略和方法在实际题目中是如何运用的。
1. 策略一:分类讨论法对于一些复杂的题目,可以采用分类讨论的方法进行解题。
对于一个几何问题,可以将几何图形进行分类讨论,找到不同情况下的规律,从而解决问题。
2. 策略二:构造法在数学竞赛中,应用构造法解题是比较常见的策略。
通过构造一些特殊的数据或图形,可以发现问题的规律,从而得到解题的线索。
山西省太原市高中数学竞赛解题策略-几何分册第29章牛顿定理

第29章牛顿定理牛顿定理圆的外切四边形的对角线的交点和以切点为顶点的四边形的对角线的交点重合.此定理即是说,若四边形ABDF 外切于圆.边AB 、BD 、DF 、FA 上的切点分别为P 、Q 、R 、S ,则四条直线AD 、BF 、PR 、QS 交于形内一点.1证法1如图291-,设AD 与PR 交于点M ,AD 与QS 交于点M ',下证M '与M 重合. 由切线的性质,知ASM BQM ''∠=∠,则有 AM S DM Q S AM SM AS SM QM DM S DQ QM '''''⋅⋅=='''⋅⋅△△, 即AM ASDM DQ'='. 同理,AM APDM DR=. 注意到AP AS =,DR DQ =, 则AM AS AM DM DQ DM '=='. 再由合比定理,有AM AM AD AD'=. 于是M '与M 重合,即知AD 、PR 、QS 三线共点.同理,BF 、PR 、QS 三线共点.故AD 、BF 、PR 、QS 四直线共点. 注:此证法由熊斌先生给出. 证法2如图291-,过A 作AX FD ∥交直线PR 于X ,过A 作AY BD ∥交直线QS 于Y ,设AD 与PR 、QS 分别交于点M ,M ',则由MAX △~MDR △,M AY '△~M DQ '△,注意到AX AP =,AY AS =.图291AX YS KPBGDH FM M ′R αβl有MA AX APMD DR DR ==, M A AY AS APM D DQ DQ DR'===', 即MA M AMD M D'='. 从而M '与M 重合.同证法1,即知AD 、BF 、PR 、QS 四直线共点. 注:注:此证法由尚强先生给出. 证法3如图292-,过F 作BD 的平行线,交QS 于Z ,则F Z S D Q S F S Q F S Z ∠=∠=∠=∠,从而FZ FS =.1沈文选.牛顿定理的证明、应用及其他[]J .中学教研(数学),2010(4):26-29.同理,过F 作AB 的平行线交直线PR 于W ,有FW FR =.图292M2M1ZSBDQR WF PA而FR FS =,所以FZ FW =.①设QS 与BF 交于点1M ,PR 与BF 交于点2M , 则11FM FZ M B BQ =,22FM FWM B BP=.② 注意到BQ BP =,由①,②得1212FM FM M B M B=,由合比定理有12FM FM =,即知1M 与2M 重合,从而知BF ,QS ,PR 三线共点.同理AD ,QS ,PR 三线共点.故AD ,BF ,PR ,QS 交于形内一点.证法4如图291-,设AD 与PR 交于点M ,在射线PB 上取点K ,使PMK DMR ∠=∠,而 MPK MRD ∠=∠,从而MPK △∽MRD △, 即有MK MDKP DR=.③ 由AMP DMR PMK ∠=∠=∠及角平分线性质, 有MK MAKP AP=.④ 由③、④有MA APMD DR=.⑤ 同理,若AD 与QS 交于点M ', 有M A AS M D DQ '='.⑥ 由⑤、⑥即有MA AP AS M A MD DR DQ M D'==='. 以下同证法1.证法5如图291-,设PR 与QS 交于点M ,连MA 、MB 、MD 、MF .设P M S Q M R α∠=∠=,AMS β∠=,DMQ γ∠=,则AMP αβ∠=-, DMR a γ∠=-. 在AMS △中应用正弦定理,有sin sin AS AM ASM β=∠, 即sin sin ASASQ AMβ=∠. 同理,在APM △中,有()sin sin APAPRAMαβ-=∠.于是()sin sin sin sin ASQ APRαββ-=∠∠.⑦ 同理,在DMR △、DMQ △中, 亦有()sin sin sin sin DQS DRPαβγ-=∠∠.⑧注意到弦切角性质,有180ASQ DQS ∠+∠=︒,有sin sin ASQ DQS ∠=∠. 同理,sin sin APR DRP ∠=∠. 由⑦、⑧得()()sin sin sin sin αββγαγ-=-, 展开化简得()sin sin 0αβγ⋅-=.而sin 0α≠,()π,πβγ-∈-,从而()sin 0βγ-=,有βγ=,即A 、M 、D 共线. 同理,B 、M 、F 共线,故AD 、BF 、PR 、QS 四直线共点. 注:如图29-1,同证法1所设,对SMF △、BMQ △分别应用正弦定理有FM SFBM BQ=. 对RM F '△、PM B '△分别应用正弦定理,有FM RFBM BP'='. 注意SF RF =,BQ BP =可证得M '与M 重合,也可证得结论成立. 证法6如图291-,从点B 引AF 的平行线与SQ 的延长线交于点G ,则S G B Q S F ∠=∠,而D Q S Q S F ∠=∠,从而BGO BQG ∠=∠,于是BG BQ BP ==.同理,从点F 引AB 的平行线与PR 的延长线交于点H ,则FH FS =.所以,BGP △和FSH △均为等腰三角形,注意到BG SF ∥,FH PB ∥,有PBG HFS ∠=∠,从而PBG HFS△∽△.于是,推知BF 经过PR 与QS 的交点M . 同理,AD 经过PR 与QS 的交点M .故AD 、BF 、PR 、QS 四直线共点. 证法7设BF 交内切圆于u ,v ,联结有关线段如图2. 由BUP BPV △∽△,BUQ BQV △∽△,有UP BPPV BV =,UQ BQ QV BV =. 而BP BQ =,则UP UQ PV QV =,从而UP PVUQ QV=.⑨ 同理SV SURV RU=.⑩ 由⑨⨯⑩得SV PU SU PVRV QU RU QV⋅⋅=⋅⋅. 在圆内接四边形PUVS ,QUVR 中,分别应用托勒密定理,有 SU PV VS PU SP UV ⋅=⋅+⋅,RU QV UQ RV QR UV ⋅=⋅+⋅. 于是SV PU VS PU SP UVRV QU UQ RV QR UV⋅⋅+⋅=⋅⋅+⋅, 由此化简得SV PU QR SP UQ RV ⋅⋅=⋅⋅, 即1VS PU QR SP UQ RV⋅⋅=. 从而由塞瓦定理的角元形式的推论,知BF ,QS ,PR 三线共点.同理AD ,QS ,PR 三线共点,故AD ,BF ,RP ,QS 交于形内一点,在此,看几道应用的例子. 例l (2008年国家队选拔考试题)在ABC △中,AB AC >,它的内切圆切边BC 于点E ,连接AE ,交内切圆于点D (不同于点E ),在线段AE 上取异于点E 的一点F ,使C E C F =,延长CF 交BD 于点G .求证:CF FG =.证明如图293-,过点D 作内切圆的切线MNK ,分别交AB 、AC 、BC 于M 、N 、K ,由KDE AFK EFC∠=∠=∠,知MK CG ∥,即DF KCDE KE=. 图293AMNKBECDGF P由牛顿定理知,BN 、CM 与DE 三线共点于P . 对BCA △及点P 应用塞瓦定理有1BE CN AMEC NA MB⋅⋅=.⑦ 对BCA △及截线MNK 应用梅涅劳斯定理,有 1BK CN AMKC NA MB⋅⋅=.⑧ 由⑦÷⑧得BE KC EC BK ⋅=⋅,亦即2B E KCE C B K B E K ⋅=⋅+⋅()EC BC CK BE KC =++⋅()EC B C=⋅+()BC E CCKBCEK=⋅+=⋅.对ECF △及截线BGD 应用梅涅劳斯定理并注意上式及DF KCDE KE=, 有12EB CG FD BE KC CG CGBC GF DE BC KE GF GF =⋅⋅=⋅⋅=, 所以CF GF =.例2凸四边形ABDF 有内切圆O .求证:OAB △、OBD △、ODF △、OFA △的垂心共线.证明如图294-,设OAB △、OBD △、ODF △、OFA △的垂心依次为1H 、2H 、3H 、4H ,点P 、Q 分别为AB 、BD 边上的切点,又设12H H 交AD 于K .图294H 1QO KPFDH 2BA由1AH BO ⊥,2DH BO ⊥,有22AH DH ∥. 从而12AH AKDH KD=连1PH ,2QH ,则知O 在1PH 上,也在2QH 上.由12H AP BOP BOQ H DQ ∠=∠=∠=∠,知12Rt Rt AH P DH Q △∽△, 则有12AH APDH DQ=. 从而AK APKD DQ=. 由于P 、Q 为定点,则知K 为AD 上的定点,同理,K 为BF 上的定点.由牛顿定理知,AD 与BF 的交点是AD 与BF 上的定点,即K 为AD 与BF 的交点. 同理,23H H 、34H H 均过点K .故四个垂心1H 、2H 、3H 、4H 共线.例3设凸四边形ABDF 有内切圆O ,且AB 与FD 的延长线交于点C ,AF 与BD 的延长线交于点E .P 、Q 、R 、S 分别为边AB 、BD 、DF 、FA 上的切点,且直线SP 与直线RQ 交于点T ,直线PQ 与直线SR 交于点W .求证:T 、C 、W 、F 四点共线.证明如图295-,由牛顿定理知,AD 、BF 、PR 、QS 四直线共点,设该点为G .图295FTSWR G K O P EH D CB A首先证OG CE ⊥.设O 的半径为r ,连OC 交PR 于H ,则OC 垂直平分PR ,则22222CR RH CH CG HG -==-,即 2222CR CG RH HG -=-()()RH HG RH HG PG GR =+⋅-=⋅.而222CR CO r =-,代入上式得222CO CG r PG GR -=+⋅.同理,可得222EO EG r OG GS -=+⋅.由相交弦定理,知PG GR QG GS ⋅=⋅,则2222CO CG EO EG -=-,故OG CE ⊥. 其次证OG TW ⊥.如图294-,在射线TG 上取一点K ,使得K 、R 、Q 、G 四点共圆,则由圆幂定理有 22TG TK TQ TR TO r ⋅=⋅=-.⑨由TPG TQG GKR ∠=∠=∠有TPG RKG △∽△,亦有 22TG GK PG GR r OG ⋅=⋅=-.⑩由⑨-⑩得()()222222222TG TG TK TG GK TO r r OG TO OG r =⋅-⋅=---=+-. 即22222TO TG r OG -=-. 同理22222WO WG r OG -=-.则2222TO TG WO WG -=-,故OG TW ⊥. 再证T 、C 、W 三点共线.如图296-,联结TC 、CW ,作PTC △的外接圆交TR 于L ,连PL 、LC ,则由图296SARWCOPTDQPRS APS TPC TLC ∠=∠=∠=∠,知WRP CLR ∠=∠. 又WPR CRL ∠=∠,则WPR CRL △∽△,即有WP CR CP PR RL RL==, 亦即WP PRCR RL=. 而WPC PRL ∠=∠,则WPC RPL △∽△,即有WCR PLR ∠=∠.注意到PCT PLT ∠=∠,且180PLR PLT ∠+∠=︒,故180WCP PCT ∠+∠=︒. 亦即T 、C 、W 三点共线.综上,便知T 、C 、W 、E 四点共线.下面,讨论牛顿定理中的四边形变型及切点连线的交点在形外的问题. 圆的外切四边形可以是凸四边形,也可以是凹四边形和折四边形.定理1若凹四边形ACDE 外切于圆,边AC 、DE 、CD 、EA 所在直线上的切点分别为P 、Q 、R 、S ,则四条直线AD 、CE 、PQ 、SR 交于一点.证明如图297-,设直线DE 交AC 于B 直线CD 交AE 于F ,直线PQ 交CE 于M ,直线SR 交CE 于M ',下证M '与M 重合.图297A SF D EM P BR QM ′对CEB △及截线PQM ,对CEF △及截线SRM '分别应用梅涅劳斯定理, 有1CM EQ BP ME QB PC⋅⋅=, 1CM ES FRM E SF RC'⋅⋅='. 注意到BP BQ =,FS FR =,CP CR =,EQ ES =, 有CM PC RC CM ME EQ ES M E'==='. 再由合比定理,即知M '与M 重合,从而直线PQ 、SR 与CE 交于一点.同理,对ABD △及截线PQ 、对A D F △及截线SR 应用梅涅劳斯定理,可证得直线PQ 、SR 与AD 交于一点.故四条直线AD 、CE 、PQ 、SR 交于一点.定理2若折四边形BCFE 外切于圆(或折四边形BCFE 有旁切圆),边BC 、CF 、FE 、EB 所在直线上的切点分别为P 、R 、S 、Q ,则四条直线BF 、CE 、PS 、QR 或者相互平行或者共点.证明(i )若对角线BF 与CE 平行,且BC FE ∥时,折四边形BCFE 外切于圆时,则四边形BCEF 必为矩形,此时四条直线BF 、CE 、PS 、QR 相互平行.(ii )若对角线BF 与CE 平行,且直线BC 与FE 交于点A 时,如图298- (1),则由圆的外切四边形对边的和相等推知BCEF 为等腰梯形,ABF △和DBF △均为等腰三角形,此时,四条直线BF 、CE 、PS 、QR 相互平行.图298SF A(1)(2)(3)AS FEQDRBP CAS F EMCB PQD RMQF BC P MDR M ′(iii )若对角线BF 与CE 不平行,如图298- (2)、(3),且直线CB 、EF 交于点A 时,设BE 与CF 交于点D ,直线BF 与直线QR 交于点M ,直线BF 与直线PS 交于点M '. 对BDF △与截线QRM ,对ABF △及截线PSM '分别应用梅涅劳斯定理 有1BQ DR FM QD RF MB ⋅⋅=,1AP BM FS PB M F SA'⋅⋅='. 注意到DQ DR =,AP AS =,BQ BP =,FR FS =, 有FM RF FS FM MB BQ PB M B'==='.再由合比定理,即知M '与M 重合,从而直线PS 、QR 与BF 交于一点.同理,对CED △及截线QR 、对ACE △及截线PS 分别应用梅涅劳斯定理,可证得直线PS 、QR 与CE 交于一点.故四条直线BF 、CE 、PS 、QR 相交于一点.(iv )若对角线BF 与CE 不平行,且直线CB EF ∥时,如图299-,设直线BF 与直线PS 交于点M ,下面证Q 、R 、M 三点共线. 电BC FB ∥,有FM FS FRMB BP BQ==, 即有1FM BQ FM BQ DRMB RF MB QD RF=⋅=⋅⋅. 对BDF △应用梅涅劳斯定理的逆定理,知Q 、R 、M 三点共线.即直线PS 、QR 与BF 交于一点. 同理,直线PS 、QR 与CE 交于一点,故四条直线BF 、CE 、PS 、QR 交于一点.图299MES FR DQCB P例4已知一圆切ABC △的CA 、AB 分别于Y ,Z ,自B 、C 另作这圆的切线相交于点X .求证:AX 、BY 、CZ 三线共线或互相平行.证明如图2910-,自B 、C 作圆的切线的切点分别为G 、H ,且分别交AC 、AB 于E 、F . 因折四边形ECFB 有旁切圆,由定理2,知直线ZY 、GH 、BC 、FE 共点于S .在AYZ △、XBC △中,其对应边的交点E 、F 、S 共线,由戴沙格定理的逆定理知,其对应顶点的连线AX 、BY 、CZ 或共点或相互平行.图2910HRX G FYCBS例5圆上四点两两相连组成一个完全四边形(四条直线两两相交且不共点,相交于六点所得图形),又过每点作圆的切线交成一个完全四边形,则这两形必有共同的对角三角形(或极点三角形). 证明参见图295-,在完全四边形SPTQWR 中,设G 为对角线SQ 与PR 的交点,则 GTW △为其对角三角形(或极点三角形). 在完全四边形ABCDEF 中.(i )凸四边形ABDF 有内切圆,由牛顿定理,知AD 、BF 、PR 、QS 共点于G ; (ii )折四边形BCFE 有旁切圆,由定理2,知BF 、CE 、PS 、QR 四直线共点于T ; (Ⅲ)凹四边形ACDE 有内切圆,由定理l ,知直线AD 、CE 、PQ 、SR 共点于W .由(i )、(iii )知A 、G 、D 、W 四点共线;由(i )、(ii )知F 、G 、B 、T 四点共线;由(ii )、(iii )知T 、C 、W 、E 四点共线.所以,G 、T 、W 是三条对角线AD 、BF 、CE 两两的交点,故GTW △为完全四边形ABCDEF 的对角三角形.注:由例5中的证明给出了例3的另一简证,由例5,我们也可推得:完全四边形中的凸四边形有内切圆时,其三条对角线中的两条与四切点每两切点所在直线中的两条,组成3组每组四条直线或相互平行或共点于完全四边形对角线直线的交点.练习题二十九1.(2009年土耳其国家队选拔考试题)以O为圆心,r为半径的圆为四边形ABCD的内切圆.设P、Q分别为AB与CD.AD与BC的交点,E为对角线AC与BD的交点,证明:2⋅=,其中d为点O到直线PQ的距离.OE d r2.(布利安香定理)圆外切六边形的三组对顶点的连线交于一点.。
高中数学竞赛解题策略几何分册勃罗卡定理

高中数学竞赛解题策略几何分册勃罗卡定理 This model paper was revised by LINDA on December 15, 2012.第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥.同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥.于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点.事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠.故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥.由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD=. 再应用分比定理,有ND MD BD DC =, 从而DMN DCB △∽△.于是,DMN DCB⊥,得到K为BC的中点,这与已知矛∠=∠.即有BC MN∥,从而OK BC盾.故A,B,D,C四点共圆.例4(1997年CMO试题)设四边形ABCD内接于圆,边AB与DC的延长线交于点P,AD 与BC的延长线交于点Q.由点Q作该圆的两条切线QE,QF,切点分别为E,F.求证:P,E,F三点共线.证明如图324-,设ABCD的圆心为O,AC与BD交于点G,联结PQ,则由勃罗卡定理,知OG PQ⊥.设直线OG交PQ于点M,则由推论1,知M为完全四边形ABPCQD的密克尔点,即知M、Q、D、C四点共圆.又O、E、Q、F四点共圆,且OQ为其直径,注意到OM MQ⊥,知点M也在OEQF 上.此时,MQ,CD,EF分别为MQDC,OEMQF,ABCD两两相交的三条公共弦.由根心定理,知MQ、CD、EF三条直线共点于P.故P,E,F三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC△的垂心,M△中,AB AC≠,H为ABC为BC的中点,D、E分别为AB,AC上的点,且AD AE=,D、H、E三点共线.求证:ABC△的外接圆与ADE△的外接圆的公共弦垂直于HM.证明如图325-,分别延长BH,CH交AC、AB于点B'、C',则知A、C'、H、B'及''的直径,点M为BCB C''的圆心.B、C、B'、C'分别四点共圆,且AH为AC HB设直线BC与直线C B''交于点Q,联结AQ,则在完全四边形BCQB AC''中,由勃罗卡定理,知MH AQ⊥.设直线MH交AQ于点P,则由推论1,2知HP AQ''的密克⊥,且P为完全四边形BCQB AC尔点,由此,即知P为ABC与AC HB''的公''的另一个交点,亦即AP为ABC与AC HB共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥.下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠.于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM .下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO、EO、FO、SO,设O的半径为r,则由勾股定理,有222=-,FM OE r 222FS OF r=-.又显然,有MG GR SG GN⋅=⋅.于是,2222-=-.EG FG EO FO由定差幂线定理,知OG EF⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O,I分别为四边形ABCD的外接圆、内切圆圆心,AC与BD交于点G.当ABCD为梯形时,结论显然成立,O,I,G共线于上、下底中点的联线.当ABCD不为梯形时,可设直线AD与直线DC交于点E,直线BC与直线AD交于点F,联结EF.由勃罗卡定理,知OG EF⊥;由例6的结论,知IG EF⊥.故O,I,G三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD的两组对边所在直线分别交于E,F两点,两对角线的交点为P,过P作PO EF⊥于点O.求证:∠=∠.BOC AOD事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329△中,O为外心,三条高AD、BE、-,ABCCF交于点H,直线ED和AB交于点M,FD和AC交于点N.求证:(1)OB DF⊥.⊥;(2)OH MN⊥,OC DE证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤ 由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-.故OH MN ⊥.将例9中的外心O 演变为一般的点,则有 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-,AH BC ⊥,有2222AB AC HB HC -=-. 从而得222222HM HN CM BN BH CH -=-+-.② 由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。
高中数学联赛中常见的几何定理

高中数学联赛中常见的几何定理第一篇:高中数学联赛中常见的几何定理梅涅劳斯定理:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:过点A作AG‖BC交DF的延长线于GAF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
塞瓦定理:在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]= 1,所以三条高CD、AE、BF交于一点。
山西省太原市高中数学竞赛解题策略-几何分册第28章戴沙格定理

第28章戴沙格定理戴沙格定理已知两个三角形的三双对应顶点的连线交于一点,若它们的三双对应边分别相交,则这三个交点在一条直线上.其逆命题亦成立.证明先证原命题:设PQR △和P Q R '''△的三双顶点的连线PP '、QQ '、RR '交于点O ,它们的三双对应边的交点分别是D 、E 、F .分别对OQR △及截线DR Q ''、ORP △及截线EP R ''、OPQ △及截线FQ P ''应用梅涅劳斯定理 有1QD RR OQ DR R O Q Q''⋅⋅='', 1RE PP OR EP P O R R ''⋅⋅='', 1PE QQ OP FQ Q O P P''⋅⋅=''. 将上述三式相乘, 得1QD RE PE DR EP FQ⋅⋅=. 对QRP △逆用梅理劳斯定理,即知D 、E 、F 三点共线. 再证逆命题:设PQR △与P Q R '''△的三双对应边的交点分别是D 、E 、F ,两双对应顶点的连线PP '与RR '交于点O ,要证第三双顶点对应连线QQ '也通过点O ,即O 、Q 、Q '三点在一条直线上.事实上,FPP '△与DRR '△的三双对顶点连线FD 、PR 、R P ''交于点E ,利用已证得的原命题可以得到:这两个三角形三双对应边交点的连线中,PP '与RR '的交点O 、FP 与DR 的交点Q 、FD '与DR '的交点Q '是在同一条直线上.这就是所要证的.在这里,若两双对应顶点的连线PP '与RR '平行,则可证得直线OQ '也与PP '平行,否则若有直线PP '与QQ '交于一点O ',则由上述逆命题中同样的理由,得直线RR '也过点O ',与PP '与RR '平行矛盾. 于是,我们便有如下结论:戴沙格定理的逆定理若两三角形的对应边(所在直线)交点共线,则对应顶点的连线交于一点或互相平行. 观看图281-中的两个三角形PQR △、P Q R '''△,我们可以用透视的观点看待它.P'Q 'R'RDPOQ E 图28-1一般地,有如下的定义:1定义平面上两个图形称为互相透视的,如果(i )联结对应点的直线交于一点,称为透视中心.(ii )对应线的交点在一条直线上,称为透视轴.如上定义的一种特殊情形,即为对应边互相平行的相似形,这时透视轴是无穷远直线,透视中心是位似中心,更一般的透视图形的存在性,由戴沙格定理建立. 戴沙格定理设两个三角形有透视中心,则它们有透视轴.1单墫译.[美]R A ⋅⋅约翰逊,近代欧氏几何[]M .上海:上海教育出版社.2000:202.反过来,设两个三角形有透视轴,则它们有透视中点. 对于三个三角形,我们有如下的结论:定理1设三个三角形有公共的透视中心,则它们的三条透视轴共点.事实上,设三个三角形123A A A △、123B B B △、123C C C △,则111A B C 、222A B C 、333A B C 为共点的直线.我们将三角形的边用与所对顶点相同的小写字母表示,考虑边为2a 、2b 、2c 与3a 、3b 、3c 的三角形,它们的对应边相交于共线点1A 、1B 、1C ,所以对应顶点的连线共点.但联结2a 、2b 的交点与3a 、3b 的交点的直线,是123A A A △与123B B B △的透视轴,等等.所以这三条轴共点.定理2设三个三角形两两互为透视,并且有一条公共的透视轴,则它们的透视中心共线. 这个定理及各种逆定理的证明较易,留给读者. 对于完全四边形,我们也有如下的结论:定理3边是一个完全四边形的边的每一个三角形,与这个完全四边形的对角三角形成透视. 事实上,这两个三角形以完全四边形的第四条边为透视轴.更一般地,设一个完全四边形的两条对角线的交点与剩下的两个顶点相连,则这样的六条连线中,三条交于一点,产生四个新点,因而形成一个完全四角形(即包括四条边,两条对角线的图形).于是,每个完全四边形必有一个相伴的完全四角形,具有同样的对角三角形;反过来也成立.过这完全四边形的每个顶点,有完全四角形的一条边,这完全四角形的每一个三角形,与完全四边形的一个三角形及对角三角形成透视,公共的透视中心是完全四角形的第四个顶点,透视轴是完全四边形的第四条边. 下面,看看戴沙格定理的一些应用.例1(1999年高中联赛题)如图282-,在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点E ,BE 与AC 交于点F ,延长DF 交BC 于G .求证:GAC EAC ∠=∠.图28-2PASDQ BMK TN HFE GC证明当AB AD =时,四边形ABCD 是筝形,结论成立.当AB AD ≠时,过A 作AC 的垂线与CB 、CD 的延长线分别交于点M 、N . 由BAC DAC ∠=∠,可证BN 、DM 的交点H 在AC 上.注 在BNE △与DMG △中,因BN 与DM 的交点为H ,BE 与DG 的交点为F ,NE 与MG 的交点为C ,且C 、F 、H 共线,则由戴沙格定理的逆定理知BD 、MN 、EG 三线共点.设该点为P .设EG 与FC 交于点Q ,在完全四边形CEDFBG 中,P 、Q 调和分割EG .从而AP 、AQ 、AE 、AG 为调和线束,而AP AQ ⊥.故AQ 平分EAG ∠.于是GAC EAC ∠=∠.注:设BN 与AC 交于点H ,只要证D 、H 、M 三点共线即可.连DH ,AM ,作BT AM ⊥于M 交HM 于K ,作DS AN ⊥于S ,交NH 于L . 由AC MN ⊥及AC 平分BAD ∠,易知ASD ATB △∽△, 有DS SABT TA=.①又由DS CA BT ∥∥, 有DL CH BHDS CA BT ==.② 中LH SABH TA=.③ 由①、②、③可得DL LHBK BH=, 而HLD HBK ∠=∠,则HLD HBK △∽△.从而LHD BHK ∠=∠.故D 、H 、K 共线,即D 、H 、M 共线.例2(布利安香定理)六点连线所组成的平面封闭图形中,若六条边与一个圆内切,则它的三条对角线共点或彼此平行.证明如图283-,设A 、B 、C 、D 、E 、F 是六边形在圆上的切点,由牛顿定理知.过切点A 、B 、C 、F 的四边形有AD 、CF 、A D ''共点于X ;过切点B 、E 、C 、F 的四边形有BE 、CF 、C F ''共点于Y ;过切点B ,E 、A 、D 的四边形有BE 、AD 、B E ''共点于Z ;过切点A 、E 、D 、F 的四边形有AE 、DF 、A E ''共点于R . RY XZ E QP'E'Q 'D 'C 'C B'BA'A P图28-3又折四边形A Q E P ''''有旁切圆,由牛顿定理的推广(见第29章定理2)有EF 、AD 、A E ''、P Q ''共点于P .所以XYZ △和A F E '''△对应边的交点F 、E 、P 共线,由戴沙格定理的逆定理,知其对应顶点的连线XA 、YF 、ZE 三点共点或相互平行,即A D ''、B E ''、C F ''共点或相互平行. 例3(2008年印度国家队选拔考试题)设ABC △是非等腰三角形,其内切圆为Γ,圆Γ与三边BC 、CA 、AB 分别切于点D 、E 、F .若FD 、DE 、EF 分别与CA 、AB 、BC 交于点U 、V 、W ,DW 、EV 、FV 的中点分别为L 、M 、N .证明:L 、M 、N 三点共线. 证明如图284-,设DF 、FE 、ED 的中点分别为P 、Q 、R ,则P Q D E ∥,且直线PQ 过点N ;RQ DF ∥.且直线RQ 过点M ;PR EF ∥,且直线PR 过点L . 因AE AF =,则知AQ 平分CAB ∠.同理,BP 、CR 分别平分ABC ∠、BCA ∠,且AQ 、BP 、CR 交于ABC△的内心.在ABC △和QPR △中应用戴沙格定理得,其对应边PR 与BC 、RQ 与CA 、QP 与AB 的交点L 、M 、N 三点共线.F PQΓM N A ECLD JW图28-4例4(2003年保加利亚数学奥林匹克题)设H 是锐角ABC △的高线CP 上的任一点,直线AH 、BH 分别交BC 、AC 于点M 、N .(1)证明: NPC MPC ∠=∠;(2)设O 是MN 与CP 的交点,一条通过O 的任意的直线交四边形CNHM 的边于D 、E 两点.证明:EPC DPC ∠=∠. 证明(1)略.(2)延长PE 交AC 于S ,设PD 交AM 于T .在SEN △和TDM △中,SE 与TD 的交点P ,EN 与DM 的交点B ,SN 与TM 的交点A 共线,故由戴沙格定理的逆定理,知ST 、ED 、MN 三线共点于O .在SEN △与DTM △中,SE 与DT 的交点P ,EN 与TM 的交点H ,SN 与DM 的交点C 共线,故由戴沙格定理的逆定理,知SD 、ET 、MN 三线共点于K .在SMT △与DNE △中,因为SD 、ET 、MN 共点于K ,别由戴沙格定理知,ST 与DE 的交点O 、MT 与NE 的交点H 、SM 与DN 的交点共线,即SM 与DN 的交点I 在CP 上.在ASM △与BDN △中,AS 与BD 的交点C ,AM 与BN 的交点H 、SM 与DN 的交点I 共线于CP ,则由戴沙格定理的逆定理知SD 、MN 、AB 三线共点于K .设SD 与CO 交于点R ,则在完全四边形CSNIMD 中,SD 与R 、K 调和分割,从而PS 、PD 、PR 、PK 为调和线束,而PR PK ⊥,故PR 平分SPD ∠,即EPC DPC ∠=∠.例5已知ABC △,一圆切CA 、AB 于Y ,Z ,自B 、C 另作这圆的切线设交于X .求证:AX 、BY 、CZ 三线共点或互相平行.BAHR F ZYECS图28-5证明如图,自B 、C 作O 的切线切点分别为G 、H ,且分别交AC 、AB 于E 、F .因为折四边形ECFB 有旁切圆,由牛顿定理的推广,知直线ZY 、GH 、BC 、FE 共点于S .在AYZ △、XBC △中,其对应边的交点E 、F 、S 共线,由戴沙格定理的逆定理知,其对应顶点的连线AX 、BY 、CZ 或共点或平行.例6设I 是ABC △的内切圆或旁切圆,它切BC 、CA 、AB 于D 、E 、F .任取一点P ,联结DP 、EP 、FP ,使交I 于X 、Y 、Z .则AX 、BY 、CZ 三线共点或互相平行.YE P ZCDBX EA X 1Y 1图28-6证明设直线YZ 交BC 于1X ,直线下XZ 交直线AC 于1Y ,直线XY 交直线AB 于1Z . 由11X DY X ZD △∽△,有 1111X Y X D DYX D X Z DZ==, 亦即有221111222111X Y X Y X Z X D DY X Z X Z X Z DZ ⋅===. 同理,2121Y Z ZE Y X XE =,2121Z X XF Z Y YF =. 注意到圆内接六边形YDZEXF 的三条对角线XD 、YE 、ZF 共点于P ,应用塞瓦定理的推论, 知1YD ZE XF DZ EX FY⋅⋅=. 于是111111YX ZY XZ X Z Y X Z Y ⋅⋅21YD ZE XF DZ FX FY ⎛⎫=⋅⋅= ⎪⎝⎭.对YZX △应用梅涅劳斯定理的逆定理,知1X ,1Y ,1Z 三点共线.考虑ABC △与XYZ △,由于对应边所在直线的交点1X ,1Y ,1Z 共线,则应用戴沙格定理的逆定理,知对应顶点的联线共点或互相平行,故直线AX 、BY 、CZ 共点或互相平行. 例7将圆上四点两两连成四个三角形,而这圆上任两点对于该四个三角形中每形的两条西姆松线分别交于一点,则这样的四个交点共线.证明如图287-,1234PP P P 为圆内接四边形,M 、N 为圆上另两点,点M 对432P P P △的西姆松线记为1m ,余类推;点N 对432P P P △的西姆松线记为1n ,余类推.1c 、2c 、3c 、4c 、1D 、2D 分别为直线3m 与4m 、1m 与4m 、1m 与2m 、2m 与3m 、2m 与4m 、1m 与3m 在直线12P P 、23P P 、34P P 、41P P 、13PP 、24P P 上的交点;1A 、2A 、3A 、4A 、1B 、2B 分别为直线3n 与4n 、1n 与4n 、1n 与2n 、2n 与3n 、2n 与4n 、1n 与3n 在直线12P P 、23P P 、34P P 、41P P 、13PP 、24P P 上的交点,Q 为1m 与1n 的交点,余类推.图28-7NB 1P 3A 2A 3Q 3Q 4P 2M D 2D 4B 2Q2Q 1C 4P 4n 1n 2n 3n 4A 4D 1A 1m 4m 3m 2m 1由于直线44C A 、22D B 、33C A 共点于4P ,即423C D C △与423A B A △对应顶点的联线共点,则由戴沙格定理,知这两个三角形对应边所在直线的交点1Q 、2Q 、3Q 共线. 同理,2Q 、3Q 、4Q 共线.故1Q 、2Q 、3Q 、4Q 共线.例8设点P 在ABC △三边BC 、CA 、AB 上的射影分别为X 、Y 、Z .在射线PX 上取一点X ',过X '、X 、Y 的圆交射线PY 于Y ',过X '、X 、Z 的圆交射线PZ 于Z ',则AX '、BY '、CZ '三线共点或互相平行.证明如图288-,设直线X Y ''与AB 交于点R ,直线X Z ''与AC 交于点S ,直线Z Y ''与BC 交于点T . 由题设,有PX PX PY PY PZ PZ '''⋅=⋅=⋅.①图28-8X PLL'STP X'CBA 321记1Z PY ''∠=∠,2XPY '∠=∠,3Z PX '∠=∠. 注意到线段的比等于其在一直线上的射影比,有 cos 3cos 2Z Y PX PZ TY PX PY ''-⋅∠=''-⋅∠cos 3cos 2PX PX PZ PX PX PX PY PX '''⋅-⋅⋅∠='''⋅-⋅⋅∠② 同理cos 1cos 3Y R PZ PZ PZ PY RX PZ PZ PZ PX ''''⋅-⋅⋅∠=''''⋅-⋅⋅∠,③ cos 2cos 1X S PY PY PY PX SZ PY PY PY PZ ''''⋅-⋅⋅∠=''''⋅-⋅⋅∠.① 注意到①、②、③、④,有 1Z T Y R X STY RX SZ '''⋅⋅='''.对Z Y X '''△应用梅涅劳斯定理的逆定理,知R 、S 、T 三点共线. 考虑ABC △与X Y Z '''△,由于其对应边所在直线的交点S 、T 、R 共线.则应用戴沙格定理的逆定理,知对应顶点的联线共点或互相平行.故直线AX '、BY '、CZ '三线共点或互相平行.例9已知ABC △,一圆过B ,C 分别交边AB 、AC 于点C '、B ',设H ,H '分别为ABC △,AB C ''△的垂心,求证:BB '.CC ', HH '三线共点.证明如图299-,设ABC △的高为BE ,CF ,AB C ''△的高为B E '',C F ''.又设B C ''与BC 交于点G ,H B ''与HB 交于点上I ,H C ''与HC 交于点J .图289A BCGJF HE′H ′F′B′P I由戴沙格定理,要证HBC △与H B C '''△的对应顶点的联线BB ',CC ',HH '共点,只需证对应边所在直线的交点I ,J ,G 共线.因为B ,C ,B ',下B '共圆,所以GC GB GB GC ''⋅=⋅,() *易知B ,C ,E .F 及B ',C ',E ',F '分别四点共圆.()*式表明G 对这两个圆的幂相等,从而知G 在这两个圆的根轴上.由9090180BEB B E B '''∠+∠=︒+︒=︒,知B ,E ,B ',E '四点共圆,即有IE IB IB IE ''⋅=⋅.此式表明点I 也在上述两个圆的根轴l 上.同理,点J 也在上述两个圆的根轴l 上,因此I ,J ,G 共线.故BB ',CC ',HH '共点. 练习题二十八1.已知AD 、BE 、CF 为ABC △的三条高,BC 与EF 交于点Q 、AC 与DF 交于点k ,AB 与DE 交于点P .则P 、Q 、R 共线.2.ABC △内切圆切三边BC 、CA 、AB 于D 、E 、F ,且BC 交EF 于P ,CA 交DF 于Q ,AB 交DE 于R ,则P ,Q ,R 共线.3.将一点与正三角形的顶点相连,则三联结线的中垂线分别与对边(所在直线)的交点共线.4.将一点P 与正三角形ABC △的顶点相连,则PBC △、PCA △、PAB △的欧拉线共点或互相平行. 5.ABC △的内切圆分别切BC 、CA 、AB 边于点D 、E 、F .连AD 交内切圆于点K ,过K 作内切圆的切线分别与直线DF 、DE 交于点G ,H .求证:直线AD 、BH 、CG 共点.。
高中竞赛数学几何定理

关于圆圆幂定理线段成比例托米勒定理线段成比例帕斯卡定理三点共线西摩松线三点共线关于三角形海伦公式三角形面积梅内劳斯定理线段成比例塞瓦定理线段成比例欧拉线三点共线且成比例圆幂定理圆幂的定义:一点P对半径R的圆O的幂定义如下:OP^2-R^2所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA·PB=PC·P D。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
进一步升华(推论):过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。
则PA·PB=PC·PD。
若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (一定要加绝对值,原因见下)为定值。
这个值称为点P到圆O的幂。
(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。
(这就是“圆幂”的由来)圆的方程通常表示为x^2+y^2=r^2[编辑本段]证明圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)相交弦定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
高级中学数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明一、 塞瓦定理1.塞瓦定理及其证明定理:在∆ABC 内一点P ,该点与∆ABC 的三个顶点相连所在的三条直线分别交∆ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⋅⋅=. 证明:运用面积比可得ADCADP BDP BDCS S AD DB S S ∆∆∆∆==. 根据等比定理有ADC ADC ADP APCADP BDP BDC BDC BDP BPCS S S S S S S S S S ∆∆∆∆∆∆∆∆∆∆-===-,所以APCBPC S AD DB S ∆∆=.同理可得APB APCS BE EC S ∆∆=,BPCAPB S CF FA S ∆∆=. 三式相乘得1AD BE CFDB EC FA⋅⋅=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”.ABCD FP2.塞瓦定理的逆定理及其证明定理:在∆ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,若1AD BE CFDB EC FA⋅⋅=,那么直线CD 、AE 、BF 三线共点.证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有//1AD BE CFD B EC FA⋅⋅=. 因为1AD BE CFDB EC FA⋅⋅=,所以有//AD AD DB D B=.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理3.梅涅劳斯定理及其证明 定理:一条直线与∆ABC 的三边AB 、BC 、CA 所在直线分别交于点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⨯⨯=.ABCD EFPD /ABCD EFG证明:如图,过点C 作AB 的平行线,交EF 于点G .因为CG // AB ,所以CG CFAD FA= ————(1) 因为CG // AB ,所以CG ECDB BE= ————(2) 由(1)÷(2)可得DB BE CFAD EC FA=⋅,即得1AD BE CF DB EC FA ⋅⋅=. 注:添加的辅助线CG 是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG )使得命题顺利获证.4.梅涅劳斯定理的逆定理及其证明定理:在∆ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线上有一点F ,若1AD BE CFDB EC FA⋅⋅=, 那么,D 、E 、F 三点共线.证明:设直线EF 交AB 于点D /,则据梅涅劳斯定理有//1AD BE CFD B EC FA⋅⋅=. 因为1AD BE CF DB EC FA⋅⋅=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其相似后面的规律.AB CDEFD /三、 托勒密定理5.托勒密定理及其证明定理:凸四边形ABCD 是某圆的内接四边形,则有 AB ·CD + BC ·AD = AC ·BD .证明:设点M 是对角线AC 与BD 的交点,在线段BD 上找一点,使得∠DAE =∠BAM .因为∠ADB =∠ACB ,即∠ADE =∠ACB ,所以∆ADE ∽∆ACB ,即得AD DEAC BC=,即AD BC AC DE ⋅=⋅ ————(1) 由于∠DAE =∠BAM ,所以∠DAM =∠BAE ,即∠DAC =∠BAE 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第章勃罗卡定理
勃罗卡
定理凸四边形
内接于
,延长、交于点.延长、交于点.与交于
点.联结,则. 证法如图,在射线上取一点,使得,,,四点共圆(即取完全四边形的密克尔
点),从而、、、及、、、分别四点共圆.
图321
M
F
O
L G N
E
D
C
B
A
分别注意到点、对
的幂,
的半径为,则
.
.
以上两式相减得
,
即. 同理,. 又由上述两式,有. 于是,由定差幂线定理,知. 证法如图,注意到完全四边形的性质.在完全四边形中,其密克尔点在直线上,且,由此知为过点的的弦的中点,亦即知,,三点共线,从而. 同理,在完全四边形中,其密克尔点在直线上,且,亦有. 于是,知为的垂心,故. 证法如图.注意到完全四边形的性质,在完全四边形中,其密克尔点在直线上,且.联结、、、、. 此时,由密克尔点的性质,知、、、四点共圆,、、、四点共圆, 即有, 从而
,
即知点在的外接圆上. 同理,知点也在的外接圆上,亦即知为与的公共弦. 由于三圆,,两两相交,由根心定理,知其三条公共弦,,共点于.即知,,共线,故. 该定理有如下推论 推论凸四边形内接于,延长、交于点,延长、交于点,与交于点,直线与直线交于点,则为完全四边形的密克尔点.
事实上,若设为完全四边形的密克尔点,则在上,且.
由勃罗卡定理,知,即.而过同一点只能作一条直线与已知直线垂直,从而与重合,即与重合.
推论凸四边形
内接于圆,延长、交于点,延长、交于点,与交于点,为完全四边形
的密克尔点的充要条件是于.
推论凸四边形内接于圆,延长、交于点,延长、交于点,与交于点,则为的垂心.
事实上,由定理的证法即得,或者由极点公式
:
,
,两两相减,再由定差幂线定理即证.
下面给出定理及推论的应用实例.
例(年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点,,两对角线交于点,则圆心恰为的垂心.
事实上,由推论知为的垂心,再由垂心组的性质即知为的垂心.
例如图,凸四边形内接于,延长,交于点,延长,交于点,与交于点,直线交于点.求证:.
图322
F
A
证明由勃罗卡定理知,于点.
延长交于点,则在完全四边形中,点,调和分割,从而,,,为调和线束,而,于是平分,即.
延长交直线于点(或无穷远点),则知,调和分割,同样可得.
故.
例(年全国高中联赛题)如图,锐角三角形的外心为,是边上一点(不是边的中点),是线段延长线上一点,直线与交于,直线与交于点.
求证:若,则,,,四点共圆.
图32
3
证明用反证法.若,,,四点不共圆,则可设的外接圆与直线交于点,直线交直。